ON POLYNOMIAL EP, MATRICES

AR. MEENAKSHI and N. ANANDAM

Department of Mathematics, Annamalai University, Annamalainagar - 608 002, Tamil Nadu, INDIA.

(Received May 8, 1989)

ABSTRACT. This paper gives a characterization of EP_r- λ -matrices. Necessary and sufficient conditions are determined for (i) the Moore-Penrose inverse of an EP_r- λ -matrix to be an EP_r- λ -matrix and (ii) Moore-Penrose inverse of the product of EP_r- λ -matrices to be an EP_r- λ -matrix. Further, a condition for the generalized inverse of the product of λ -matrices to be a λ -matrix is determined.

KEY WORDS AND PHRASES: EP $_r$ - λ -matrices, generalized inverse of a matrix. AMS SUBJECT CLASSIFICATION CODES: 15A57, 15A09.

1. INTRODUCTION

Let $F[\lambda]$ be the set of all mxn matrices whose elements are polynomials in λ over an arbitrary field F with an involutary automorphism α : $a \leftrightarrow \bar{a}$ for $a \in F$. The elements of $F[\lambda]$ are called λ -matrices. For $A(\lambda) = (a_{ij}(\lambda)) \in F[\lambda]$, $A^*(\lambda) = (\bar{a}_{ji}(\lambda))$. Let $F(\lambda)$ be the set of all mxn matrices whose elements are rational functions of the form $f(\lambda)/g(\lambda)$ where $f(\lambda)$, $g(\lambda) \neq 0$ are polynomials in λ . For simplicity, let us denote $A(\lambda)$ by A itself.

The rank of $A \in F[\lambda]$ is defined to be the order of its largest minor that is not equal to the zero polynomial ([2]p.259). $A \in F[\lambda]$ is said to be an unimodular λ -matrix (or) invertible in $F[\lambda]$ if the determinant of $A(\lambda)$, that is, det $A(\lambda)$ is a nonzero constant. $A \in F[\lambda]$ is said to be a regular λ -matrix if and only if it is of rank n ([2]p.259), that is, if and only if the kernel of A contains only the zero element. $A \in F[\lambda]$ is said to be EP_r over the field $F(\lambda)$ if rk (A) = r and $R(A) = R(A^*)$ where R(A) and rk (A) denote the range space of A and rank of A respectively [4]. We have { unimodular λ -matrices } $\overline{\nabla}$ { regular λ -matrices }

 $\subseteq \{ EP - \lambda - matrices \}.$

Throughout this paper, let $A \in F_{r}^{nxn}[\lambda]$. Let 1 be identity element of F. The Moore-Penrose inverse of A, denoted by A^+ is the unique solution of the following set of equations:

AXA=A (1.1); XAX=X (1.2); (AX) =AX (1.3); (XA) =XA (1.4)

 A^+ exists and $A^+ \varepsilon F_{\lambda}^{n \times n}$ if and only if rk $(AA^+) = rk (A^+A) = rk (A)$ [7]. When A^+ exists, A is EP_r over $F(\lambda) \Leftrightarrow AA^+ = A^+A$. For $A \varepsilon F_{\lambda}^{n \times n}$, a generalized inverse (or) {1} inverse is defined as a solution of the polynomial matrix equation (1.1) and a reflexive generalized inverse (or) {1,2} inverse is defined as a solution of the equations (1.1) and (1.2) and they belong to $F_{\lambda}^{n \times n}$. The purpose of this paper is to give a characterization of an $EP_r^- \lambda$ -matrix. Some results on $EP_r^- \lambda$ -matrices having the same range space are obtained. As an application necessary and sufficient conditions are derived for $(AB)^+$ to be an $EP_r^-\lambda$ -matrix whenever A and B are $EP_r^-\lambda$ -matrices.

