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Abstract. Four selfreciprocal integral transformations of Hankel type are defined through

I,Cy) fo’,Cx),,,Cxy)Cx, ’
where 1,2,3, 4; Ix 0; ct(x) x /, g,(x) x-J(x), J(x) being the Bessel function of the first kind

oforder Ix; th(x) x1-2, g2,(x) (-1)x2gt,,(x); tx3(x) x--2, ,qx,(x) x /,q,,(x), and ct,(x) x-l 2,
g4,(x)- (-1)xgLa(x). The simultaneous use of transformations Y/’I, and /’z, (which are denoted by

allows us to solve many problems of Mathematical Physics involving the differential operator

A D + (1 + 2Ix)x-|D, whereas the pair of transformations /’,, and /’4, (which we express by) permits

us to tackle those problems containing its adjoint operator A- D2-(1 + 2Ix)x-tD + (1 + 2it)x-2, no matter

what the real value of It be. These transformations are also investigated in a space of generalized functions

according to the mixed Parseval equation

fo’Y x)g x fo’  aO
which is now valid for all real It.

Key Words and Phrases: Complementary Hankel transformations, Parseval equation, generalized

functions.
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1. INTRODUCTION.

It was proved by A.H. Zemanian [15,17] that the Hankel transformation of order It -1/2

(h. fo’VJ.(xy )f(x)dx, (1.1)

whereJ(x) denotes the Bessel function ofthe first kind, is an automorphism on the space It of the infinitely
differentiable complex-valued functions x), x tE (0, ), such that

.,(,) sup x"(x-’D )x-r’-,’zdp(x)l
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exists for each pair of nonnegative integers tn and k. Then, the generalized Hankel transformation h’, is

defined on the dual space i’, by means of the adjoint operator of h, that is.

We emphasize that the last expression appears as a generalization of a well-known Parseval equation for

the Hankel transformation ([17,p. 127],[6]). Consequently, the generalized transformation h’, is also an

automorphism on the space If’, provided that IX a -1/2. Later, A.H. Zemanian 16] and E.L. Koh [4] remove
the restriction IX 1/2 and assume that IX be any fixed real number. For it, a positive integer r is chosen

such that IX + r :,. -1/2 and then the Hankel transformation of arbitrary order IX is given by

(h.##) (y (- )"y-’[h./.(N./. .N,/ ,N.] (y),

where the operator

N, x"/ ’nDx--
generates an isomorphism from the space II, onto II, and the mapping x) x’x) is an isomorphism

between the spaces II, and If,/.. as well. The main idea of this method consists in leading any member

x) If,. by means of the applications of the operator N.. N,/, and N, one after another, to

the space !/, where the inversion formula of the Hankei transform has already a sense since IX + r 1/2.

Recently we have employed this procedure to extend to an arbitrary order Ix the following variant of the

Hankel transformation ([8]):

F,(y) fo(R)X ’/,#,.,(xy)f(x)dx (1.2)(,,(y

wheregt.,(x)=x-J,(x). The transform (1.2) is called in the available literature the Schwartz’s Hankel

transformation.

The principal aim of this paper is to extend the last transformation (1.2) to any real value of Ix, through

a technique quite different from that was used in the previous works [4], [8] and 16].
To attain a more symmetrical expression for our results, from now on we assume that Ix 0. L(I)

denotes the space of all functions.f(x) that are Lebesgue integrable on the real positive axis I (0, oo). D(I)
stands for the space of infinitely differentiable functions whose supports are contained in I and its dual

D’(1) is the space of Schwartz distributions [11]. Finally, E(1) represents the space of all infinitely

differentiable functions on I and its dual E’(1) is the space of distributions with compact supports 17,p.36].

2. Classical Results on Schwartz’s Hankel Transformations.

In relation with the transformation (1.2) we establish

Theorem 2.1. Let IXa0. If y"/Xff(y)_L(l), then

y’+’,q,.,(xy )/7,@ )dy [f(x + 0) + .f(x 0)],

in a neighborhood of every point y x where f(y) is of bounded variation.

Proof. The assertion follows from the relation

(,.J)(y y-- UZ{h.Cx./ ’fz.f(x))} (y)
between (1.1) and (1.2) and from the inversion theorem for the Hankcl transformation 13,p.240].

Other conditions under which Theorem 2.1 holds were proposed by A.L. Schwartz 12].

