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ABSTRACT. This paper is concerned with the existence of equilibrium states of thin-walled

elastic, cylindrical shell fully or partially submerged in a fluid. This problem obviously serves as a

model for many problems with engineering importance. Previous studies on the deformation of the

shell have assumed that the pressure due to the fluid is uniform. This paper takes into

consideration the non-uniformity of the pressure by taking into account the effect of gravity. The

presence of a pressure gradient brings additional parameters to the problem which in turn lead to

the consideration of several boundary value problems.
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1. INTRODUCTION. We consider in this paper the existence of equilibrium states of hollow

elastic cylinders submerged in a fluid. We treat the fluid pressure as non-uniform by taking gravity
into account. To balance the bouyancy force in the fluid an external line load is applied to the

bottom of the cylinder. By treating the problem as one independent of the variable along the axis

of the cylinder we arrive at the same nonlinear ordinary differen,tial equations governing an

inextensible elastica as in Tadjbakhsh and Odeh [1] for a circular ring. Our work generalizes that

in [1] where only uniform external pressures are considered.

In Section 2 we present the mathematical formulation. By seeking equilibrium states that are

symmetric with the vertical (y-) axis it suffices to consider one half of the perimeter 0 < s <
where s denotes the non-dimensional arc length. We present boundary value problems for a

nonlinear integro-differential equation for the dependent function o (s) which is the angle
deviation from the circular state. An alternative formulation in terms of w os is also presented.

The mathematical problems formulated here involve two non-dimensional pressure parameters

A and r, where A corresponds to the uniform part of the pressure while r corresponds to the

pressure gradient. When r =0, the problems reduce to those considered in [1]. When r #0,
bouyancy force arises which depends on " as well as on the equilibrium configuration and is

balanced by the applied force 2F at the bottom of the hollow cylinder. The concentrated force 2F
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gives rise to a shear force F at s 1- because of symmetry. We assume that F is given in

Theorem 3.1 in Section 3.

The function w s is a measure of the deviation of the curvature from that of the circular

state and the square of the L2-norm of w, denoted by K, is a measure of the bending energy. It
was observed in [1] that when r 0 the circular state is always an equilibrium solution for which

K 0 regardless of A. Non-circular equilibrium states with increasing degrees of symmetry,
however, bifurcate from the circular state at a set of buckling pressures. One main result in [1] is

that given K, there exist an infinite set of such non-circular equilibrium states. Our Theorem 3.1

in Section 3, in the w-formulation and with given F and K, generalizes the above result in [1].
As in [1] our main mathematical tools come from the variational methods for nonlinear elliptic

eigenvalue problems. In Section 3 we state Lemma 3.2 which is used in the proofs of the theorems

in both Sections 3 and 4. This lemma is a direct generalization of the results of Browder [2] to the

case where several constraints are involved.

In Section 4 we consider cases where K is not given. For such cases it is more convenient to

work with the -formulation of Section 2. In Theorem 4.1 we establish the existence of solution

with given F and r, provided they satisfy the inequality F < r/2r. In Theorem 4.2 we establish the

existence of solution when A and r are given. Finally in Theorem 4.3 we consider the case of

pa’tially submerged cylinders and establish the existence of solution with given ’.

Some discussions are given in Section 5.

2. THE MATHEMATICAL FORMULATION.
We consider a typical cross section of a hollow cylinder as shown in Figure 1. Let (x’, y’) be

the Cartesian coordinates with origin at O, s’ the arc length measured from O, and # the local

angle. The hydrostatic pressure p(s’) at a point (x’, y’) (per unit length along the cylinder) is

(’) o +.’, (2.1)

where Po is the external pressure at s’ 0, p the fluid density, and g the gravitational acceleration.

Balancing moments on an element of length ds’ as shown in Figure 2 yields

ds’ +
0
p(t) sin #(t)dt) sin +

0
p(t) cos #(t)dt) cos ,

where h’ is the horizontal component of the internal force at s’ 0.

FIGURE 1_ FIGURE 2
O
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The local bending moment m and the Cartesian coordinates z’ and V’ are related to 0 and s’ by

dz’ dy’
m EI dds’’ ---ds’ cos 0, r sin 0, (2.3)

where E1 is the flexural rigidity of the cylinder.

