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ABSTRACT. Let X, Xn, nl be a sequence of iid real random variables, and

Sn= k=l Xk’ nkl. Convergence rates of moderate deviations are derived, i.e.

the rate of convergence to zero of certain tail probabilities of the partial

sums are determined. For example, we obtain equivalent conditions for the

of series -_>l(#2(n)/n)P([Sn k(n)) only under the assumptionsconvergence

that EX 0 and EX2 I, where and are taken from a broad class of

functions. These results generalize and improve some recent results of Li

(1991) and Gafurov (1982) and some previous work of Davis (1968). For b[0,1]

and e > 0, let

,b .3((lg log n)b/n) x(ls.I a (2+). ]o ]o ).

The behaviour of Ee,b as e0 is also studied.
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1. INTRODUCTION

Let X, Xn, nR1 be id random variables with EX 0 and EX I. Let

Sn k=l Xk’ I.1. It is well known that by the law of the iterated logarithm

lim SUPn.Sn/2n log log n 1 a.s.

The study of the estimate of the rate of convergence in the above relation
has engaged the attention of some probabilists over the last few decades.This
paper is concerned about the rate of convergence in the law of the iterated
logarithm. Recently, Li (1991) obtained some convergence rates for particular
cases which are nearly the best possible. See Corollary 2.5. le papers by
Darling and Robbins(1967), Davis(1968), Gafurov(1982), Li(1991), and Strassen
(1967) are close to the present one.

Davis (1968), Theorem 3, p.1483 proved the following result. Let be a
positive nondecreasing function on [1,m). Suppose

E(X(log+JXl)(log+log+[X]) <

Then the following are equivalent.

nl(z(n)/n)P(Sn If(n)) < . (1.1)

Jl ((t)/t) exp(-io2(t)/2} dt < m. (1.2)

Gafurov (1982) showed that (1.1) and (1.2) are equivalent under the weaker

condition that E(X21og+[X) < m. Gafurov(1982) also established the following

result. If E(XZlog+[X[) < m, then

lime0 n3((log log n)/n) e(Is.I
In this paper, we obtain som general results in the spirit of (1.1), (1.2),
and (1.3) which seem to be the bst possibl in a certain sens.Thsm results
generalize and improve the above results and som more.Some errors from Davis
(1967) and Gafurov (1982) are pointed out.

We now proceed to describe the contents of ea(C)h sect/on. In Section 2,
we state the main results of this paper proofs of which are given in Section
4. One of the objectives of Section 2 is to find equivalent conditions for

for a broad class of functions and /. Theorem 2.1 is a very general result
from which quite a number of results in the literature follow as special

cases. For example, Corollary 2.2 improves heorem 3 of Davis (1967) and the
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related result of Gafurov (1982), p.141. Corollary 2.5 gives a recent result

of Li (1991) as a corollary to Theorem 2.1. The second objective is to study
the limit behaviour of

A, b n3((log log n)b/n) l({Sn{ (2+)n log log n)

as eO for b [0,1). Theorem 2.8 improves and generalizes Theorem 2 of

Gafurov (1982). In Section 3, we collect some auxiliary results needed in the

proofs of the main results of Section 2. Lemma 3.3 plays a crucial role in

the derivation of direct and powerful estimates of the convergence rates

involved. This lemma is inspired by the results of the same genre established

by Heyde (1967) and (1969). Lemma 3.3 seems to be new, although the proof is

along the lines of Heyde (1967). In Section 5, the main results of this paper

are analyzed vis-a-vis with some well known results.

