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ABSTRACT. This paper gives a characterization of EP-X-matrices. Necessary andr
sufficient conditions are determined for {i} the Moore-Penrose inverse of an EPr
matrix to be an EP-X-matrix and {ii} Moore-Penrose inverse of the product ofr
EP-X-matrlces to be an EP-X-matrix. Further, a condition for the generalizedr r
inverse of the product of X-matrices to be a X-matrix is determined.

KEY WORDS AND PHRASES: EP-X-matrlces, generalized inverse of a matrix.
r

AMS SUBJECT CLASSIFICATION CODES" 15A57, 15A09.

1. INTRODUCTION

Let be the set of all mxn matrices whose elements are polyrmmtals in

X over an arbitrary field F with an involutary automorphism a" a - for a e F.

The elements of F are called x-matrlces. For A(X} (alj{ X l} e F,
A (X} (jt X}}- Let F be the set of all mxn matrices whose elements are

rational functions of the form f( X}/g( X} where f( X}, 8(X # 0 are polynomlals in

X. For simplicity, let us denote A(X) by A itself.

The rank of AeF is defined to be the order of its largest minor that is

not equal to the zero polynomial {[2]p.259}. AeF is said to be an unlmodular

X-matrix {or} invertible in F if the determinant of A{X}, that is, det A{X} is

a nonzero constant. AF is said to be a regular X-matrix if and only if it is

of rank n {[2]p.259), that is, if and ortly if the kernel of A contains only the

zero element. AeF is said to be EP over the field .F(X) if rk (A} r and
$ r

R(A) R(A where R(A}and rk (A) denote the range space of A and rank of A

respectively [4]. We have unlmodular X-matrices . regular x-matrices}
E P- X-matrices }.

Throughout this paper, let AeF]. Let 1 be identity element of F. The

A+Moore-Penrose inverse of A, denoted by is the unique solution of the following

set of equations-

AXA=A (1.1); XAX=X (1.2)" (AX)=AX [1.31; (XA} =XA (1.41
+

A exists and A+F if and orfly if rk (AA*) rk (A’A) rk (A) [7]. When A+

exists, A is EPr over F(X} AA+ A+A. For AeF, a generalized inverse
(or} {I inverse is defined as a solution of the polynomial matrix equation (1.11
and a reflexive generalized inverse or) {1,2} inverse is defined as a solution of
the equations (1.1} and (1.2} and they belong to F. The purpose of this
paper is to give a characterization of an EP- X-matrix. Some results onr
EP- X-marices having the same range space are obtained, As an applicationr
necessary and sufficient conditions are derived for (AB)+ to be an EP-X-matrixr
whenever A and B are EP-X-matrices.r
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2. CHARACTERIZATION OF AN EP -h-MATRIX
r

THEOREM I. AEFn] is EP over the field F{k) if and only if there exist
r r

an nxn unlmodular k-matrix P and a r x r regular k-matrlx E such that

PAP

PROOF. By the Smith’s canonical form, A =1 O where P and O are
D 0"

unimodular-k-matrices of order n and D is a rxr regular diagonal h-matrix. Any

{1} inverse of A is given by A
(1) Q_1 D-11 p-1

R3 where R2, R3, and R
4

are arbitrary conformable matrices over F(k). A is EP over the field F(k)

----@ R(A)= R(A
*(1) *=- A AA A (By Theorem 1713])

==> QP QP
0 % 1.0 0.,

D R
3 ,-I ,

* *{ O O
R
2

R
4

0 0

-1
Partitioning conformably, let, QP

T3
T
4

o o LT3 T
4

DT
1 DT2

o o

+ DT2R2D 01

0 0

D 0

0 0

=- T2
0 (since D is regular).

,-1 ITI 0!
Therefore QP

T3 T4,

DO T1 0 p, T1 0 *
Hence A P P P P

oo o

where E DT
1

is a r x r regular h-matrix.

Conversely, let PAP
E 0

0 0
where E is a r x r regular h-matrix.

Since E is regular, E is EP over F(X).r

=@ R(E) R(E

b R(PAP R(PA P

== R(A) R(A

= A is EP over F(X). Hence the theoremr
If Ar] and is EP over the field F{k} then we can find nxn regular

and K need not be unlmodular h-matrlces. For example, consider A Ik{= .A is
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* -I
E P, being a regular X-matrix. If A HA then H A A If A" AK then

’- :0
-1 * il -1/X

K A A Here H ’,XI 0
and K ll/k’ 1

are not X-matrices.

The following theorem gives a necessary condition for H and K to be

unimodular X-matrices.

THEOREM 2. If A is an nxn EPr-X-matrix and A has a X-matrix

{1} inverse then there exist nxn unimodular X-matrices H and K such that

A HA AK.