Note that the functiong.,(xy) satisfies the equation

(Al,p, + y2)Sl,p(xy) 0

where
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AI .x "/l,l "D + (1 +2-D D
d
dx

Iff(x) and Gl(y are functions defined on I such that x’ laf(x) L if) and y" teGt(y L (I) and if

F(y) (,) and g(x) (:G1)(x) (t,Gt) (x), where 0, then we easily obtain the Parseval

equation

IoX"f(x)g(x I2y"F,y (2.2)

In previous years, hwa’sHankel transformation has been investigated in certain spaces of distributions,

amongst other author, by S. Dube and J.N. Pandy [2], W.Y.e [5], huitman 10] and G. Altenburg

[l.
Next, we introduce e transformation

G2@) fo’X’-z,()g(x (2.3)

wheregz,(x) (-1x*gt,(x) lfills the equation

(,. +y)z.() o, (2.4)

Az, denoting e differential operator, .-D +( 2.-’D
Obseeatthe multiplication byx* only impliese change of sign fore parameter in (2.1) to convert

it into equation (2.4). On the other hand, transformations (1.2) and (2.3) are closely related, as it is made

evident by e expreion

(z)@)- (-)"yl,.fx-*g(x))]@) (2.5)

en, from eorem 2.1 and (2.5) it is immediately inferred the claical inveion formula for the

transfoation

eom2.2. t0. y+ag@)L(l) and G) is defined as in (2.3), en we have

in a neighborhd of eve int y -x where g) is of bounded variation. For a pair of functions (x)
and a) such atx*e(x) and y*a)belong o L(I), the following Parseval equation

is valid, whereF) (z), g(x) (a)(x) (za)(x) and 0.

Arding me relafi (2.5) e transforms. and incide seemingly when and only when

0. Hever, i Nw remark atere are ther values f which make equal the transformations, and. deed, ome relation 13,p. 16]

N,(x) "Nz-, "0,1,2,3

we dedu quicNy that

in other words,e ansformationz, ofsitive integer order might be ed m replace the transformation.of negative teger index. is fact and above considerations sues to adop the notation
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and

b,(x Ig’(x)" if It 0

/2.,(x), if It < 0

Now we assemble (1.2) and (2.3) in the unique expression

(y F(y fo(R)X 2b,(xy)f(x)dx (2.8)

Therefore Theorems 2.1 and 2.2 can be enunciated together:

Theorem 2.3. Let It be an arbitrary real number. If the function f(y) is such that x"" lr2f(x)EL(1),
if f(y) is of bounded variation in a neighborhood of y -x I and if F(y) is given by (2.8), then

fo y/2b.(xy)F(y)dy [J’(x +0)+/(x-0)]

In [7] we studied this other variant of the Hankel transformation

F,(y) fo(R)X--gs.a(xyff(x)dx, (2.9)

where,q3.(x) "x2a/ 2/1.t, turns out to be a solution of the equation

(a:,,,.. + y2)2/.(xy) 0, (2.10)

A3. being the differential operator

Aa. Ax. -D2- (1 + 2it)x-lD +(1 + 2it)x-2

The following inversion formula was derived in [7]:

Theorem 2.4. Let It z 0. Ill(y) is a function defined on I such that y-"-rf(y) EL(I), then

1
oy-’-*gs,.(xy)F3(y)dy--[f(x

+ 0) +]’(x 011

in a neighborhood of every point y -x where ]’(y) is of bounded variation.

Moreover, iff(x) and Ga(y) are two functions defined over the positive real axis such that x*-nf(x)
and y*-nG(y) belong to L(1). we obtain the Parseval equation

(2.11)

where F(y (,(y), g(x) (I’G3)(x) (3,.G3) (x) and It > O.