2. MAIN RF_ULTS

Let X, Xn, nl be a sequence of real valued random variables and Sn
X
1 + X2 + + Xn, nl. Let (.) and @(.) be two positive real valued

functions on [1,co) such that (.) is nondecreasing, limt_ (t) co and

(t) 0((t)) as t-. For t 0, let a2(t) E(X21([X[<’))-(EXI([XI<’)) 2.
For ease in writing, we use thesymbol a2 for 2(n(n)) for n 1, unless,

n

otherwise specified. Let L(x) Lx(x) log max(e,x} and Lk(X) L(Lk_l(X))
for k 2. We use L(x) and log x interchangeably. We do the same for L(x)
and log log x. log+x stands for max(l,log x}. Consider the following

statements.

nal (@(n)/n) P(ISn[ > n n)) < c0. (2.1)

nl (@2(n)/n(n)) exp{-2(n)/2trn) < co" (2.2)

nl (@2(n)/n(n)) exp{-2(n)/2} < co. (2.3)

I/2nl C(n)/n) P(lSnl n oCn)) < co. (2.4)

nl (o(n)/n) exp(-io2(n)/2tr2n} < co. (2.5)

tl (l/n) P([Sn[ nl/o(n)) < co.
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’n>l (1/n@(n)) exp(-pZ(n)/2o’2n} < .
(9(x)/x) exp(---:(x)/2} dx <

(2.7)

(2.8)

Jl (1/xp(x)) exp(-2(x)/2} dx < . (2.9)

The following is a very general result which generalizes quite a number

of results in the literature.

TIREM 2.1. Let X, Xn, nl be a sequence of id random variables with

EX 0 and EX2 1. Then (2.1) and (2.2) are equivalent. If, in addition,

E(X21([X[ t)) O(1/log log t) as t, then (2.1) and (2.3) are equivalent.

Some remarks are in order how delicate Theorem 2.1 is. Some classical

results follow as special cases of Theorem 2.1. For example, see Corollary

2.4 below. Further, Theorem 2.1 generalizes Theorem 3 of ])avis (1968) and

Theorem 1 of Gafurov (1982). See Corollary 2.2. In addition, Theorem 4 of

Davis (1968) is not true. See Remark 2 below. We now set out amplifying these

statements.

Now consider the important special case o(.) (,). The following

corollary is concerned with this special case.

OOROLIY 2.2. Let X, Xn, nl be a sequence of id random variables with

EX 0 and I2
1. Then (2.4) and (2.5) are equivalent. If, in addition,

E(X21([X[ t)) O(1/log log t) as t-, then (2.4) and (2.8) are equivalent.

We now look at another important special case: @(.) I which is covered

by the following corollary.

COROLLARY 2.3. Let X, Xn, n.l be a sequence of id random variables with

EX 0 and EX 1. Then (2.6) and (2.7) are equivalent. If, in addition,

E(XI([Xl > t)) 0(1/log log t) as t-0, then (2.6) and (2.9) are equivalent.

RIARKS. 1. Davis(1968,Theorem 3,p.1483) proved the equivalence of (2.4)

and (2.8) under the assumption that E(X log+[Xl log+log+IXl) <-. Theorem 1

of Gafurov (1982) p.139 implies that (2.4) and (2.8) are equivalent under the

weaker condition EXIog+[X] < m. Corollary 2.2 generalizes this result in
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view of the fact that E(X21og+log+JXl) < (R) implies that E(X21(IXI t))

0(I/log log t) as

2. Let o(x) (21og+ log+x) I/2, xl. With this choice of o, there are

d random variables X X nl such that EX 0 EX2 xE( I(IX t))
n

0((log log log t)/(log log t)) as t-,

and

n3(log log n)/n) P(iSni q log ’lg ) < m

n3 (l/n) P(JSnl /2n log log) < .
(2.10)

(2.11)

It is easy to check that

j (/ log "log x /x) exp(-log log x} dx , (2.12)

and

j (1/x/2 log 10g X) exp(- log log x} dx . (2.13)

This example is useful to bring into focus some finer points of some of the

results established in this paper which will be pointed out at appropriate

junctures. For example, Theorem 4 of Davis (1968), p.1484 is not true. The

above serves as a counter-example in view of (2.11) and (2.13).

More generally, to demonstrate that the results are really the "best

possible", we can, for any f(t) ’ m, exhibit a random variable X satisfying

EX21([XI t) O(f(t)/ log log t) as t - w

for which (2.4) holds but (2.8) fails.