PROOF. Let A be an nxn EP -X-matrix. By Theorem 1, there exists an nxn
r E 0

unimodular X-matrix P such that PAP where E is a rxr regular
0 0 -I

x-matrix. Since A has a X-matrix {1 inverse, E is also a X-matrix.

E 0
Now A p-1 p-1

I0 0

-I [ E* *
Therefore A P P

0 0

E*E-I 0 1 E 0 p-l*p-I pp-I
0 I 0 0- o

HA where H p-I P is an nxn unimodular

X-matrix. Similarly we can write A AK where

E-1E, p-1 is an nxn unimodular X-matrix.K P
0

Therefore A HA AK.

REMARK I. The converse of Theorem 2 need not bo true. For example,
,Ix 0 ,

consider Since A A, H K 12 A is an EP1- X-matrix.A
10 0

However A has no X-matrix 1} inverse.

3. MOORE-PENROSE INVERSE OF AN EP -X-MATRIX
r

The following theorem gives a set of necesssry and sufficient conditions for

the existence of the X-matrix Moore-Penrose inverse of a given X-matrix.

THEOREM 3. For A F], the following statements are equivalent.

i) A is EPr, rk(A) rk(A2) and A A has a X-matrix {1 inverse.

ti) There exists an unimodular X-matrix U with A U U
, 0

where D is a rxr unimodular X-matrix and U U is a diagonal block matrix.

iii) A GLG where L and G G are rxr unimodular X-matrices and G is a X-matrix.

iv) A
+

is a X-matrix and EPr ,
v) There exists a symmetric idempotent X-matrix E, (E

2
E E such that

AE EA and R(A) R(E).

PROOF. (i) (ii) Since A is an EP X-matrix over the field F(X and
r

rk(A) rk(A2), A
/

exists, by Theorem 2.3 of [5]. By Theorem 4 in [6], A A has

a X-matrix {1} inverse implies that there exists an unimodular X-matrix P with

pp where P1 is a symmetric rxr unlmodular X-matrix such that
0
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PA where W is a rxn, X-matrix of rank r. Hence by Theorem 2 in [6],
ol o

AA is a k-matrix and PAA+P* Pl
Since A is EP AA

+ A+A and
[0 0

p-1 !W p-1
r’P

1
0

A AA+A A(AA+). Therefore A P
o ,.o o

L" oJ
0

H consists of the first r columns of P thus H is a nxr, X-matrix of rank r.

Now A p-I D 0 p-I U U where U p-I and D WH is a
0 O 0

rxr regular X-matrix. Since A hasa X-matrix {I} inverse and P is an

*unimodular X-matrix, PAA P has a X-matrix
0

{I} inverse. Therefore by Theorem I in [6], D -ID is an unimodular X-matrix
D O]which implies D is an unimodular X-matrix. Hence A U U where D

, 0 0
is a rxr unimodular X-matrix and U U is a diagonal block X-matrix.

Thus (ii) holds.

(i) =- (iii)

Let us partition U as U U1 U2
u
3 u4

u3 u4 0 0 Lu2 u

where U
1

is a rxr X-matrix. Then

GLG

Hence the theorem.

Since E is a symmetric Idempotent X-matrix with R(A) R(E) and AE EA, by

Theorem 2.3 in [5] we have A is EP and rk(A) rk(A2) ==> A
+

exists. Sincer+
E+ E and R(A) R(E) == AA EE

+
E. Now AE EA (AA+)A A.

Let e. and a. denote the jth columns of E and A respectively. Then

AE A =-- Aej aj, since ej is a A-matrix, the equation Ax aj where aj is a

X-matrix, has a X-matrix solution. Hence by Theorem 1 in [6] it follows that

A ha a X-matrix {I} inverse. Further AA+ E is also a X-matrix. Hence by
Theorem 4 in [6] we see that A A has a X-matrix {1} inverse. Thus (i) holds.

Proof is analogous to that of (II) = (lil) of Theorem 2.3 [5].

{v) = {i)

are X-matrices.
U
3

Since U U is a dtasonal block X-matrix, G G UIU1 + U3U3 and L are rxr
unimodular X-matrices. Thus (iit) holds.

(iii) =) (iv)

Since A GLG L and G G are unimodular X-matrices. One can verify that
* -IL-IA

+
G(G G) (G*G)-IG*.

Now AA+ GLG G (G G) (G G) G G(G G) G A+A implies that
* * -1A

+
is RPr. Since L and G G are untmodular, L-1 and (G G) are X-matrices, and

A
+G is a X-matrix. Therefore is a X-matrix. Thus (iv) holds.

(Iv) -- (v)
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REMARK 2. The condition (i) in Theorem 3 cannot be weakened which can be

seen by the following examples.