Finally, we introduce a fourth integral transformation by means of

(,.,g) (y) G,(y) fo’X-’+’,C,.,,(xy)e,(x)dx,
in whose kernel appears the funetion,c4.,(x)- (-1)"x,cl.,(x)- (-1)x-’g3.,(x),

which is a solution of the equation

(A,..x + Y2),’,.t,(xY) 0. (2.13)

Here A4.t, symbolizes the differential operator

A,.gx A,.t, O (1 2it)x-’O + (1 2it)x-2
From the relation

(Y/’s.,g) (Y) (-1)y[,.,(x-lg(x))] (y) (2.14)
between transformations (1.2) and (2.12), by virtue ofTheorem 2.1, we can easily state the inversion formula
for the new transform:

(2.12)
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Theorem 2.5. Let Ix a 0. If g0’) is a function on I such that y,,-l/2g(y) 6/L(1), if g(y) is of bounded

variation in a neighborhood of the point y -x 6/I and G,0’) is given by (2.12), then

y-’/ *2h.t,(xy )G,(y )dy -[g(x + O) + g(x 0)]

Another result, which we shall need. is the corresponding Parseval equation that now takes the form

fo(R)X-"2f(x)g(x)d.,c fo(R)y-"’F4(y )G4(y )dy (2.15)

where F4(y)-(4,DD(Y), g(x)-(.4:,G4)(x)-(f4.,G4)(x) and Ix.0, f(x) and G4(y) being a pair of

functions such that x’-l’f(x) and y’-l:G4(y) belong to L(1).
By perusing Theorem 2.4 and 2.5, Parseval relations (2.1 1) and (2.15) and differential operators A3.

and A4.,, the unique apparent difference lies in the change of the sign on the parameter Ix. In the same way,
it is convenient to point out that the multiplication of,q3,a(x) by (-1 y’x-’ to get the function,q4.,(x) exactly
implies the said change of sign. Furthermore, it is easily seen that

(gfx_,,g) (Y) (/’4,,,g) (Y),

since,qx_,,(x -,q4.(x), n 0,1,2,3 Now, it is wholly justified to adopt the following notation

A- A.,-D- (1 + 2Ix)x-ID +(1 + 2Ix)x-2-Dx/2Dx--, _oo < Ix < oo (2.16)

and

b(x)_ l,3.(x), if

,4,(x), if Ix0
Thus, the transformations (2.9) and (2.12) can be rewritten in the unique expression

(Y/’,g)(y) G’(y) (2.17)

Next, we summarize Theorems 2.4 and 2.5:

Theorem 2.6. If g(y) is a function defined on I such that y--t/2g(y)6/L(1), if g(y) is of bounded

variation in a neighborhood of a point y -x 65 1 and if G’(y) is given by (2.17), then

for any real value of IX.
A routine application of Fubini heorem allows us o establish another Parseval equations involving

a pair of these four transformations N.(i 1,2,3, 4).
Theorem 2.7. Let Ix 0.

(a) Ifx’/r2f(x)6/L(l) and y-t’-t2G3(y)6/L(l), then

I(R)f(x)g(x) dx I(R)F(y)G,(y dx (2.18)

where Fl(y (.q.fLf) (y) and Ga(y (Yf3.) (Y).

(b) The pair of transformations Yf2.t, and Yf4.t, verifies also the mixed Parseval equation

y0% y0"  g.19)

where now Fz(Y)-(Yf2.’)(y) and G(y)-(Y-/,g)(y), provided that x+Ir2f(x)6/L(I) and

y-’,(y) e(t).
Remark 1. Note that A3,t, and A4.t, are formally the adjoints operators of A.t, and A2.a respectively.
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By this reason, M3., will be called the adjoint or complementary transform of91., and we shall refer to

as the adjoint or complementary transform of

Remark 2. The Parseval equality (2.18) involves the transformation M’I., and its complementary

whereas the Parseval formula (2.19) relates both transforms .9/2., and M’4,,. Observe that, in comparison

with (2.2), (2.6), (2.11) and (2.15), expressions (2.18) and (2.19) do not contain any weight function.

Remark3. According to the notation we have just adopted, Theorem 2.7 admits this statement more

concisely.

Theorem 2.8. Let IX be any fixed real number. If x v2f(x) and y*-1/2G’(y) belongs to L (/) and if

we put F(y) (d0 (Y) and g(x) (l’-G*)(x) (G’)(x), then

fo(R)f(x)g(x) fo(R)F(y )G’(y)y,
that is,

Later on, the Parseval equality (2.20) will facilitate the extension of the transformation , and its

complementary to certain spaces of generalized functions [9].

3. The Generalized Schwartz’s Hankei Transformations of Arbitrary Order

Let be any fixed real number and an integer, 1 4. The space//i,, consists of all infinitely

differentiable complex-valued functions x) defined on I for which

p,() sup

exist for each pair of nonnegative integers m and k, where wt(x)- 1, w2(x)- x-, w3(x)- x- -2, and

w4(x)- x-t. With the topology generated by the collections of seminorms {p’i,_},_,, Hi.,are Fr6chet spRees.