Taking o(t) @(t) /’, for 0 and t 1, we ob,tain the following

classical result on complete convergence due to Hsu and Robbins (1947) as a

a consequence of Theorem 2.1 above.

COROLLARY 2.4. Let X, Xn, nl be a sequence of id random variables with

EX 0 and EXz < m. Then

nl P([Sn[ n) < (2.14)

for every O.

Another consequence of Theorem 2.1 is the following result of Li (1991).

COROLIY 2.5. Let X, Xn, n.l be a sequence of id random variables.

Then the following are equivalent.
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(i) EX 0 and EX2
1. (2.15)

(ii) n3 (l/n) P(ISnl (2+)n log lg n)

< o, for every > O,, for -2 < < O. (2.16)

(iii) ’n3 ((log log n)/n) P([Sn[ (2.e)n log log n)

< o, for every O,

m, for -2 < e < O. (2.17)

(iv) n3 (1/(n log n)) P(suPlrn Iskl//(2+) k og og k )

< o, for every O,

o, for -2 < < O. (2.18)

Under the additional assumption that E(X21(JX[ > t)) 0(I/ log log t)

as t-m, using Corollary 2.2, we can obtain a more precise result than the

one provided by Corollary 2.5.

(X)RO[XARY 2.6. Let X, Xn, nl be a sequence of iid random variables with

EX O, EX2 1, and E(XZI(IX[ t)) 0(I/ log log t) as t-. Then for

any k 4,

n3 ((log log n)/n) P(ISnl > 2n(L2(n) + (3/2)Ls(n) + ... + (l+e)Lk(n)))
< m, for every 0,

, for -1 < < O. (2.19)

From the example alluded to in Remark 2 above, the condition on the tail

behaviour of the distribution in Corollary 2.6 cannot be improved in the

sense exemplified in the following corollary.The formulation of Corollary 2.5

cannot be improved in the same sense.

COEOLIARY 2.7. Let X, Xn, n.l be a sequence of lid random variables with

EX 0 and EXz
l, and Io(n),nl a positive nondecreasing sequence of numbers

satisfying limn.o o(n) eo and log log n o(toS(n)) as n-o. Then

for every > O. In particular, we have

for every > O.

For e 0 and b 0, consider the random variable
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Ae,b na3 ((log log n)b/n) I(ISn[ /(2/e)n log log n),

which represents the number of jumps the random walk S n23 makes with the
n’

"weights" (log log n)b/n over the boundary +/- /(2+e)n log log n. If 0,

then observe that A " Therefore it is interesting to study the behavior

of EA when 0 e following theorem generalizes eorem 2 of Gafurov

(1982}, p.141 der much eaker conditions.

THEOREM 2.8. Let X X r.l be a sequence of id random variables with
n

EX 0 and EX2
1. If E(X2I(IXI > t)) o(1/ log log t) as t-, then for

for every b [0,1], we have

im0
)b(2b+1)/2 n),3 ((log log n /n) PClSnl > /(2+)n log log n)

2b/’’F(b+(1/2) ), (2.22)

where F(s) fo ts-1 -t
e dt, s>0.

From Remark 2, we can see that the conditions of Theorem 2.8 are the

best possible for the validity of its conclusion. Moreover, Theorem 2.8 is

not true if "o" is replaced by "0".

REM 2.9. Let X X rl be id random variables and b 2 Then
n’

(2.22) is equivalent to EX 0, EX2 1, and E(X2(log+ log+iXl) b-l) < m.

TttlK)REM 2.10. Let X, Xn, nl be a sequence of lid random variables and

b > 0. Then EX 0, EX I, E(X2(log+Ixl)blL21Xl) < , and

limes0 fn3 ((log n)b/n) P(ISnl d(b+l)(2+e)n log log n)

Vc/(b+l) (2.23)

are equivalent.

