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1. INTRODUCTION.
Functional differential equations (FDE) with delay provide a mathematical model for a physical or

biological system in which the rate of change of the system depends upon its past history. The theory of

FDEwith continuous argument is well developed, and has numerous applications in natural and engineering

sciences. This paper continues our earlier work [1-5] in an attempt to extend this theory to differential

equations with discontinuous argument deviations. In these papers, ordinary differential equations having

intervals of constancy have been studied. Such equations represent a hybrid of continuous and discrete

dynamical systems and combine properties of both differential and difference equations. They include as

particular cases loaded and impulse equations, hence their importance in control theory and in certain

biomedical problems. Indeed, we consider the equation

x’(t ax(t + bx([t]), (1.1)

where It] denotes the greatest integer function, and write it as

x’(t)-ax(t)+ Y. bx(i)(H(t-i)-H(t-i- I)), (1.2)

where H(t) I for > 0 and H(t) 0 for < O. If we admit distributional derivatives, then differentiating

the latter relation gives

x"(t)-ax’(t)+ Y. bx(i)(6(t-i)-6(t-i- I)), (1.3)
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where 6 is the delta functional. This impulse equation contains the values of the unknown solution for the

integral values of t. Within intervals of certain lengths, differential equations with piecewise constant

argument (EPCA) describe continuous dynamical systems. Continuity of a solution at a point joining any
two consecutive intervals implies recursion relations for the values ofthe solution at such points. Therefore,
EPCA are intrinsically closer to difference equations rather than differential equations. The main feature

of equations with piecewise constant argument is that it is natural to formulate initial and boundary value

problems for them not on intervals but at a number of individual points.
In [6] boundary value problems for linearEPCA in partial derivatives were considered and the behavior

of their solutions studied. The results were also extended to equations with positive definite operators in

Hilbert spaces. In [7] initial value problems were studied for EPCA in partial derivatives. A class of loaded

equations that arise in solving certain inverse problems was explored within the general framework of

differential equations with piecewise constant delay. Integral transforms were successfully used to find

the solutions of initial value problems for linear partial differential equations with piecewise constant delay.
It has been shown in [6] and [7] that partial differential equations (PDE) with piecewise constant time

naturally arise in the process of approximating PDE by simpler EPCA. Thus, if in the equation

u,-a-u=-bu, (1.4)

wich describes heat flow in a rod with both diffusion a2u,= along the rod and heat loss (or gain) across the

lateral sides of the rod, the lateral heat change is measured at discrete moments of time, then we get an

equation with piecewise constant argument

u,(x,t) a2u,=(x,t) bu(x, nh ), (1.5)

_[nh,(n +l)h], n -0,1

where h > 0 is some constant. This equation can be written in the form

u,(x,t) a2u=(x,t) bu(x,[t/h]h (1.6)

The purpose of the present paper is to investigate boundary value problems and initial value problems for

linear PDE with the pieeewise constant argument kt/h ]h, where . and h > 0 are constants and 0 <.< 1.

Such equations are of both theoretical and applied interest. For instance, the equation

y’(t ay(t + by( kt (1.7)
arises as a mathematical idealization ofan industrial problem involving wave motion in the overhead supply
line to an electrified railway system. The profound study [8] of Eq. (1.7) has led to numerous works in

this direction, some of which were reviewed in [9]. In particular, in [10] and [11] distributional and entire

solutions were explored for general classes of equations of type (1.7) with polynomial coefficients. While

of considerable importance in their own right, solutions of EPCA with the argument [.t/h]h can be used

to approximate solutions of equations of form (1.7) as h 0. Obviously, the lags .t and .t/h ]h
become infinite as

2. MAIN RFULTS.
We consider the boundary value problem (BVP) consisting of the equation

Ou(x,t)+p(O) (O)Ot x u(x,t)-Q -- u(x,[kt/h]h), (2.1)

where P and Q are polynomials of the highest degree m with coefficients that may depend only on x, the

boundary conditions

Liu t.(Mitu- )(0) +Ntu-l’(1)) 0, (2.2)
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where Mj, and Nj, are constants, j 1 m; and the initial condition

u(x, 0) Uo(X (2.3)

where (x, t) tE [0,1] [0, oo), and h > 0, 0 <,< 1 are constants. Equations (2.2) can be written as

Lu -0.

Following [6], we introduce the following definition.