The following non-dimensional quantities are introduced:

s’ x’ Y’ Po L3 P h’L2 F’L2s=, x=, =-, A= El’ r= h=-,, r=, (2A)

where 2L is the perimeter of the cylinder and 2F’ is the external vertical force applied at the point

A. Equations (2.1), (2.2) and (2.3) now lead to

Oss h sin 0 + A (z cos 0 + y sin O) + r (u cos 0 + 1/2 y2 sin O),

Zs cos 0, (2.5b)

and

sin 0, (2.5c)

o

By integrating (2.5b) and (2.5c) we can show that

z cos 0 + y sin 0 cos (O(s) O(t))dt.o

Making the change of variables

0- rs, (2.7)
where measures the deviation of 0 from the circular configuration, we obtain from (2.5a) the

following equation for (s)

s, h sin (,, + rs) + , cos (qa(s) qa(t) + rs rt)dt
0

if- T[U cos (qo q- 7r,) + 1/2 y2 sin (o + (2.8)

We seek equilibrium states that are symmetric about the y-axis and confine ourselves to the

interval 0 < s < 1. Since 0(0) 0 and 0(1)= r we have

Also by z(1)= 0 we have by (2.5b)
qa(O) p(1) O. (2.9a)

cos ( + rt)dt 0.()= o

The shear force has a jump of 2F across s 1. Hence
,,,(1-) r.

(2.9b)

(2.9c)
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The functions , and u in (2.8) are now integrals of given by

sin (o(t) + rt)dt,Y(’)= o

u(/= (/o (,(0 +,le.

(2.10a)

(2.10b)

Thus we may regard (2.8) as an integro-differential equation for qa. The boundary value problem

described by (2.8) through (2.10) will be considered in Section 4.

In the remainder of this section we shall present an alternative formulation of the problem,

which is then studied in Section 3. Differentiating (2.8) with respect to s one more time and

introducing the new variable w,
to qas, (2.11)

the following integro-differential equation for w results

where
Wss + uw f(w)- r sin (rt + w()d)dt,

0 0

v= r2-c, =,+cr- /(w)= + 2

(2.12)

(2.13)

The constant c above arises as an integration constant and is related to h by

c 2
I- #s2(0)- h 1/2 [s(0)+ r]2 h. (2.14)

For symmetric equilibrium states about the y-axis we again consider (2.12) in 0 < s < 1 with the

boundary conditions

w,(O) 0, Ws(1 r, (2.15a)

to ds 0, (2.15b)
0

o (, + o o()d)a, o. (2.15c)

We shall also assume that the L2-norm of w is fixed. The boundary value problem for w described

by (2.12) through (2.15) will be studied in the next section.

We remark that with r 0 and I" 0, the above formulations correspond to those in [1],
though a different length normalization than that in [1] has been used here.

3. AN EXISTENCE THEOREM FOR THE w-PROBLEM WITH GIVEN TOTAL BENDING
ENERGY.
In this section we shall consider the existence of solutions of the w-problem described above

with

w2ds K, (3.1)
0

where K is given. Since the function w introduced in (2.11) is a measure of the departure of the

curvature from the circular state, K in (3.1) is a measure of the bending energy. When r 0, it

was established in [1] that for K > 0, non-circular equilibrium states with increasing degrees of
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symmetry exist and bifurcate from the circular state at a set of buckling pressures. The following
theorem generalizes the above result in [1].

THEOREM 3.1. For any given F > 0 and K > 0, there exist v, g, r in R and w in the Sobolev

space wl’2((0, 1))such that (w, v, , r)is a weak solution of (2.12) satisfying (2.15) and (3.1).
To prove Theorem 3.1 as well as Theorem 4.1 through Theorem 4.3 in Section 4 we state below

a lemma that will be our main tool.

LEMMA 3.2. Let H be a Hilbert space and q’ a semi-convex real functional on H H. Let
E(u) ’(u, u) be differentiable for u in H. Let 9i(u), i= 1,2,...,N be weakly continuous and
differentiable on H. Given the constants c in R we assume that the set

C {u H" gi(u) ci, i=1,2,..-,N} (3.2)

is either (i) bounded in H or (ii) E(u) --, +oo as u on c (ll denotes the Hilbert space

norm). Then there exist constants Ai, 1, 2,..., N in R and some w in C such that

N
E’(w)- . i 9(w)= 0 on H (3.3)

i=1

provided that the operators, g(w), 1, 2,..., N, are linearly independent.
REMARK 3.3. Lemma 3.2 is a generahzation of Theorem 5 in [2]. The theorems in [2] are

for general reflexive Banach spaces which we specialize here to Sobolev spaces that are Hilbert

spaces. Lemma 3.2 generalizes the result in [2] to the case where N constraints are involved. In
the applications below N < 3.