2. CHARACTERIZATION OF AN EP - λ -MATRIX

THEOREM 1. As F_{r}^{nxn} is EP over the field $F(\lambda)$ if and only if there exist an nxn unimodular λ -matrix P and a r x r regular λ -matrix E such that

 $PAP^* = \begin{bmatrix} 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \end{bmatrix}$ PROOF. By the Smith's canonical form, A = $\begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$ Q where P and Q are unimodular- λ -matrices of order n and D is a rxr regular diagonal λ -matrix. Any {1} inverse of A is given by A⁽¹⁾ = Q⁻¹ $\begin{vmatrix} D^{-1} & R_2 \\ R_3 & R_4^2 \end{vmatrix} = \begin{pmatrix} P^{-1} & P^{-1} \\ R_3 & R_4^2 \end{pmatrix}$ where R_2 , R_3 , and R_4 are arbitrary conformable matrices over F(λ). A is EP_r over the field F(λ) \Rightarrow R(A) = R(A^{*}) 3])

$$\Rightarrow A = AA^{*(1)}A^{*} \qquad (By Theorem 17)$$

$$\Rightarrow \begin{bmatrix} D & 0 \\ 0 & QP \end{bmatrix} = \begin{bmatrix} D & 0 & e^{-1} \\ QP & QP \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} & e^{-1} \\ 0 & QP & QP \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} & e^{-1} \\ 0 & R_{3} & Q & Q \\ R_{2} & R_{4} & Q & Q \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} & e^{-1} \\ 0 & 0 & QP \end{bmatrix}$$

Partitioning conformably, let, QP = $\begin{vmatrix} T_1 & T_2 \\ T_3 & T_4 \end{vmatrix}$

$$\begin{vmatrix} D & 0 & | T_1 & T_2 | \\ 0 & 0 & | T_3 & T_4 | \\ 0 & 0 & | T_3 & T_4 | \\ 0 & 0 & | T_1 & DT_2 | \\ 0 & 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2 R_2^{*D^{*}} & 0 \\ 0 & | T_1 + DT_2$$

 \Rightarrow T₂ = 0 (since D is regular).

Therefore $QP = \begin{bmatrix} T_1 & 0 \\ T_2 & T_4 \end{bmatrix}$

Hence
$$A = P \begin{vmatrix} D & 0 \\ 0 & 0 \end{vmatrix} \begin{vmatrix} T_1 & 0 \\ P^* = P \begin{vmatrix} DT_1 & 0 \\ 0 & 0 \end{vmatrix} P^* = P \begin{vmatrix} E & 0 \\ 0 & 0 \end{vmatrix} P^* = P \begin{vmatrix} E & 0 \\ 0 & 0 \end{vmatrix} P^*$$

where $E = DT_1$ is a r x r regular λ -matrix.

Conversely, let PAP = $\begin{vmatrix} E & 0 \\ 0 & 0 \end{vmatrix}$ where E is a r x r regular λ -matrix.

Since E is regular, E is EP_r over $F(\lambda)$.

$$\begin{array}{rcl} \Longrightarrow & R(E) & = & R(E^{*}) \\ \end{array} \\ \begin{array}{rcl} \Longrightarrow & R(PAP^{*}) & = & R(PA^{*}P^{*}) \\ \end{array} \\ \begin{array}{rcl} \Longrightarrow & R(A) & = & R(A^{*}) \\ \end{array} \\ \end{array}$$

A is EP_r over $F(\lambda)$. Hence the theorem. If $A \epsilon F_r^{n \times n}$ and is EP over the field $F(\lambda)$ then we can find nxn regular rational λ -matrices H and K such that $A^* = HA = AK$ [4]. In general the above H and K need not be unimodular λ -matrices. For example, consider A = $\begin{bmatrix} 1 & \lambda \\ 0 & \lambda^2 \end{bmatrix}$. A is

EP, being a regular λ -matrix. If $A^* = HA$ then $H = A^*A^{-1}$; If $A^* = AK$ then $K = A^{-1}A^*$. Here $H = \begin{bmatrix} 1 & -1/\lambda \\ 1 & -1/\lambda \\ 0 & 0 \end{bmatrix}$ and $K = \begin{bmatrix} 0 & -\lambda \\ 0 & -\lambda \\ 1 & -1/\lambda \end{bmatrix}$ are not λ -matrices.

The following theorem gives a necessary condition for H and K to be unimodular λ -matrices.

If A is an nxn $EP_r^{-\lambda}$ -matrix and A has a λ -matrix THEOREM 2. inverse then there exist nxn unimodular λ -matrices H and K such that **{1}** $A^* = HA = AK$.

