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Abstract. Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid
of finite electrical conductivity are recast in the hodograph plane by using the Legendre trans-
form function of the streamfuntion. Three examples are studied to illustrate the developed
theory. Solutions and geometries for these examples are determined.
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1. Introduction. This paper deals with the application of the hodograph transforma-
tion for solving a system of non-linear partial differential equations governing steady plane
magnetohydrodynamic flow of a viscous incompressible fluid in the presence of a magnetic
field. W. F. Ames [1] has given an excellent survey to this method together with its ap-
plications to various other ficlds. Receutly. O. P. Chandua et al. [2.3] used the hodograph
and Legendre transformations to study non-Newtonian steady plane aligned and trans-
verse MHD flows. O. P. Chandna et al. [4] also applied this technique to Navier Stokes
equations. In this paper we consider the magnetic and velocity field vector are mntually
orthogonal and the electrical conductivity of the fluid is taken to be finite. Since electrical
conductivity is finite for most viscons fluid. onr accounting for finite electrical conductiv-
ity makes the flow problem realistic and attractive from both a mathematic and physical
point of view. We study our flows with the objective of determining exact solutions to
various flow configurations. The plan of this paper is as follows: In section 2 the equations
are cast into a convenient form for this work. Section 3 contains the transformation of
equations to the hodograph plane so that the role of independent variables x. y and the
dependent variables u. v are interchanged. In section 4 we introduce a Legendre transform
function of the streamfunction and obtain a system of three equations in the Legendre
transform function and the proportionality function. In section 5. we demonstrate the use
of theoretical results found in section 4 by determining solutions to the following flows: (a)
vortex flows (b) radial flows (¢) spiral flows

2. Basic equations. The steady. plane flow of a viscous. incompressible fluid of finite
electrical conductivity is governed by the following system of equations:
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where u.v are the components of the velocity field V. Hy. H, are the components of the
maguetic field H. p the pressure. ¢ the constant fluid density. p the constant coefficient of
viscosity and p* the constant magnetic permeability. Here K is an arbitrary constant of
integration obtained from the diffusion equation

curl [V xH - Lcm‘lH =0
Indy

Introducing the functions

R Ou 1 2 5
= ———— = - 2.7
W= % h 2( [VIF+p (2.7)
where
[V]? = u? +0?

to the above system of equations. we obtain the following system:
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— 4 — = 8
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Oh .-
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ok = —Cuw + pw, + p*jHy (2.9)
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uH, —vH, = } 71+ K (11)
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Ox dy
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== _ =71 2.11
j - By (2.11)
8’0 au 9
== _ == 2.12
w= o By ( )

of seven partial differential equations in seven unknowns u.v. Hy. Ho w. j and h as functions
of z.y.

We consider our flows to be orthogonal flows. A plane flow is said to be orthogonal when
the velocity field vector and the magnetic field vector are mutually perpendicular in the
flow region. From this definition. we have

H=k x f(z.y)V (2.15)

where k = (0.0.1) and f is a scalar function.
Using (2.15) in the system of equations (2.8) to (2.14). we get

By %’ -0 (2.16)

o = Cow — puwy — i fu (217)
o = G o, — ifo (218)
fu? +0?) = le;j +K (2.19)

_fw+uzyl_t,% -0 (2.20)
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j=adly v% (2.21)
_oe _Ou (2.22)
T ox Oy ’

3. Equations in the Hodograph Plane. Letting the flow variables u = u(r.y).v =
v(z.y) to be such that. in the region of flow nuder consideration. the Jacobian

0( w.v)

= %) =u v, —uyv, #0.]J] < x

we may consider 2.y as functions of u.v By means of

» = r(u.v). y = ylu.v)
we derive the following relations
du Ay du Oz
oz J% (')_y _Jav (3.1)
o o0
9z~ “ou’ 8y " ou
_ O(u.v) _ 0(1!3.3/) -t _ 7 ) 3.2)
J(z.y) = ey — [O(u.v)] = J(u.v) (
99 _ Ng-y) _ ;93.y) _ ;93.y)
9z = dz.y) Nu.v) INu.v) (3.3)

