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ABSTRACT. Certain types of ring congruences on an additive inverse semiring are characterized

with the help of full k-ideals. It is also shown that the set of all full k-ideals of an additively inverse

semiring in which addition is commutative forms a complete lattice which is also modular.
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1. PRELIMINARIES. A semiring is a system consisting of a non-empty set S together with

two binary operations on S called addition and multiplication (denoted in the usual manner) such

that

(i) S together with addition is a semigroup;

(ii) S together with multiplication is a semigroup; and

(iii) a(b + c) ab + ac and (a + b)c ac + bc for all a,b,c
_

S.
A semiring S is said to be a,dditively commutative if a + b b + a for all a,b E S. A left (right)
ideal of a semiring S is non-empty subset I of S such that

i) a + b E I for all a,b
_

I; and

ii) ra

_
I(ar

_
I) for all r S and a E I.

An ideal of a semiring S is a non-empty subset I of S such that I is both a left and right ideal of S.
Henriksen [1] defined a more restricted class of ideals in a semiring, which he called k-ideals.

A left k-ideal I of a semiring S is a left ideal such that if a I and x S and if either a + x I
or x+a I, then x E I.

Right k-ideal of a semiring is defined dually. A non-empty subset I of a semiring S is called a

k-ideal if it is both a left k-ideal and a right k-ideal.

A semiring S is said to be additively regular if for each a q S, there exists an element b fi S
such that a a + b + a. If in addition, the element b is unique and satisfies b b + a + b, then S is
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called an additively inverse semiring. In an additively inverse semiring the unique inverse b of an

eleinent a is usually denoted by a’. Karvellas [2] proved the following result:

Let S be an additively inverse semiring. Then

i) x (x’)’, (x + y)’= y’ + x’, (xy)’ x’y y’x and xy a"y’ for all a’,y

_
S.

ii) E + {.r E S" .r+ x x} is an additively commutative semilattice and an ideal of S.
2. FULL k-IDEALS. In this section S denotes an additively inverse semiring in which addition is

commutative and E + denotes the set of all additive idempotents of 5’.
A left k-ideal A of 5’ is said to be full if E + C_ A. A right k-ideal of S is defined dually.
A non-empty subset I of 5’ is called a full k-ideal if it is both left and a right full k-ideal.

EXAMPLE 1. In a ring every ring ideal is a full k-ideal.

EXAMPLE 2. In a distributive lattice with more than two elements, a proper ideal is a k-ideal
but not a full k-ideal.

EXAMPLE 3. Z Zp {(a,b)" a,b are integers and b > 0}. Define

(,,b) + (,) (, + c,.c.,,, of ,) (, b)(, ) (, ..f. of ,).

Then Z Zp becomes an additively inverse semiring in which addition is commutative.

Let A {(a,b) E Z Zv" a 0,b ZP}. Then A is a full k-ideal of Z Zp.
LEMMA 2.1. Every k-ideal of S is an additively inverse subsemiring of S.
PROOF. Let I be a k-ideal of S. Clearly I is a subsemiring of S. Let a I. Then

a +(a’+a) a I.

Since I is a k-ideal, it follows a’ + a I. Again this implies that a’ I. Hence the lemma.
LEMMA 2.2. Let A be an ideal of S. Then

A {a S" a + x A for some x A} is a k-ideal of S.

PROOF. Let a,b A. The a + x,b + y . A for some x,y A. Now

a+z+b+y=(a+b)+(x+y) A.

Asx+yA,a+bA. Next letrES, ra+rx=r(a+x)A.
As rxA, raA. Similarly, arA. As aresult A is an ideal of 5’. Next, let cand c+dEA.
Then there exists z and y in A such that c + x A and c + d + y A.
Now

d +(c+x+y)=(c+d +y)+x6_A and c+x+y. A.

Hence d E A and A is a k-ideal of S. Since a + a’ A for all a A, it follows that A C_ A.
COROLLARY. Let A be an ideal of S. Then - A iff A is a k-ideal.

LEMMA 2.3. Let A and B be two full k-ideals of 5’, then A + B is a full k-ideal of 5’ such that

A C_ A+B and BC_A+B.

PROOF. It can be shown that A + B is an ideal of S. Then from Lemma 2.2, we find A + B
is a k-ideal and A+BC_A+B. Now E +_CA,B. Hence E + C__A+BC_A+B. This implies
that A + B is a full k-ideal. Let a G A. Then

a=a+a’+a=a+(a’+a)_A+Basa’+aEE + C_B.