3. AUXILIARY RESULTS

In this section, we collect some auxiliary results needed in the

subsequent sections. We need some additional notation. Let F (x)
n

-1/2sP(n x) for -- < x < m and nl and 4(.) the distribution function
n

of the standard normal distribution.
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EX2
LEMMA 3 1 Let X be random variable with EX 0 and <

is a positive nondecreasing function on [1,m), then

’nl t:(n) P(IX{ > V" o(n)) < m,

and

:,, c:(,.,)/) E( IXIC IXl > (n)) < (R),

-’nl (1/[n3/li(n)]) zClx[:Clxl < (n))) < (R).

(3.t)

PROOF. We will establish the last statement of (3.1). The other two can

be established in the same vein. Let k
min{i > 1" k < io2(i) + 2}, k 1.

Let [x] denote the integral part of x. Take c > 0 such that 1/[/o(n)]

c/(no2(n) + 2) I/2
for every n 1. We then have

V[n(n)]+l ks/2p(k-t X < k)n>l (1/[n3/(n) ])
kffil

k.l (ni
k
(1/[n3/(n)])) ks/2 P(k-1 X2 < k)

.II: kSl X<: kl (41[Xk Ptik)]) P(k-1 < < k)

4c kl kP(k-1 X2 < k) < .
We need the following lemma which is an important result on the non-

uniform estimates of the remainder term in the central limit theorem. See

Nagaev (1965), Theorem 3, p.215.

LEMMA 3.2. Let X, Xn, nkl be a sequence of id random variables with

EX 0 EXz 1 and EX[ 3 < m. Then for every x,

lFn(X) #(x)l AzlxlS/[n/(t+Ixl):], (3.2)

where A is an absolute constant.

The following lemma plays an important role in the derivation of main

results in this paper.

LEMMA 3.3. Let X, Xn, nkl be a sequence of lid random variables with

EX 0 and EX 1. If o(.) is a positive nondecreasing function on [1,)
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then

(3.3)

PI:X)F. Let Xn, k Xkl(l < Vfp(n)), k 1,2,...,n, and /n

E(XI([X[ < o(n))), n > I. Using the information that EX 0 and EX

1, we observe that 1 an - 1 and /n -qW E(x(Ixl qW o(n))) - 0 as

n - m. Also note that for every x E (-0,0) and n I,

IP(n-l/2Sn < x) P(n-t/k=l Xn, k
Consequently, by Lemma 3.2,

lFn(X) #(x/o )l g IP(n-/2S < x) P(n-/k=l Xn kn n < x)l

+ [P(n-X/:k=l(Xn,k /n)/an < (x f /n)/On) #((x f /n)/On)[

+ I#(x /n)/n) #(x/o )1n

g nP(Ixl c" (n)) + ,(z(Ixlx(Ixl < (n))) +

where c > 0 is a constant depending only on the distribution of X. By
Lemma 3.1, we have

nl (2(n)/n)SUPlxlw(n)I(x)-
: n>l p(n) P(lXl o(n)) / ’’nl n-3/2

+ Y-z zclxlIclxl < (n)))/[n/’’(n)]

+ c -’n.l (’(n)/1’) E(Ixlz(Ixl z (,))) < (R).

The form of the following lemma has its origins in Feller (1946), Lemma
1, p.633. Its proof can be obtained using arguments as outlined in Feller
(1946) with obvious modifications, and is therefore omitted.

LEIfl/A 3.4. Let io(n), nl, @(n), nl, and an, nl be sequences of

positive numbers with a - 1 as n - m.n

(1) Suppose (n) O(o(n)) as n - (R). Let



490 D. LI, X. WANG and M. B. RAO

and

o1(n) 2(log+log+n) I/2
if o(n) > 2(log+log+n) I/2,

o(n), otherwise,

l(n) 2(log+log+n) I/2, if @(n) 2(log+log+n) I/2

@(n), otherwise.

Then the following

and

nl (b2(n)/n(n)) exp{-2(n)/2an < m (3.4)

2(n)/2an} < mnl ((n)/nl(n)) exp(-il (3. 5)

are equivalent.