99 _ Olg.z) _ ,9(z.9) _ ;9(z.3)
oz 0(2' y) " O(u.v) " O(u.v)
where g = g(z.y) = g(=(n.v).y(x.v)) = G(u.v) is any continuously differentiable func-
tion.
Employing these transformation relations for the first order partial derivatives appearing
in the system of equations (2.16) to (2.22). weobtain the system of equations in the (u.v)
- plane as follows:

oz Oy _ 3.4
) 51—‘ + o 0 (3.4)
ja_(’i'}i). = (vw — pJWy — p*j fu (3.5)
Nu.v

-(")(.1: h) = —(ud + pJW2 — p*jfv (3.6)

3(14 v)
fo+0t) = i+ K (3.7)
o 720D OFy) a5
~fo+7 [1 INu.v) 0(u v) =0 (3:8)
[ OFy) | O f) a0
i=J [1 I(u.v) T (?(u v) (3.9)
a7l _% 3.10
-7 [ o au] (3.10)

where . ) Bony)

7 [O(=z.y)]™ _ O(z.@) @.y 311
J= [8(1&.1!) W= a(u.v)‘W INu.v) ( )

This is a system of seven partial differential equations in six unknown functions z =
z(u.v).y = y(u.v).& = o(u.v). f f(u v).7 = j(u.v) and A = h(u.v) and an arbi-
trary constant K. Once z.y.@.f.j and h are determined. we can find v = u(z.y).v =
v(z.y).w = w(z.y). f = f(z.y).j = j(x.y) and h = h(z.y) which are the solutions for the
system of equations (2.16) to (2.22).
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Equations in Legendre transform function and f(u.v).

The equation of continuity implies the existence of a strecamfunction (.. y). so that

O
dy = —vdz + udy or % =—v. —=u

dr 0y

(3.12)

Likewise. equation (3.4) implies the existence of a function L(w.v). called the Legendre

transform function of the streamfunction #(z.y). so that

dL = —ydu + zdv or oL = oL ==z

o~ Vo
and the two functions ¥(z.y) and L(u.v) are related by
L(u.v) = vz — uy + ¢P(z.y)

Introducing L(u.v) into the system of equations (3.4) to (3.10). we obtain

_O(2L.h) _ - . E
JH— 0(0';' 0 (v — uJW) — p*sfu
—3( oL.h) _ 5 s F
_L(')(u o = —Cu@ + pJW2 — p*j fv
flu? +v ”}a"

sz A% ask D
—fo+J [u INu.v) v O(u.v) =0

j[ Bu f) mgf f)]

1= Nu.v) tv INu.v)
__ =[éL c')zL
wo=J [ 3u ]

where .
r[ELoL 2Ly
~ | 0v? Ou? oudv
A5E.0) A(5=.@)
Iu.v) We = 3(u.v)
By using the integrability condition

jeL o ;Lo (; A% 1)
Sudv v 2 Ou

W =

LD -8L 9] (;05k.-h)
=[’az‘5; ’auavau](’ ,

we eliminate h(u.v) from equations (3.15) and (3.16) to obtain

(% JWy) | 0(%.TWs)
((uWs + vW1) — p [ Au.v) Nu.v)

Joo(%E-f) a(5k-fi) (02L 82L> -0
T [v O(u.v) v a(u v) + i (')12+01’

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Employing (3.17) in (3.23) and making use of (3.18). we get

yratd o (L. Jw,
((ILW: + le) -1 [O(Dr le) + (Du J _)]

I u.v) INu.v)
2 | 9(%E.(w* +v)f) 0 (% . (v? +v%f)
* —-Cu - : = 3.24
titof [1 ANu.v) " (. v) 0 ( )

From (3.17) and (3.19). we obtain

o@D, 2D _ ok
* 2 2)f — U y L =u* 3.25
pwrao(w® +v)f—J [u Do) + D) oK ( )

In summary. we have the following theorem:

Theorem 1. If L(x.v) is the Legendre transform function of a streamfunction of steady
plane orthogonal flow of an incompressible viscous fluid of finite electrical conductivity and
f(u.v)is the transformed proportionality function. then L(w.v) and f(a.v) must satisfy
equations (3.18). (3.24) and (3.25) where @. J. W;. W2 and 7 are given by (3.10). (3.21).
(3.22) and (3.17).

Once a solution {L(w.v). f(w.v)} is found. for which J evaluated from (3.21) satisfies
0 < |J| < x. the solution for the velocity components are obtained by solving equations
(3.13) simultaneously. Having obtained the velocity components v = w(z.y). v = v(z.y)-
we obtain f(z.y) in the physical plane from the solution for f(u.v) in the hodograph plane.
Using V(z.y) and f(z.y) in (2.6). (2.7). (2.9) and (2.10). we determine other flow variables
in the physical plane.