PROOF. Let A be an nxn $EP_{r} - \lambda$ -matrix. By Theorem 1, there exists an nxn wnimodular λ -matrix P such that PAP = $\begin{vmatrix} E & 0 \\ 0 & 0 \end{vmatrix}$ where E is a rxr regular λ -matrix. Since A has a λ -matrix {1} inverse, E^{-1} is also a λ -matrix.

Now

 $A = P^{-1} \begin{vmatrix} E & 0 \\ 0 & 0 \end{vmatrix} P^{-1^{*}}$ $A^{*} = P^{-1} \begin{vmatrix} E^{*} & 0 \\ 0 & 0 \end{vmatrix} P^{-1^{*}}$

 $= P^{-1} \begin{vmatrix} e^{*}e^{-1} & 0 \\ 0 & 1 \end{vmatrix} PP^{-1} \begin{vmatrix} e & 0 \\ 0 & 0 \end{vmatrix} P^{-1}^{*}$ = HA where $H = P^{-1} \begin{bmatrix} * & -1 & 0 \\ E & E^{-1} & 0 \\ 0 & I \end{bmatrix}$ P is an nxn unimodular

λ-matrix. Similarly we can write $A^* = AK$ where $K = P^* \begin{bmatrix} e^{-1}e^* & 0 \\ 0 & I \end{bmatrix} P^{-1^*}$ is an nxn unimodular λ-matrix.

Therefore $A^* = HA = AK$.

REMARK 1. The converse of Theorem 2 need not be true. For example, consider $A = \begin{bmatrix} \lambda & 0 \\ 0 & 0 \end{bmatrix}$. Since $A^* = A$, $H = K = I_2$. A is an $EP_1 - \lambda$ -matrix. However A has no λ -matrix { 1 } inverse.

3. MOORE-PENROSE INVERSE OF AN EP_r- λ -MATRIX

The following theorem gives a set of necessary and sufficient conditions for the existence of the λ -matrix Moore-Penrose inverse of a given λ -matrix.

THEOREM 3. For A $\varepsilon F_r^{nxn}[\lambda]$, the following statements are equivalent.

- i) A is EP_r, rk(A) = rk(A²) and A^{*}A has a λ -matrix {1} inverse. ii) There exists an unimodular λ -matrix U with A = U $\begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} v \\ v \end{bmatrix}$
- where D is a rxr unimodular λ -matrix and U^TU is a diagonal block matrix.

iii) A = GLG^{*} where L and G^{*}G are rxr unimodular λ -matrices and G is a λ -matrix. iv) A^+ is a λ -matrix and EP.

v) There exists a symmetric idempotent λ -matrix E, (E² = E = E^{*}) such that AE = EA and R(A) = R(E).

PROOF. (i) => (ii) Since A is an $EP_r - \lambda$ -matrix over the field $F(\lambda)$ and $rk(A) = rk(A^2)$, A⁺ exists, by Theorem 2.3 of [5]. By Theorem 4 in [6], A^{*}A has a λ -matrix {1} inverse implies that there exists an unimodular λ -matrix P with $\begin{array}{c} * \\ PP \\ P \\ \end{array} \begin{vmatrix} P_1 \\ 0 \\ P_A \end{vmatrix} where P_1 is a symmetric rxr unimodular <math>\lambda$ -matrix such that

 $PA = \begin{bmatrix} W \\ 0 \end{bmatrix} \text{ where } W \text{ is a rxn, } \lambda - \text{matrix of rank r. Hence by Theorem 2 in [6],} \\ AA^{+} \text{ is a } \lambda - \text{matrix and } PAA^{+}P^{+} = \begin{bmatrix} P_{1} & 0 \\ 0 & 0 \end{bmatrix} \cdot \text{ Since A is EP}_{r}, AA^{+} = A^{+}A \text{ and} \\ A = AA^{+}A = A(AA^{+}). \text{ Therefore } A = P^{-1} \begin{bmatrix} W \\ 0 \end{bmatrix} P^{-1} \begin{bmatrix} P_{1} & 0 \\ 0 & 0 \end{bmatrix} P^{+1} \\ = P^{-1} \begin{bmatrix} W \\ 0 \end{bmatrix} \begin{bmatrix} H & 0 \end{bmatrix} P^{+1} \text{ where}$