(2) Suppose there exists b e (0,m) such that (n) 0((log n) b/2) as

n (R). Let

2(n) ((b+2)log+log+n) /2 if (n) ((b+2)log+log+n) 1/2

(n), otherwise.

Then (3.4) and

.,n;1(21(n)/ncp2(n)) exp(-o22(n)/2an} < o0

are equivalent.

and

The following lemma is useful in the study of behaviour of A, b.

LEMMA 3.5. For every b 0, we have

limeO n3 ((log log n)b)/n)(-/(2+)log"log)

2b-12 r(b+(1/2)), (3.7)

lim$0 f n3 ((log n)b/n)@(-/(b+l)(2+)log log n)

2-I12(b+I) -I.

PROOF. To prove (3.7), note that

lim$0 (2b+I)12 n3 ((log log n)bln) @(-/(2+)log log n)

lim$0 (2b+)12 j ((log log x)b/x) @(-2/)i0g 10g) dx



CONVERGENCE RATES FOR PROBABILITIES 491

limes0 E
(2b+1)/2 2b uu e (-- u)

(R)

3

(2b+1)/2 J3 2bu2b-l u2
e (-/’ u) du

+ lime0 e (2b+I)12 f3 2b u2

u e ’(-/ u) /’ du

The first term above is obviously zero. The convergence of the third term

implies that the second term is zero. Thus it remains to be shown that the

third term 2b-l/2-r(b+(1/2)). But this is clear. To prove (3.8), we first

note that

lime0 / n3 ((log n)b/n) @(-V{b+l)(2+)log log n)

Now we have

lime0 f ((log x)b/x) #(-/(b+l)(2+)log log x) dx.

J3 ((log x)b/x) (-(b+l)(2+)log log x) dx

bt2
e
t2Ja e 0(-q(’b+l)(2+) t) 2t dt, where a log log 3,

=-(b+l)-I (log 3)b+1 (-q’(b+X)(2+)log log 3)

+ Ja (2x)-/2 (b+1)-1 /’(b+l)(2+e) -(e(b+)/)t2 dt

2-1/(b+1)-1 e
-1/

+ o(e-1/) as e0.

This completes the proof.

Theorem 2.2 of Li (1991) is required in the proof of Theorem 2.9 below.

We state it in the following lemma adapted to our needs.

I2IMMA 3.6. Let X, Xn, n > 1 be a sequence of lid random variables and

b 0. Then the following are equivalent.

(i) EX 0, EX =1 and EX(log+log+[X[)b < m.

(ii) n3 [(log log n)b+/n] P([Sn] /(2+e) n log log n)

< m for any > 0,

for-2 < < 0.

We would like to point out that Theorem 2.2 of Li (1991) is concerned

with Banach space valued random variables. For the case of real valued random

variables, the statement that the infinite series in (ii) above is < m for

any > 0 is enough to get (i).
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4. PROOFS OF THE MAIN KF.ULTS

PI00F OF THIREM2.1

Using Lemma 3.3, we show that (2.1) and

n.l (2(n)/n) (-Cn)/n) < (4.1)

are equivalent Note that .mj e dt (1/a)e as a and

I as n . It now follows that (4.1) and (2.2) are equivalent.

To prove the second part of Theorem 2.1, we note that 0 S I o2n S

2E(X21(SXI f(n))) 0(1/(]o log n)) as n m from 0, z I,

and E(XI(tXJ t)) 0(I/(]og log t)) as t m. In view oF Lena 3.4, we

can asse, without loss o generality, that (n) 0((log log n) I/) as

m. us (2.2) and (2.3) are equivalent since (z(n)/2)((I/) I)n

nonnegative and bonded.