Hence A C_ A + B and similarly B C_ A + B.
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THEOREM 2.4. If I(S) denotes the set of all fltll k-ideals of S, then I(S) is a complete lattice

which is also modular.

PROOF. We first note that I(S) is a partially ordered set with respect to usual set inclusion.

Let A,BI(S). Then ANBI(S) and from Lemma 2.3, A+BI(S). Define AAB=AflB

and AVB=A+B. Let CI(S) such that A, BC_C. Then A+BC_C and A+B_C(7. But
C =(7. Hence A+BC_C. As aresult A+B is the l.u.b, ofA, B. Thus we find that I(S) isa

lattice. Now E + is an ideal of S. Hence E + I(S) and also S I(S); consequently I(S)is a

complete lattice. Next suppose that A, B, C I(S) such that

AAB= AAC and AVB AVC and BCC.

Let xC. Then xAVC=AVB=A+B.
x + a + b a + b for some a A, b B.
Then

Hence there exists a+bA+B such that

x +a +a’ +b a +b

Now x C, a + a’ C and b B C__ C. Hence a + b + a’ C. But b C. Consequently,
a + a C f’l A C N B. Hence a + a’ B. So from x + a + b a + b we find that

x+a+a’+b=al+a’+bB. But (a+a’)+bBand Bisak-ideal. Hence xBand B=C.
This proves that I(S) is a modular lattice.

3. RING CONGRUENCES.
A congruence p on a semiring S is called a coagruence if the quotient semiring Sip is a

ring.

In this section we assume S is an additively inverse semiring in which addition is

commutative. We want to characterize those ring congruences on S such that (ap) =dp where a

denotes the inverse of a in S and -(ap) denotes the additive inverse of ap in the ring
THEOREM 3.1. Let A be a full k-ideal of S. Then the relation

PA {(a,b) S x S" a + b’ A} is a ring congruence on ,5’ such that (aPA) a’PA.
PROOF. Since a + a’ E + C. A for all a S, it follows that PA is reflexive. Let a + b’ A.

Now from Lemma 2.1, we find that (a + b’)’ 6- A. Then b + a’ (b’)’ + a’ (a + b’)’ A. Hence PA
is symmetric. Let a + b A and b + d A. Then a + b + b + d A. Also b + b E + _C_: A. Since

A is a k-ideal, we find that a +d A. Hence PA is an equivalence relation. Let (a,b) PA and

c ,5’. Then a + b A. Since

( + a) + (c + a)’ + + a’ + ’= ( + v)+ ( +,’) e A, , + ()’ , + a’ ( + V) A,

ac + (bc)’ ac + b’c (a + b’)c A,

it follows that PA is a congruence on 5’. So we obtain the quotient semiring where addition and

multiplication are defined by

aPA + bPA (a + b)pA and (aPA)(bPA) (ab)pA.

Now

aPA + bPA (a + b)pA (b + a)pA bPA + aPA.
LeteE + andaCS. Now(e+a)+a’=e+(a+a’)G_.E +.
We find that (e + a)pA aPA. Then epA + aPA aPA.
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Also

aPA + a’PA (a + a’)pa epA.

Hence epA is the zero element and a’PA is the negative element of aPA in the ring SipA.
THEOREM 3.2. Let p be a congruence on S such that Sip is a ring and -(ap) a’p. Then

there exists a full k-ideal A of S such that PA P"
PROOF. Let A {a ( S" (a,e) E p for some e E E + }. Since p is reflexive, it follows that

E + C_A. Then A6, since E + q. Let a,b_A. Then there exist e,f_E + such that

(a,e)_p and (b,f) c=p. Then (a+b,e+ f) cp. But e+ f .E +. Hence a+b_A. Againforany
r ( S, (ra, re) ( p and (ar, er)

_
p. But re and er ( E +. Hence A is an ideal of S.

Let a + b ( A and b ( A. Then there exist e,f,
_
E + such that (a + b,f) . p and (6,e)

_
p.

Hence fp (a + b)p ap + bp ap + ep. But fp and ep are additive idempotents in the ring Sip.
Hence ep fp is the zero element of S/p. As a result, ap is the zero element of S/p. Then

ap- ep. This implies a ( A. So we find that A is a full k-ideal of S. Consider now the

congruences PA and p. Let (a, b) p. Then (a + b’, b + b’) p. But b + b’ E E +. Hence a + b’ A
and (a,b) PA" Conversely suppose that (a,b) PA" Then a + b’ A. Hence (a + b’,e) p for some
e E +. As a result, ep ap + b’p ap- bp holds in the ring Sip. But ep is the zero element of

Sp. Consequently ap bp. This show that (a,b) p and hence PA P"
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