DEFINITION 2.1. Afunction u(x, t) is called a solution ofthe aboveBVP if it satisfies the conditions:

(i) u (x, t) is continuous in G [0,1 [0, =); (ii) 8u and Otu/Oxt(k O, 1 m exist and are continuous

in G, with the possible exception of the points (x, nh/.), where one-sided derivatives exist (n 0,1, 2, ...);
(iii) u(x,t) satisfies equation (2.1) in G, with the possible exception of the points (x,nh/.), and conditions

(2.2)-(2.3).
Let u,(x,t) be the solution of the given problem on the interval nh/k < (n + 1)h/., then

8u,(x,t)/#t +Pu,(x,t) Qc,(x)

where

We next write

which gives the equation

and require that

c.(x) u(x, nh

u.(x,t) w.(x,t) + v.(x)

ow./ot + Pw. + Pv.(x) Qc.(x)

(2.2’)

with a solution

T,(t e-’ -’/)

and the BVP

P(d/dx)X- oX O, LX O (2.8)

where L is defined in (2.2) and (2.2’). If BVP (2.8) has an infinite countable set of eigenvalues Ix and

corresponding eigenfunctions X(x) tE C=[0,1], then the series

--t-IX.)....,w,(x,t)- t.,ce ,itx), C.i- const (2.9)
i-

represents a formal solution of problem (2.5)-(2.2’) and

-. t.,.e P-Qc.(x) (2.10)

Ow./Ot +Pw. O, (2.5)

Pv,,(x) Qc,,(x) (2.6)

Assuming both w,, and v, satisfy (2.2’) leads to an ordinary BVP (2.6)-(2.2’), whose solution is denoted by

v.(x)-P-Qc.(x),
and to BVP (2.5)-(2.2’), whose solution is sought in the form

w,(x,t) X(x)T,(t) (2.7)

Separation of variables produces the ODE

T,’ + txr, o

(2.4)
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is a formal solution of (2.1)-(2.2). At nh/, we have

s.(x) c.(x) +e-’Qc.(x)

where

(2.11)

Since

so(x) Co(X) u0(x),

substituting the initial function u0(x) C’[0,1 in (2.12) as n 0 produces the coefficients Coj, and putting

them together with Uo(X) in (2.10) as n -0 gives the solution Uo(X,t) of BVP (2.1)-(2.3) on the interval

0 < h/.. Since Uo(X,h cx(x) and Uo(X,h/)) sx(x), we can find from (2.12) the numbers C1i and then

substitute them along with (x) in (2.10) as n I, to obtain the solution ut(x,t) on h/. 2h/.. This

method ofsteps allows to extend the solution to any intervalnh/k ffi (n + 1)h/.. Furthermore, continuity

of the solution u(x,t) implies

u.(x,(n + )h/.)=u,/(x,(n + )h/.)=s,/(x),

hence, at (n + 1)/h . we get the recursion relations

s. :(x -i.t C,e?/xXi(x +P-Qc.(x <2.13)

Finally, from (2.11) and (2.13) we obtain

s. (x) s.fx) -i. C.i(l e/’/fX/fx).
This concludes the proof of the following theorem:

THEOREM 2.1. Formula (2.10), with coefficients C.i defined by recursion relations (2.12),

represents a formal solution of BVP (2.1)-(2.3) in [0, I] x [nh/k,(n + l)h/.], for n 0, I,..., ifBVP (2.8)
has a countable number ofeigenvalues ix and a complete orthonormal set ofeigenfunctionsX(x) IE C’[0, I]
and the initial function u0(x) IE C’[0,1] satisfies (2.2).

The solution of Eq. (2.1) on nh/., < (n + 1)h/. can be also sought in the form

u.(x, t) i. X(x)T.i(t (2.14)

where X(x) are the eigenfunctions of the operator P. Upon multiplying (2.14) by X,(x), then integrating

between 0 and I and changing k to j, we obtain

T,o’(t) + IxiT.i(t) q,#

’ I X(x)Q(a/ax)c.(x)ax
c.(x) u(x,nh ),

whence

s,(x) u,(x, nh/,)

Therefore, assuming the sequence {X(x)} is complete and orthonormal in C’[0,1 yields for the coefficients

C,i the formula

C,i- f (s,(x)-P-IQc,(x))Xi(x)d.x, (n 0,1,2,...). (2.12)
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T.(nh/ s.(x(x

s,(x)-u(x,nh/)

e principal role of the operator P emerges omemethods of constcting solution. t

-0

wherei are real-valued nctions ofclaes C" - on 0 x 1 and() 0 on [0,1 ]. uming C’[O,

is embedded in L0,1] with e inner

,z)- y(x(x,

BVP (2.8) is called self-adjoint if

(ey,z (y,ez

for all y,z tE C"[0,1 that satisfy the boundary conditions

Ly -Lz -0.

If BVP (2.8) is self-adjoint, then all its eigenvalues are real and form at most a countable set without finite

limit points. The eigenfunctions corresponding to different eigenvalues are orthogonal. The proof of the

following theorem is omitted since it parallels the proof of Theorem 2.3 in [6].
THEOREM 2.2. BVP (2.1)-(2.3) has a solution in [0,1] [nh/:k,(n + 1)h/:k], for each n -0,1

given by formula (2.10) if the following hypotheses hold true.

(i) BVP (2.8) is self-adjoint, all its eigenvalues ti are positive.

(ii) For each t, the roots of the equation P(s) Ixi 0 have non-positive real parts.

(iii) The initial function uo(x) E C"[0,1] satisfies (2.2).