CONSTRUCTION OF AN EXAI/PLE CITED IN 2

Let

g(x) 3(Ls(x2) 1)/([x[SL(x2)(L2(x2) + 3Ls(x2)) 2, if ]x[ c I

where c > 0 is such that Pl fm-m g(x) dx 1/2 and P2 J-m xZg(x) dx

1/2. For this choice of c l, let c z l-pz)/(1-’Pl). Let X, Xn, n > 1

be id random variables such that the distribution functi’on F of X is given

by

where

and

F(x) (1-pl)Fl(X) + PlF2(x), -- < x < m,

Pl(x) 0, if x <-c2,
1/2, if -cz $ x < c z,

I, if x > cz,

(1/Pl)f g(t) dt, -m < x < m. (4.4)F2(x)

From the above choice of F, it now follows that EX 0 EX I, and for
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large t, E(X2I(IXI < ’)) 1- (3L3(t)/(L2(t) + 3L3(t)). Consequently,

E(X2I(IXI > t)) 3L3(t2)/(L2(t 2) + 3L3(t2)) 0(L3(t)/L2(t)) as t-* m. Thus

for this particular choice of F,

n3 (/log log n/n) exp(-(log log n)/a2(nlog log n)}

holds as is easily verified. Thus (2.10) and (2.11) hold.

(4.5)

PROOF OF TItREM 2.8

By Lemma 3.3, we have, for every b [0,I], that

lime0 e(2b+t)/2 n>3 ((log log n)b/n) P([Sn] > (2+e)n log log n)

limeo e(2b+l)/2 n3 ((log log n)b/n)2}(-/(2+e)log log n /an), (4.7)

where 2
1, and E( I([X[ t))a (2n log log n), nl. From EX 0, EX X

0(1/(log log t)) as t- e0, it follows that 0 $ 1- a 0(1/(log log n)) as
n

n- 0. Assume, without loss of generality, that a > 0. Observe that for

0 < e < I,

1@(-/(2+)log log’ n /a
n

@(-J(2+e)log log n)]

(1/(2 #1)) exp{-((2+e)log log n)/2)} /(2+)log log n (1-a
n

(log n)-(1+(/)) (log log n)-1/ an
(4.8)

- 0 as n -, m. Using a similar argument as in thewhere c lla and a
n

proof of Lemma 3.5, we have

lime0 e(b+l)/ n3 (log log n)b-l//n(log n) x+e/2 2br(b+(l/2)). (4.9)

Hence

ime0
(b+l)/ 3 ((log log n)b-l//n(log n)X+el)an O. (4.10)

By (3.7) of Lemma 3.5, we have

limes0 e(b+x)/ n3 ((log log n)b/n)P([Sn /(2+)n log log n)

limeo e(2b+)/ n3 ((log log n)b/n)2@(-(2+e)log log n)
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2b(2/x) x/2F(b+(1/2) ). (4.11)

PROOF OF THIREM 2.9

By Lemma 3.6, it is easy to prove that (2.22) implies EX 0, EX2 I,

and EX2(]og+]og+Ixl)b-I < . If b 2, it follows that EX21(IXI t)

o(I/ log log t) as t-’ since (log+log+[Xl)b-l < . Using the same

argument as in the proof of Theorem 2.8,one can write down a proof of Theorem

2.9 using Lemmas 3.3 and 3.5.

PROOF OF TH]REM 2.10

Lemmas 3.3 and 3.5, and ideas in the proof of Theorem 2.8 can be used to

write down a proof of Theorem 2.10.

5. MISCELLANY

In this section, we present some remarks derivative of the results

presented above. They provide some useful comparisons with some relevant

results available in the literature.

(1) Feller (1946) proved the following result. Let X, Xn, nl be a

sequence of lid random variables with EX O, EX 1, and EXI([X t)

0(1/log log t) as t m. Let (.) be a positive nondecreasing function on

[1,m). Then the following are equivalent.

(i) P(S
n
> f oCn) infinitely often) 0.

(ii) J (o(t)/t) exp(-io2(t)/2} dt < m.

Our results show that (ii) and

(iii) nl (2(n)/n) P(iSnl qW o(n)) < m

are equivalent.