We denote H.t,- Ht and H4,t,- H4, since the definition of these spaces is independent of the particular

choice of the parameter Ix.
Theorem 3.1. A function q(x) defined on I is a member of Hi, if and only if, (a) 9(x) is infinitely

differentiable on/, (b) q(x) has the form

dp(X) w:/l(x)[ao + alx2 + a2x4 + + a: + 0(xZ)]

in some vicinity of the origin, and (c) DC(x) is of rapid descent when x oo for each k 0. I, 2, 3

H’., symbolizes the dual space ofH., and its members are generalized functions of slow growth. We

assign to H’i., the weak topology generated by the multinorm {..,} defined through

/ ell’,... ell,.,.
Thus, H’i.t, is also sequentially complete.

Now we introduce the new spaces

Ht, if Ixz0
H" tH2,_, if IxO

(3.1)

and

=JH3.., if zOH [ H4 if Ix<O
(3.2)

H’, and H’, denote the dual spaces ofH, andH, respectively. Some properties to these spaces are listed



HANKEL COMPLEMENTARY INTEGRAL TRANSFORMATIONS OF ARBITRARY ORDER 329

below.

(i) D(I) CHi., and the restriction of every f_H. to D(1) is a member olD’(/). Moreover, Hi.
is a dense subspace of E(1). Therefore, E’(1) is a subspace of H’.. Consequently, D(I) CH C E(1) and

D(I)CHCE(I).
0i) e operations and W W, where and represem the operators given by 2.7)

and 2.16), arc continuous linear mappings om lhc testing-function spaces H, and H into hcmselvcs,

respectively. Indeed, the inequality

,+1(0)+ .+2,+2(0), i-- 1,2,3,4,

is tisfied for every O H., by raking into account that A.- wt(x)[x2(x-D )2+ (2 + 2)(x-tD)]w,(x).

Hence, the generalized differential operator defined on the distributional spaceH, as the adjoint operator

of that is to y,

<Ai,V>-,A;V>, fH’,
is al a minuous linear mapping ofH’ into imelf. nvcrscly, he generalized diffcrcmial operator A
will be defined on H’ by means of

<,> ,>, / H’ H
and produces a continuous linear mapping of he space H’ into itself.

(iii) umca is any real number. en,H may be identified with a subspacc of H’, hat

is, H, H’,epolo ofH, ing sronger anainduced on i by H’. hdeed, any H generates
a regular disibufionfin e space H’., by,> y(x, H,., (B.B)

provideda m 0. e lineafiy of (3.3) being vious, e continuity is inferred from

oticc that last hteal exis sin (x)- 1) when x 0. and [(x) is of rapid descent at infinity, by
viauc ofcorm 3.1. To ec cond pa ofc nucion obsee lhal

"1)1,, p0,0

On the other hand, .o membeand g ofH, giving se to the me regular distribution in H’, must be

identical. csc nsiderations justi the inclusion H CH’,. alogously, H. may be identified

one-to-on with a subspace ofH’,, in other words,H H’, whenever 0. We can now conclude, in
view ofnoUtion (3.1) and (3.2), atH. CH’. Finally, we can proceed in a similar way to get the inclusions

H CH’ andHCH’ for a 0 and 0, respectively, om which one deduces atH CH’
Thom3..

(a) c Hankcl transformation defined by (2.8), is nn nutomorphism on the space H, no matter

what the real value of be.

(b) e complementa Hankel trnnsformation as given by (2.17), is as well an automorphism

on H, whatever be the real number

Proof.

(a) h 1,.5] it was proven tha;, is an aulomorphism on H,. To study the transformation,
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firstly, we note that the operation x2 is an isomorphism from H into H:,,, and then we take into

account the relation (2.5) between transformations Hl,, and H:,,.
(b) Since the operation ap x /:’q is an isomorphism from Hi into H3,,, the expression

(Y’/’3,,)(Y) Yl+ 2[tffi,,(x--c)](Y ), E H3,,,

which connects the transforms (2.9) and (1.2), implies that 3, is an automorphism on H3.. Finally, in

view that the mapping 9 x9 defines an isomorphism from Hi into H4 and (2.14), we deduce that 4,, is

an automorphism on the space H4 as well. According to convention (2.17), we can now conclude the

validity of statement (b).
Let Ix be any fixed real number. We define the generalized Schwartz’s Hankel transformation, of

arbitrary order in the distributional space H’, as the adjoint operator of. acting on n, namely,

(.q-/’6", @), (]’, y-:@> (3.4)

for every f tE H;’ and EH. If we put 9 -, the application of part (b) in Theorem 3.2 allows us to

rewrite (3.4) as follows

<Y-/’, ..:> -/Or’, >, f tE H;’, @ tEH;, (3.5)

This expression can be understood as an extension of the Parseval equation (2.20) to distributions.