H consists of the first r columns of P^{*}, thus H is a nxr, λ -matrix of rank r. Now A = P⁻¹ $\begin{vmatrix} D & 0 \\ 0 & 0 \end{vmatrix} P^{-1}^* = U \begin{bmatrix} D & 0 \\ 0 & 0 \end{vmatrix} U^*$ where U = P⁻¹ and D = WH is a rxr regular λ -matrix. Since A^{*}A has a λ -matrix {1} inverse and P is an unimodular λ -matrix, PAA^{*}P^{*} = = $\begin{bmatrix} D & P_1^{-1}D & 0 \\ 0 & 0 \end{bmatrix}$ has a λ -matrix {1} inverse. Therefore by Theorem 1 in [6], $D^*P_1^{-1}D$ is an unimodular λ -matrix which implies D is an unimodular λ -matrix. Hence A = U $\begin{vmatrix} D & 0 \\ 0 & 0 \end{vmatrix} U^*$ where D is a rxr unimodular λ -matrix and U^{*}U is a diagonal block λ -matrix. Thus (ii) holds. (ii) = \Rightarrow (iii)

Let us partition U as U = $\begin{bmatrix} U_1 & U_2 \\ U_3 & U_4 \end{bmatrix}$ where U_1 is a rxr λ -matrix. Then $A = \begin{bmatrix} U_1 & U_2 \\ U_3 & U_4 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U_1^* & U_3^* \\ U_2^* & U_4^* \end{bmatrix} = \begin{bmatrix} U_1 \\ U_3 \end{bmatrix} \begin{bmatrix} D & \begin{bmatrix} U_1^* & U_3^* \\ U_1 & U_3 \end{bmatrix} = GLG^*$

where L = D and G = $\begin{bmatrix} U_1 \\ U_3 \end{bmatrix}$ are λ -matrices.

Since $U^{\dagger}U$ is a diagonal block λ -matrix, $G^{\dagger}G = U_{1}^{\dagger}U_{1} + U_{3}^{\dagger}U_{3}$ and L are rxr unimodular λ -matrices. Thus (iii) holds. (iii) \Rightarrow (iv)

Since $A = GLG^*$, L and G^*G are unimodular λ -matrices. One can verify that $A^+ = G(G^*G)^{-1}L^{-1} (G^*G)^{-1}G^*$. Now $AA^+ = GLG^*G (G^*G)^{-1}L^{-1} (G^*G)^{-1}G^* = G(G^*G)^{-1}G^* = A^+A$ implies that A^+ is EP_r . Since L and G^*G are unimodular, L^{-1} and $(G^*G)^{-1}$ are λ -matrices, and G is a λ -matrix. Therefore A^+ is a λ -matrix. Thus (iv) holds. (iv) = \Rightarrow (v)

Proof is analogous to that of (ii) \Rightarrow (iii) of Theorem 2.3 [5]. (v) \Rightarrow (i)

Since E is a symmetric idempotent λ -matrix with R(A) = R(E) and AE = EA, by Theorem 2.3 in [5] we have A is EP_r and rk(A) = rk(A²) \Rightarrow A⁺ exists. Since E⁺ = E and R(A) = R(E) \Rightarrow AA⁺ = EE⁺ = E. Now AE = EA = (AA⁺)A = A. Let e_j and a_j denote the jth columns of E and A respectively. Then AE = A \Rightarrow Ae_j = a_j, since e_j is a λ -matrix, the equation Ax = a_j where a_j is a λ -matrix, has a λ -matrix solution. Hence by Theorem 1 in [6] it follows that A has a λ -matrix {1} inverse. Further AA⁺ = E is also a λ -matrix. Hence by Theorem 4 in [6] we see that A^{*}A has a λ -matrix {1} inverse. Thus (i) holds. Hence the theorem.

REMARK 2. The condition (i) in Theorem 3 cannot be weakened which can be seen by the following examples.