(2) We now show that the result presented in the last paragraph of

Gafurov (1982) p.143 is not right. We justify our statement as follows. Let

o’(") EXZI([X[ < q(2-)n log log n)
n

(EXI([X[ < (2-)n log log n)) n 3, 0 < 2.

If Eli 0, EX 1, and EXZI(IX[ t) 0(1/log log t) as t - m, then 1
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2
# (e) o(I/log log n) as n- co. Then using an argument similar to the one
n

used in the proof of (4.8), one can show that

#(- /(’2-)n lg log n /#n(e)) (- /(2-e)n log log n)

as n - co. By Lemma 3.3,

limn_0(nk=3((log log k)/k) P([Sk[ /(2-)klog log k))/[(log n)/2/log log]

limnk=3((21og log k)/k)(-/(2-)klog log k/k())/[(log n)/241og log n]

limn.z(nkf3((21og log k)/k)#(-(2-)k log log k))/[(log n)/log log n]

limn.m(nkf3((21og log k)/k)(1/2V’)(exp{-(2-)(log log k)/2})) /

(2-)log log k (log n)/log log n

-’ q2/(2-) limn_o k=3 (4’iog log k)/[k(log k)l-/(log n)/2qlog log ]

(/)q8/[(2-)].

-a /2
In the steps above, we have used the fact that Ja exp{-x/2} dx (1/a)e

as a-z. In a similar fashion, it follows that

limn.znk=3((log log k)/k)P(lSkl 2log log k)/(log log n) s/2

limnm k=3log log k/[(k log k)(log log n) s/]

2/(3).

The gist of the above deliberations can be summarized as follows. Let X, Xn,

n 1 be a sequence of lid random variables with EX 0 EX 1, and

EXI([XI t) o(1/log log t) as t w. Then for 0 < < 2

limn. (2-)w/8 n()/[(log n)/log log n] 1 (5.1)

and

limn_ (3f/2) An(0)/(log log n) s/2 1, (5.2)

An() k)/k)P( [Skiwhere kf3((log log /S-)k log log k), n > 3,

0 < 2. But (5.1) is not compatible with the limit

limn_ suP>o [/2 An()/[(log n)/(log log n)] 1[ 0

and
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given by Gafurov (1982) on the last page.

(3) Let B be a real separable Banach space with norm [[,[[, and B* its

dual space. Let X, Xn, n.l be a sequence of iid B-valued random variables.

Let K be the unit ball of the Hilbert space determined by the covariance

function of X. For a study of the properties of K, see Li (1991) who showed

that the following are equivalent.

(i) Eli 0, E[[X[[ 2 < , and Sn/2n log log n* 0 in probability.

(ii) K is compact in B, and for every e > 0,

n3 ((log log n)/n)P(infxf.K [[Sn/2n log log n x[[ ) < .
(iii) K is compact in B, and for every e > 0,

t3(I/(n log n))P(SUPk.ninfxeK [Sk/2k log log k x[ ) < m.

It is of considerable interest to compare (i), (ii), and (iii) with (2.15),

(2.17), and (2.18), respectively. Ledoux and Talagrand (1986) gave necessary

and sufficient conditions that X satisfies the bounded Law of Iterated

Logarithm and Compact Law of Iterated Logarithm. Li (1991) pointed out that
the following are equivalent.

iv) xffi o, EIIxlI/Lz(IIxII) < (R), (f(x), f E s*, Ilfll x) i,

uniformly integrable, and Sn/2n log log n 0 in probability.

(v) K is comapct in B, and for every 0,

q3 (I/n)P(infx.K IISnN2n log log n =11 ’ ) < (R).

(vi) P((Sn//2n log log n, n3} is conditionally compact) 1.

The remarkable result of the equivalence of (iv) and (vi) is due to Ledoux and

Talagrand (1986). Note the similarity between (v) and (2.16).

(4) We do not know whether an analogue of Theorem 2.1 holds for Banach

space valued random variables.
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