REMARK 3.4. The derivatives in (3.3) are Frech6t derivatives and in the applications below

they correspond to linear integral operators on H.
REMARK 3.5. The assumption made on the set C in Lemma 3.2 above guarantees the

existence of a minimizer w in the interior of a large closed ball with radius R,
(v H" v -< R}, for which (3.3) holds. For details see [2].

PROOF OF THEOREM 3.1. To apply Lemma 3.2 we let

and define the functionals

H -= wl’2((O, 1)) (3.7)

v2s ds- I (i w4 +1/2 w3)ds- lv(1)’ (3.8a)(,, w) 1/2 Io
w ds, (3.8b)gl(w)

0

92(w)= I; w2 ds, (3.8c)

I I( + ()e)e. (a.e)g3 (w) cos
0 0

By guments simil to those in [1] we c show that the functionMs above have the following
properties:

(i) is differentiable d semi-convex on H x H;
(ii) Each of 9i, 1, 2, 3, is differentiable d wetly continuous on H; d
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(iii) E(w) q(w, w) -, oo as w oo on the set

C =- {w c: H: gi(w) % t, 2, 3} (3.9)

where c 0, c2 K, c3 0, for any K > 0. By Lemma 3.2 there exist some w in C and

i= 1, 2, 3 in R such that (3.3) holds on H provided that the operators {g(w)}, i= 1, 2, 3, are

linearly independent. Thus, by (3.3) we have

E’(w)v- Ai g;(w)v 0, (3.10)
i=1

for every v in H. We can show that

gl(W)v I v ds, (3.11a)
0

and
g(,) 21 WU

0

gI(W)V v ds

w()d)dt] v(s)ds.[l:sin(rt+IO

(3.11b)

(3.11c)

Substituting (3.11a) through (3.11c)into (3.10) yields

where

E’(w)v + v w(s)v(s)ds + r sin (,t + w()d)dt] v(s)dso o o o

I o v(s)ds, (3.12)

v 2X2, (3.13a)

r= -3, (3.13b)

$----1--A3I lsin(rt+ I0 0
w()d)dt. (3.13c)

Computing E’(w)v we can show that (3.12) becomes the weak form of (2.12), with (2.15a) satisfied

as natural boundary conditions. The constraints (2.15b), (2.15c) and (3.1) are all satisfied by the

definitions of gi(w) % 1, 2, 3.

It remains now to prove that the operators g(w), i= 1, 2, 3 defined by (3.11a) (3.11c) are

linearly independent for any w in the set C defined by (3.9). The proof is by contradiction. Thus,
we assume that for some w E C the relation

gig’l(W)V + g2g(w)v + p3g’3(w)v 0,

holds for every v G H and some Pl, P2, P3 G R which are not all zeros. Letting v in (3.14) be 1 and

w respectively we get

Pl -{- P3g(w)1 0 (3.15)

2#2K + p3g3(w)w 0. (3.16)
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From (3.15) and (3.16) it follows that #3 # 0 and hence (3.14) implies

0 0
w()dQdt] ds 0 (3.17)

for each v E H, where

c -- 0
w()d)dt

2#2
C #--.

But, since H is dense in L2((0, 1)), (3.17) holds for every v c L2((0,1)), and hence implies

s
sin (rt + ICo + c w(s) +

0 0
(w()d))dt O. (3.18)

Differentiating (3.18) with respect to s yields

-sin Ors + o w()d). (3.19)

We shall consider two cases:

CASE 1. c 0 (i.e., 2 0). In this case (3.19) implies

rs +
0
w()d constant

which implies that w r C, and this is a contradiction.

CASE 2. c # 0. In this case (3.19) gives

or, in terms of the local angle
Ws -sin (s + f w()d)

ss sin O. (3.20)

18Taking v cos (,rs +
0
w()d) in (3.14) we get (since w C C, v ds - 0 and #3 # O)

0

which in terms of 0 reads
g’(,,,),, o

0
y cos 0 ds 0. (3.21)

Now (3.21) implies that 0 cannot increase from 0 to r on [0, 1] monotonically, i.e., there must be

some s* [0, 1] such that Os(S* 0. Let 0* be O(s*). Integrating (3.20) with respect to 0 and

using the condition Os(S*)= 0 we get

0} 1 (cos 0 cos 0").- -/ (3.22)

Since 0(0) 0 and 0(1) r, it follows from (3.22) that 0* nr for some integer n. However, the
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initial value problem

Oss -c sin 0,

O(s*) nr,

Os(s* O,

has the unique solution, 0 nr. Since 0 nr cannot satisfy both the conditions 0(0)= 0 and

0(1) r, we have a contradiction.