EXAMPLE I. Consl,dec thel 2XmJatrlx2Xzl’A I/ X
A is EP1 and

rk(A} rk(A2} 1. A A | 2 21 has X-matrix 1} inverse (since
, L2X

the tnvariant polynomial of A A is X- which is not the identity of F). For this

A, A
+ I 1 1

is not a X-matrix. Thus the theorem falls
4X 1 1

EXAMPLE 2. Consider the matrix A over GF(5). A is EPI. Since

rk(A) rk{A2), A A" has a X-matrix
0 0 .0

{I} inverse (since any conformable X-matrix is a X-matrix {I inverse}. For

this A, A does not exist. Thus the theorem fails.

REMARKS 3. From Theorem 3, it is clear that if E is a symmetric idempotent

X-matrix, and A is a X-matrix such that R{E} R{A} then A is EP

z=> AE EA A
+

is a X-matrix and EP.

We can show that the set of all EP-X-matrices with common range space as
r

that of given symmetric tdempotent X-matrix forms a group, analogous to that of

the Theorem 2.1 in [5].
* E2COROLLARY 1. Let E E e F. Then

H(E}={A e F: A is EP over F(X} and R(A} R(E}} is s maximal subgroup of
r

F containing E as identity.

PROOF. This can be proved similar to that of Theorem 2.1 of [5] by
applying Theorem 3.

4. APPLICATION
In general, if A and B are X-matrices, having X-matrix {1} inverses, it is not

0
Since thethe X-matrix 1} inverse for both A and B. But AB

+2 X3 0
tnvariant polynomial of AB is 1+2 X

2
1, AB has no X-matrix {1 inverse.

The followin8 theorem leads to the existence of X-matrix {1} tnverse of the
product AB.

THEOREM 4. Let A, B F. If A2 A and B has X-matrix {1} inverse
and R(A} .C. R(B} then AB has a X-matrix 1 inverse.

PROOF. Suppose ABx b, where b ls a X-matrix, is a consistent system.
Then b R(AB) R{A) c._ R{B) and therefore Bz b. Since ]9 has ao
X-matrix 1 inverse, by Theorem I in [6] we get z is a X-matrix. Since A iso
idempotent, so in particular A is a{1 }inverse of A and b R{A}, we have Ab=b.
Now ABZo Ab b. Thus ABx b has a X-matrix solution. Hence by Theorem1
in [6], AB has a X-matrix 1} inverse. Hence the theorem.

The converse of Theorem 4 need not be true which can be seen by the
following example.

1 0 1 1 1EXAMPLE 4. Let A B AB Here
0 0 X X 0
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R (A) R(B). Hence the converse is not true
Next we shall discuss the necessary and sufficient condition for the

Moore-Penrose inverse of the product of EP-k-matrices to be an EP-k-matrix.
THEOREM 5. Let A and B be EP-k-matrices. Then A A has a k-matrix

{1} inverse, rk(A) rk(A2) and R(A) R(B) if and only if AB is EP and
(AB)

+ B+A+ is a k-matrix

PROOF. Since A and B are EP with R(A) R(B) andr
rk(A) rk(A2), by a Theorem of Katz [1], AB is EP Since A is a
EP-k-matrix rk(A) rk(A2) and A A has a k-matrix {1 inverse, by Theorem 3
A
+

is a k-matrix and there exists a symmetric idempotent k-matrix E such that
R(A) R(E). Hence AA

+
AA

+
E. Since A and B are EP and R(A) R(B),r

we have AA
+

BB
+

E A+A B+B. Therefore BE EB and R(B) R(E).

-k-matrix B, we see that B+ is a k-matrixAgain from Theorem 3, for the EPr
Since A and B are EP with R(A) R(B) we can verify that (AB) + B+A+
Since B

+
and A

+
are k-matrices, it follows that (AB)

+
is a k-matrix.

Conversely, if (AB)
+

is a k-matrix and AB is EP then (AB)
+

is anr
EP-k-matrix. Therefore by Theorem 3 there exists a symmetric idempotentr
k-matrix E such that R(AB) R(E) and (AB) (AB)

+
E (AB)

+
(AB).

Since rk(AB) rk(A) r and R(AB)iR(A), we get R(A) R(E). Since A is EPr’
by Remark 3, it follows that A

+
is a EP-k-matrix. Now by Theorem 3, A A has

a k-matrix I} inverse and rk(A} rk{A2)r, Since AB and B are EP

R(E) R(AB) R((AB)

__
R(B R(B) and rk(AB) rk(B) implies

R(B) R(E). Therefore R(A) R(B). Hence the theorem.

REMARK 4. The condition that both A and B are EP-k-matrices, is essential
r

in Theorem 5, is illustrated as follows"

Let A and B A and B are not EP1.0

A A has a k-matrix 1} inverse and R(A) R(B). But AB is

not EP
1

(AB)
+ I 1 0

is not a k-matrix. Hence the claim
1+4 k 2k 0
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