Seen by the following examples. EXAMPLE 1. Consider the matrix $A = \begin{bmatrix} \lambda & \lambda \\ \lambda & \lambda \end{bmatrix}$. A is EP₁ and rk(A) = rk(A²) = 1. A^{*}A = \begin{bmatrix} 2\lambda^2 & 2\lambda^2 \\ 2\lambda^2 & 2\lambda^2 \end{bmatrix} has no λ -matrix {1} inverse (since the invariant polynomial of A^{*}A is λ^2 which is not the identity of F). For this A, $A^{+} = \frac{1}{4\lambda} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not a λ -matrix. Thus the theorem fails. EXAMPLE 2. Consider the matrix $A = \begin{bmatrix} \lambda & 2\lambda \\ 2\lambda & 4\lambda \end{bmatrix}$ over GF(5). A is EP₁. Since $A^{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $rk(A) \neq rk(A^{2})$, $A = \begin{bmatrix} \lambda & 2\lambda \\ 2\lambda & 4\lambda \end{bmatrix}$ has a λ -matrix

 $\{1\}$ inverse (since any conformable λ -matrix is a λ -matrix $\{1\}$ inverse). For this A, A^{\dagger} does not exist. Thus the theorem fails.

REMARKS 3. From Theorem 3, it is clear that if E is a symmetric idempotent λ -matrix, and A is a λ -matrix such that R(E) = R(A) then A is EP \Leftrightarrow AE = EA \Leftrightarrow A⁺ is a λ -matrix and EP.

We can show that the set of all ${\sf EP}_r$ - λ -matrices with common range space as that of given symmetric idempotent λ -matrix forms a group, analogous to that of the Theorem 2.1 in [5].

COROLLARY 1. Let $E = E^* = E^2 \varepsilon F[\lambda]$. Then $H(E) = \{A \in F_{\lfloor \lambda \rfloor}^{n \times n}: A \text{ is } EP_{r} \text{ over } F(\lambda) \text{ and } R(A) = R(E)\}$ is s maximal subgroup of $F[\lambda]$ containing E as identity.

PROOF. This can be proved similar to that of Theorem 2.1 of [5] by applying Theorem 3.

4. APPLICATION

In general, if A and B are λ -matrices, having λ -matrix {1} inverses, it is not

necesssary that AB has a λ -matrix {1} inverse. EXAMPLE 3. Consider A = $\begin{bmatrix} 1 \\ \lambda \\ \lambda \\ \lambda \end{bmatrix}$ and B = $\begin{bmatrix} 1 \\ 0 \\ 2\lambda \\ 0 \end{bmatrix}$. Here $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ is one of the λ -matrix {1} inverse for both A and B. But AB = $\begin{bmatrix} 1+2\lambda^2 & 0 \\ \lambda+2\lambda^3 & 0 \end{bmatrix}$. Since the invariant polynomial of AB is $1+2\lambda^2 \neq 1$, AB has no λ -matrix {1} inverse.

The following theorem leads to the existence of λ -matrix {1} inverse of the product AB.

THEOREM 4. Let A, B ε F[λ]. If A² = A and B has λ -matrix {1} inverse and R(A) \subseteq R(B) then AB has a λ -matrix { 1 } inverse.

PROOF. Suppose ABx = b, where b is a λ -matrix, is a consistent system. Then $b \in R(AB) \subseteq R(A) \subseteq R(B)$ and therefore $Bz_0 = b$. Since B has a λ -matrix {1} inverse, by Theorem 1 in [6] we get z_0 is a λ -matrix. Since A is idempotent, so in particular A is a $\{1\}$ inverse of A and b ϵ R(A), we have Ab=b. Now $ABz_0 = Ab = b$. Thus ABx = b has a λ -matrix solution. Hence by Theorem 1 in [6], AB has a λ -matrix {1} inverse. Hence the theorem.

The converse of Theorem 4 need not be true which can be seen by the following example.

following example. EXAMPLE 4. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$; $B = \begin{bmatrix} 1 & 1 \\ \lambda & \lambda \end{bmatrix}$; $AB = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Here $A^2 = A$ and $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is a λ -matrix {1} inverse for both AB and B. However

 $R(A) \notin R(B)$. Hence the converse is not true.

Next we shall discuss the necessary and sufficient condition for the Moore-Penrose inverse of the product of $EP_r^{-\lambda}$ -matrices to be an $EP_r^{-\lambda}$ -matrix.