EXAMPLE 2.1. The solution u.(x,t) of the equation

ut(x,t) a-u=(x,t) + bu(x,[ .t/h]h (2.15)

in [0,1][nh/k,(n + 1)h/.], with the boundary conditions u,(O,t)-u,(1,t)-O and initial condition

u,(x, nh/.) s,(x), is sought in form (2.14). Separation of variables producesX(x) /sin(njx) and

T,/(t)---a2j2T,i(t)+bT(nh), (nh/.t <(n + 1)h/.) (2.16)

whence

b
T.i(t C.ie-’it-’’x) + a_j=Ti(nh (2.17)

The following remark is in order. The subindex n is omitted from the term T(nh) in (2.16) and (2.17)
because the point nh does not belong to the interval [nh/,, (n + 1)h/, ]. Since 0 <.< I, the delay nh

in Eq. (2.16) becomes infinite as +oo. As mentioned above, u.(x,t) is the restriction of the solution

u(x,t) of problem (2.1)-(2.3) to the interval [nh/k,(n + 1)h/k]. Therefore, ff u(x,t) is sought in form

(2.14), T.i(t) is the restriction of T(t) to the indicated interval. Furthermore, putting -nh/k in (2.17)
gives
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whence

and

b
T,,(nh/,)-C,,. +ajT(nh),

b
% r././x)-

a;0,_ r/,a,)

T|jCt) T.]Cnh/k)e-*’xb’-’/*

At (n "" 1)h/X we get from (2.18)

We denote

b e,%_,o,/X))Ti(nh+aj(1 ).

T,,i(h(n + 1)1.) e ’"T"i(nh/k)+a’(l-e"A"’i’/X)Ti(nh)’-.l

(2.18)

(2.19)

IS._l,jlsM.), It._,,jl’:M.’), Aj+IBiI<q,

and from (2.20) we get t. qg., while the condition b < ,e: implies q < 1. By induction, we con-

clude from (2.20) that It,, +,i[ qM.), 1. Furthermore, it follows from (2.16) that on every interval

[nh/X,(n + 1)/] the function T,,i(t)l attains its maximum at an endpoint of this interval. Hence, the

inequality tt.,l q." ad tog3 q.’>. Thfo.t2 qgtk and the proof is completed

by lowering the subindex [1/X] times successively. We also note that the functions T(t) decay slower for

equation (2.15) than for the equation without delay

then

Ai Ie-’22hi2/x Bi

r.i(nh/,) t. T.i(nh s

Sin contuity ofe lution implies

r.i(h(n + 1)/k)-r.+,,i(h(n + 1)IX),

equation (2.19) becomes

t. ,i "Ait +B (2.20)

e difference uation (2.20) with reset m t is of bounded order bee it eontai s (),
where [lk,(N + l/k), at ,Nise teal ofn k.

For smee, k- 1 ens (), t4 T4()- s,i,d is . (2.20) becomes

s zi A:, +B:.i
Fuaheore, at ( + 1, foula (2.18) ves

s ,i e"i
b

es, + (1-aj

O2. lb I<a2, en all netio (t) e expa0sion (2.14) for the lution of

equation (2.15) with homogeneounda nditio exnentially nd m ro as +.

PROOF. note

)-max (t) I, [(n 1,),

q -e +:a-’
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u,(x,t) aU=(x,t) + bu(x,t) (2.21)

THEOREM 2.4. If 0 < b < aa2, then the functions T(t) tend to zero monotonically as +oo, and

none of them has a zero in (0, ,).
PROOF. Assuming, for instance, T0j(0) > 0 we resort to equation (2.16) and the condition b < aa

to show that the function Toj(t) is monotonically decreasing on [O,h/.). Moreover, since b > 0we conclude

from (2.18) that Toi(t) > 0 on [0,h/.]. Hence, tl > 0, Sl] > 0, and from (2.20) we see that t > 0. Therefore,

Ti(t) is decreasing and positive on [h/.,2h/. and it remains to use (2.20) successively to obtain the

same result on each interval [nh/.,(n + 1)h/.].
THEORF 2.5. For b < 0, each function T(t) is oscillatory, that is, it has infinitely large zeros.

PROOF. Assume that a certain function T(t) is nonoscillatory, say, positive for large t. Then t and

s,j are positive for large n, and therefore it follows from (2.20) that t, 1. <A/, with 0 <Ai < 1. Hence,

t,i tends to zero faster than A as n -- % whereas s decays at a slower rate of A: as n - oo. This

contradicts (2.20) and proves that T(t) is oscillatory. This theorem reveals a striking difference between

the behavior of the functions T(t) for equations (2.15) and (2.21) when b < 0: for equation (2.21) without
delay, the T(t) are always nonoscillatory.

THEOREM 2.6. If b > aa’-m ", then the functions T(t) T,(t) are unbounded.

EXAMPLE 2.2. For the equation

u(x,t) au=(x,t) + bu=(x,[.t/h ]h ), (2.22)

the functions T/(t) satisfy the relation

T,/(t -ajT(t bjs
from which the following conclusion can be derived.

THEOREM 2.7. If b I< a’, then all functions T(t) for equation (2.22) exponentially tend to zero

as +. If-a2 < b < 0, then all T(t) tend to zero monotonically as +oo, and none of them has a zero

in (0, oo). For b > 0, each function T(t) is bounded and oscillatory.
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