REMARK. Theorem 3.1 above establishes the existence of non-circular equilibrium states

that are symmetric about the y-axis for given bouyancy force 21" and bending energy K. As
suggested by [1] we expect that there are many such solutions which for small 1" are perturbations

of those obtained in [1] possessing high degrees of symmetry, though such latter symmetry is lost in

the present solutions with r # 0.

4. EXISTENCE OF SOLUTIONS FOR GIVEN PRESSURE GRADIENTS.
In this section we shall establish several existence theorems with " being given but with K

unspecified. In such cases it is more convenient to work with the formulation described in

Section 2.

In the first theorem below both r and r are given. It turns out that they must satisfy the

inequality 1" < ’/2r which has a simple geometric interpretation to be made below.

THEOREM 4.1. For given values of r > 0 and 1, > 0 such that 1, < r/2r, there exists a weak

solution (% h, A) of the boundary value problem described by (2.8) through (2.10).
PROOF. To prove this theorem using Lemma 3.2 we let

H W’2 ((0, 1)) (4.1)

and define the functionals

s ds + " f [u()sin (o + Pt)- 1/2 y2(o) cos ( + rt)] dr,

( o (+e,

92() () o (+
0

We c show that these fctionMs have the foowing properties:

(i) is differentiable d semi-convex on H x H;
(ii) Eh of gl, 1, 2, is differentiable d wetly ntinuous on H; d
(iii) E() (, ) o the set

(4.2a)

(4.2b)

(4.2c)

C =_ {qo E H: 9i(qo) ci, 1, 2}
where c 0, c2 1"]r.

By Lemma 3.2 there exists some element in C and constants A and A2 in R such that

i=1

(4.3)
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provided that the set c is nonempty and that g(o) and g[(o) are linearly independent. Suppose
that this is indeed the case. By the relations

and
d- cos u cos sin O,

110 d- [y() cos ( q- r)]()d# (,)

co ((,)- (t)+ t)dtl()e,o o

(4.5)

(4.6)

it easily follows that with h A1, and A A2, (qo, h, A) is a weak solution of the boundary value

problem described by (2.8)through (2.10).
We now show that the set C is nonempty for r < r/2r. To this end we note that for any given

r > 0, the total bouyancy force is 21" ru(2) where u(2) is the total area enclosed in the hollow

cylinder. By symmetry u(2)=2u(1) and since u(1)=g2(o we have r=rg2(). Clearly

-u(1)= -92() has its maximum value 1/2r when o(,) corresponds to a circle, i.e., o(s)-=0.
Thus r < r/2r. By deforming the circle continuously through a family of ellipses symmetric about
the y-axis 92() takes all the values in (0, 1/2r) while gl() 0. Thus for r < r/2r there exists

,some (s) for which 91() 0 and 92() r/r and the set C in (4.3) is nonempty.
For 0 < r/r < 1/2r we now show that the operators gi(qo) and g(qo) are linearly independent

for any in the set C defined by (4.3). The proof is by contradiction. Suppose that

(4.7)

holds for every E H and some //# 0 in R.
implies that

Then (4.7) holds for each E L2((0 1))and this

or, in terms of O, that

sin ( + s) 6 cos ((s) (t) + rs rt)dt,
0

or

& cos ((}.0..s.- #.t..at,())
0

sin 0 6(x cos O + v sin O). (4.8)

However, we have
d__ (x sin 0- y cos 0) z cos 0 + y sin 0dO

which allows us to integrate (4.8) with respect to 0 to obtain

cos 0 6(x sin/9 y cos 0) + c, (4.9)

where c is an integration constant. Differentiating (4.8) with respect to s leads to

cos 0 & & Os(x sin O y cos O). (4.10)
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From (4.9) and (4.10) it follows that

or (since # 0 implies c # O)
c 0s 6,

Since 0(0) 0 and 0(1) r, (4.11) implies that 8 z’s. Thus o 0 C, and this is a contradiction.

Thus the proof of Theorem 4.1 is completed.
REMARK. For F r/2r the above argument shows that the set C consists only of the

function o(s) _= 0 which corresponds to the circular state. It also implies that g(,) and g(o) with

o(s) _= 0 are not linearly independent.

