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k
ABSTRACT. We prove: If rl,...,rk are (fixed) positive real numbers with I’l rj > 1, then the only
entire solutions " C C of the functional inequality

are ,(z) czn, where c is a complex number and n s a positive integer.

KEY WORDS AND PHRASES. Functional inequality, entire functions.

1991 AMS SUBJECT CLASSIFICATION CODE. 39C05.

1. INTRODUCTION.
Inspired by a problem of H. Haruki, who asked for all entire solutions of

I(z + w) 2 + I(z w) 2 + 21 (0) 12 > 21 (z) 12 + 21 (w) 12 (.x)

J. Walorski [1] proved in 1987 the following interesting proposition:

Let r > 1 be a (fixed) real number. Then the only entire solutions qa: C --, C of the functional

inequality

(z) >_ r I(z)

are

(z) czn (1.2)

where c E C and n E N.
As an application of this theorem, Walorski showed that the only entire functions 0: C C

satisfying (1.1) and o(0)= 0 are the monomials (1.2). The aim of this note is to prove an extension

of Walorski’s result by using a method which is (slightly) different from the two approaches

presented in [1].
2. MAIN RESULTS.

Theorem. Let rl, rk be (fixed) positive real numbers with I-[ rj > 1. Then the only entire
j=l
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solutions go:C C of
k ]lrj)I1 I,(,’.z) _> I,(z) : (2.1)
j= j=

are the functions go(z)+ czn, where c is a complex number and n is a positive integer.

PROOF. Simple calculations reveal that the functions go(z)= czn (c 6_C, n 6_ N) satisfy (2.1).
Next we assume that go is an entire solution of inequality (2.1).

k
Because of 1"I rj > 1 we conclude from (2.1) with z 0 that go has at 0 a zero. Let n be the

j=l
order of this zero; we define

f(z) go(z)/zn (2.2)

then / is an entire function with f(0) 0. From (2.1) we obtain

k
H [f(r.z)[ >_( fi rJ.-n) lf(z)l t. (2.3)
j=l j=l

We suppose that f has a zero z0. By induction it follows from (2.3) that zo/rrff is a root of f for all

non-negative integers m. From the identity theorem we conclude f(z)--0 which contradicts the

condition f(0) # 0. Hence f has no zero which implies that the function

is entire. From (2.3) we conclude

f(z)k

H f(,..z)
j=1

(2.4)

rn.Ig(z)l _< 111j=
for all z 6- C,

and Liouville’s theorem implies that g is a constant. Therefore we have

k
f(z) K iI f(r.z), K 6_ C.

j=l /

Since f(O) # 0 we get from (2.5): K 1;
hence

/(z)= I f(,.z).
j=l /

Differentiation leads to

Setting

f’(z) k

=/E f(.z)kf-- _-
/

f() =o

we obtain from (2.7) and (2.8):

E a"zm=E (a.,E rT+X)z,
rn=O rn=O j=l

(2.8)

(2.9)



FUNCTIONAL INEQUALITY 415

and comparing the coefficients of zm yields for all rn > 0:

k
kam=am rn+l. (2.10)

j=l

We assume that there exists an integer m0 > 0 such that am
0
# 0, then we get from the arithmetic

mean-geometric mean inequality and from (2.10)"

+ 1]1/k k m0jmo +I

k
which contradicts the assumption rj > 1. Hence, am 0 for all m > 0. This implies that f is a

j=l
constant, say c E C, and therefore we obtain qo(z) czn.

It is natural to look for all entire functions " C--. C which satisfy the following additive

counterpart of inequality (2.1):

(- 9(rjz)) > r. (2.11)
j=l --j=l I [o(z)[

k
where rl,...rk are (fixed) positive real numbers with .,rj>k. The monomials

3=1
(z) czn(c

_
C,n

_
N) are solutions of (2.11). Indeed, inequality (2.11) with (z) czn reduces to

k k

E r > E rj, (2.12)
j=l --j=l

k
which follows immediately from Jensen’s inequality and the assumption y rj> k. By an

j=l
argumentation similar to the one we have used to establish the theorem it can be shown that the

functions (z)cz" (c.C,n _) are the only entire solutions of (2.11). This provides another

extension of Walorski’s result.
/

If the expression on the left-hand side of (2.11) will be replaced by I(.)1, then e

conclude from the triangle inequality that (z) czn (c
_
C, n

_
) also solve

3

k k

j=l 3 --j=l
k

where rl,...,rk are (fixed) positive real numbers with y rj > k. We finish by asking:
more solutions of (2.13) (if k > 1)? J

(2.13)

Are there
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