Theorem 3.3. The generalized Schwartz’s Hankel transformation y/’,, given by (3.4) or (3.5), is an

automorphism on H:’, whatever be the real value of the parameter Ix.
Proof:

It is a consequence of part (b) in Theorem 3.2 and [17,Th. 1.10-2].

Remark 4. Observe that the generalized transformation .q/’, is defined on the space H’ as the adjoint

operator of the complementary transform, and not over the space H’, by means of the adjoint operator of

itself, as usual in the available literature. This is suggested andjustified, at once, by the inclusionH, C H’.
Indeed, because of this inclusion if.q-/’ acts on H, the most natural would be to define .q’, on H’ instead

of doing it on the space H ,.
On the other hand, when y/’, is defined as usual, that is,

(./’,) (]’,H,), fE H’,, IE H,, (3.6)

A. Schuitman [10] found the relation

f y+H,(x-- f), f
_
H,,

between the classical and generalized transformations, which means that the conventional transformation

Y/’ is not a particular case of generalized one.

On the contrary, if definitions (3.4) or (3.5) are adopted, f IEH implies that /’f H in view of part

(a) in Theorem 3.2. Therefore, cf generates a regular member in H’, through (3.3),

<Y/’J,>- f,,(Y(0(y)C)dy, @ // (3.7)

By virtue of Parseval relation (2.20), the right-hand side of (3.7) takes the form

by definition (3.4). We have arrived at

<j..> <.,.j. .>.
for all @ EH. In other words, the classical transformation.q/’, coincides now with the generalized one

when this acts on the testing-function space H. This proves that the definition (3.4) is more appropriate
than (3.6).
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Remark 5. Note that the definitions of the generalized operators introduces in (ii) are consistent with

the rules of distributional calculus, in particular, with the definitions of multiplication by an infinitely
differentiable function and differentiation of distribution. This does not occur in [1], [5] and [10].

For every real IX, it is easily seen that A,, acts as a classical differential operator on the space H, and

as a generalized one on H’, while that the conventional operator A, acting on H is understood as a

"’ H C ,,distributional operator on H’,. These facts are justified in view of the inclusions H, CH, and H’
since A, is the adjoint operator of

Remark 6. Assume that Ix is any real number. The generalized transformation :r’ can be similarly

defined on the space H’, as the adjoint operator of y/’, on H, namely,

(y[,g,V)- (g,y/’,tp), g H ,,, tIJ tEH (3.8)

Finally, set g, y/’,,tIJ. Then, because of Theorem 3.2-(a), (3.8) becomes

(pf’g,y/’,tI (g,p>, g n’,, ap n,
Again this expression can be considered as an exact transcription to generalized functions of the mixed

Parseval relation (2.20). It is fulfilled that .q’g -y/’g whatever be g H, as well.

An analogous result to Theorem 3.3 can be inferred from Theorem 3.2-(a):
Theorem 3.4. The generalized complementary Hankel transformation .q’, as given by (3.8), is an

automorphism on H’, independently of the value of IX R.
Next we collect some operation-transform formulas.

Theorem 3.5. Let IX be an arbitrary real number. For all H,

If xp EH, then

For every f H’ one has

whereas

holds for any g

Remark 7. The Cauchy problem posed by W. Y. Lee [5]
Ou
0-- "P(Av")u(x’t)

u(x, O) /(x)

where f(x) is a known member orriS’, P denotes a polynomial with constant coefficients and the unknown

function u(x,t)belongs toH’, can now be solved by applying the transformation y/’ not only for Ix :--1/2,
but whatever for be the real value of the parameter Ix. This and above results justify that the transformation

Y/’, be called the generalized Schwartz’s Hankel transformation of arbitrary order.
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