THEOREM 5. Let A and B be $EP_r - \lambda$ -matrices. Then A^*A has a λ -matrix $\{1\}$ inverse, $rk(A) = rk(A^2)$ and R(A) = R(B) if and only if AB is EP_r and $(AB)^* = B^*A^*$ is a λ -matrix.

PROOF. Since A and B are EP_r with R(A) = R(B) and $rk(A) = rk(A^2)$, by a Theorem of Katz [1], AB is EP_r . Since A is a $EP_r^{-\lambda}$ -matrix, $rk(A) = rk(A^2)$ and A^*A has a λ -matrix [1] inverse, by Theorem 3, A^+ is a λ -matrix and there exists a symmetric idempotent λ -matrix E such that R(A) = R(E). Hence $AA^+ = AA^+ = E$. Since A and B are EP_r and R(A) = R(B), we have $AA^+ = BB^+ = E = A^*A = B^+B$. Therefore BE = EB and R(B) = R(E). Again from Theorem 3, for the $EP_r^{-\lambda}$ -matrix B, we see that B^+ is a λ -matrix. Since A and B are EP_r with R(A) = R(B), we can verify that $(AB)^+ = B^+A^+$. Since B^+ and A^+ are λ -matrices, it follows that $(AB)^+$ is a λ -matrix.

Conversely, if $(AB)^+$ is a λ -matrix and AB is EP_r then $(AB)^+$ is an $EP_r^-\lambda$ -matrix. Therefore by Theorem 3, there exists a symmetric idempotent λ -matrix E such that R(AB) = R(E) and $(AB)(AB)^+ = E = (AB)^+$ (AB). Since rk(AB) = rk(A) = r and $R(AB) \subseteq R(A)$, we get R(A) = R(E). Since A is EP_r , by Remark 3, it follows that A^+ is a $EP_r^-\lambda$ -matrix. Now by Theorem 3, A^*A has a λ -matrix [1] inverse and $rk(A) = rk(A^2)$. Since AB and B are EP_r^- , $R(E) = R(AB) = R((AB)^*) \subseteq R(B^*) = R(B)$ and rk(AB) = rk(B) implies R(B) = R(E). Therefore R(A) = R(B). Hence the theorem.

REMARK 4. The condition that both A and B are $EP_r^{-\lambda}$ -matrices, is essential in Theorem 5, is illustrated as follows:

Let $A = \begin{bmatrix} 1 & \lambda \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2\lambda \\ 0 & 0 \end{bmatrix}$. A and B are not EP_1 . $A^*A = \begin{bmatrix} 1 & \lambda \\ 2 \\ \lambda & \lambda \end{bmatrix}$ has a λ -matrix {1} inverse and R(A) = R(B). But AB is not EP_1 . $A = \begin{bmatrix} 1 & \lambda \\ 2 \\ \lambda & \lambda \end{bmatrix}$ is not a λ -matrix. Hence the claim.

ACKNOWLEDGEMENT. The authors wish to thank the referee for suggestions which greatly improved the proofs of many theorems.

REFERENCES

- 1. KATZ, I.J. Theorems on Products of EP_r Matrices II, <u>Lin. Alg. Appl.</u> <u>10</u> (1975), 37-40.
- LANCASTER, P. and TISMENETSKY, M. <u>Theory of Matrices</u>, 2nd ed., Academic Press, 1985.
- MARSAGLIA, G. and STYAN, G.P.H Equalities and inequalities for ranks of matrices, <u>Lin. and Multi. Alg. 2</u> (1974), 269-292.
- 4. MARTIN PEARL, On Normal and EP_r Matrices, <u>Mich. Math. J. 6</u> (1959), 1-5.
- 5. MEENAKSHI, AR. On EP Matrices with Entries from an Arbitrary Field, Lin. and Multi. Alg. 9 (1980), 159-164.
- 6. MEENAKSHI, AR. and ANANDAM, N. Polynomial Generalized Inverses of Polynomial Matrices, (submitted).
- PEARL, M.H. Generalized Inverses of Matrices with Entries Taken from an Arbitrary Field, <u>Lin. Alg. Appl.</u> <u>1</u> (1968), 571-587.