In the theorem below we assume that both the pressure parameters A and r are given. The

bouyancy force 2F is then to be determined from

as part of the solution.

r r y(t) o (,(t)+ t)dt
0

THEOREM 4.2. For given values of A > 0 and r > 0 there exists a weak solution (o, h) of the

boundary value problem described by (2.8), (2.9a), (2.95) and (2.10).
PROOF. We let

H W’2 ((0, 1)) (4.12)

and define the functionals

Cs2 ds + r I 0 [u(o)sin (o + rt)- 1/2 y2(o)cos ( + rt)]dt

+ +

We c agn show that thee unctionMs have the ollowing prorties:

(i) @ is dierentiable d semi-convex on H x H;
(ii) 91 is dierentiable d wetly continuous on H; d
(iii) E() (, ) on me set

(4.13a)

(4.13b)

C {o e H: gl(O) 0}. (4.14)

By Lemma 3.2 there exists some element o in C and A in R such that

E’(,)- gl (’) 0, (4.g)

since it can be checked that g(o) cannot be the zero operator. Operating (4.15) on in H with

h -A establishes (o, h) as a weak solution of the boundary value problem described by (2.8),
(2.9a), (2.95)and (2.10).

We conclude this section by considering a partially submerged cylinder. Again we consider
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equilibrium states that are symmetric about the y-axis and restrict s to be in 0 < s < 1.

Let r*, 0 < r*, < 1, represent the normalized arc length of the non-wetted part of the cylinder.
We modify (2.5a) to

where
Oss h sin 0 -I- rf(s) [u cos 0 -t- 1/2 (y y,)2 sin 0 y* (z z*) cos 0], (4.16a)

0 O<s<r*
f(s) (4.16b)

1 r* < s < 1,

cos O(t)dt, (4.16c)

sin O(t)dt, (4.16d)

x* x(r*), y* y(r*). (4.16f)

or given r > 0 we seek a weak solution (0, h) of the above equations subject to

0(0) O, 0(1) r, (4.17a)

cos 0 ds O. (4.17b)
0

Alternatively, making the change of variables V, #-rs as in (2.7) enables us to work in the

Hilbert space

H W’2 ((0, 1)), (4.18)

with the functionals similar to those in (4.15) defined by

f(s)G(v,)ds,

91(V,) f cos(v, + 7t)dt,

(4.19a)

(4.19b)

where

G@) sin(v, + ,rs)- (y y*)2 cos @ + ,cs)- y*(x x*) sin(v, + rs). (4.20)
It can be shown here that q, E and 91 all have the desired properties so that Lemma 3.2 may be

applied. We summarize the above result in:

THEOREM 4.3. For each r _> 0, there exists a weak solution (8, h) of the boundary value

problem described by (4.16) and (4.17) above.

5. DISCUSSIONS.
We have been concerned with the existence of equilibrium states of hollow elastic cylinders

submerged in a fluid. By considering "planar" deformations of the hollow cylinders we used the
same inextensible nonlinear elastica model as in [1] for elastic rings.
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In [1] Tadjbakhsh and Odeh established the existence of equilibrium states of elastic rings

under uniform external pressures. Earlier works on elastic rings under uniform pressures were

reviewed in [1]. A related note on this subject was given by S. Antmann [3]. Several later works

by Antmann [4-6] also dealt with elastic rings under uniform external pressures, but the

mathematical equations used went beyond the inextensible elastica model. In the work here we

have treated the fluid pressure as nonuniform by taking gravity into account. Our results are thus

applicable for elastic rings under nonuniform pressures.

By considering the pressure gradient in the fluid, the problem is complicated due to the fact

that bouyancy force now arises. This bouyancy force, which also depends on the equilibrium states,

is balanced by a concentrated force applied at the bottom of the cylinder and appears as an

unknown boundary condition. Due to the additional parameters several different boundary value

problems were formulated. The existence of solutions for equilibrium states in such problems were

established in Theorems 3.1, 4.1 and 4.2 above. In Theorem 4.3 we have also considered the case

of a partially submerged cylinder.

As in [1] we followed the mathematical tools provided by Browder in [2]. To facilitate our

proofs we presented a generalization of Browder’s results in Lemma 3.2 for semi-convex functionals

in Hilbert spaces subject to several constraints.

One of the main concerns in [1] is the study of the existence of non-circular solutions that

bifurcate from the trivial circular state at and beyond the buckling uniform pressures. The

inclusion of a pressure gradient "perturbs" such bifurcations, much in the same way as an eccentric

force does to the Euler’s column buckling. We have examined in [7] details of this perturbed
bifurcation picture near the first buckling pressure by singular perturbation techniques. For given

pressure parameters we have also treated in [7] the nonlinear boundary value problems numerically

by the shooting method, both away from and near the buckling pressures. As we have expected,
symmetries of the solutions, except about the y-axis, are lost in the presence of the pressure

gradient.
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