We now develop the results of the above theorem in polar coordinates (¢.6) in the
hodograph plane. Defining

2 - v
¢ =u?+0v>.6=tan! (;) .

we have the following transformation relations

O _ o ospd _sinb 0
- %9 Tq 00
9 _ . 9_(?_+c0502
av—sm g -——q 26

8(F.G) _O(F*.G*) 8(q.8) _19(F*.G*)

du.v)  0(q.0) O(u.v) gq 8(q.6)

where F(u.v) = F*(q.6). G(n.v) = G*(g.8) are continuously differentiable functions.

Letting L*(q.6). f*(q.6).3*(q.6). J*(q.6) and w*(q.8) to be respectively the transformed
functions of L(u.v).  f(w.v). j(w.v). J(u.v) and @(w.v) in (g.8) - coordinates. and using
the above transformation relations in the equations of theorem 1. we obtain the following
results:

Corollary. If L*(q.6) and f*(q.6) are the Legendre transform functions of a streamfunc-
tion and the proportionality function respectively of the equations governing the motion
of steady plane orthogonal flow of an incompressible viscous fluid of finite electrical con-
ductivity, then L*(q.8) and f*(q.6) must satisfy equations:
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(q[cos OWS + sin Wy | — g

0 (sin62Ls + =00 Jewy)
q

+

ad ((:us()-‘%;.- - %%‘%.J‘W{)
d(q.6)
Q

+utof? [sinoa (coso2fy — 4247 Q°F")
d(q.9)
_cosoa(“il"’%'—;q“.—"z)ﬁa—;f.qu.)} =0 (3.26)
ot [cosoa (Siuagi;.?%'f‘)
-sne- (COSO%;(;.:_?Q%J.)] =0 (3.27)

9 (cost90—-8"l - g;_:_o%,L_;_f*)
profiqg? —J* |cosh ! ‘
[ a(q.6)

+siné =p'0cK (3.28)

0 (sin62%" + 202 f+)
d(q-0)

where .
oL ( oL~ Q°L* aL* 9L ?
J*(q.8) = 4 2 —_d — — g— .
(2.0)=4q [q dq¢? {q dq + 062 } { a9 q0q00} ] (3.29)

oL* 10°L*  10L*
g0 =T +=505 +— .
a6 J[0q2+q’00’+qaq] (3:30)
B . ;) Ad cos 8 8L* )]
. 1 0(s1x10—8«—+—q—-—ﬂ-.w )
Wil(q.6) = p %a.0) (3.31)
P (cosog;_' _ sinfOL" _w.)‘
. _1 g ¢ 08
Wilg.6) = 2a0) (3.32)
i =uo(f' - K) (3.33)
Once a solution {L*(g.9). f*(¢.8)} is known. we employ the relations
z = sin a%% + 253%% (3.34)
y= f‘%’i%l;_ - cosOa-—aL‘}—- (3.35)

to obtain the velocity components in the physical plane. Having obtained v = w(z.y).v =
v(z.y). we get f(z.y) in the (z.y) - plane from f*(q.6). The other flow variables are then
determined by using the flow equations in the physical plane.
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4. Applications. In this section we study varions flow problems as applications of theo-
rem 1 and its corollary.

Application 1. (Vortex flow) Let

L*(q.0) = F(q).F (q) # 0.F (9) £0 (4.1)

be the Legendre transform function. Using (4.1) to equations (3.29) to (3.32). we get

s __ 91 g = q_F,_(l)_i_F_(q_) (4.2)
"= FoFr T T For
Wl' =— zll—w',(q) cos OF’(q). Wy = %w"(q) sin OF’(Q) (4.3)
where prime denotes differentiation with respect to g.
Employing (4.2) and (4.3) in (3.26). (3.27) and (3.28). we obtain respectively
no . " P g s
1 {81110 [F (@) (J*WY), + F () (J*W; )q]
+cos b [F"(q)(J*W;),, - F'(q)(J'W;),,]}
'°rrf‘F (9)—— (q f*) =0 (4.4)
af*  |[F'(q) .
A 13 =0 (4.5)
2 " [ Fla) ] f
U B = —prok D) 4.6
95~ HodF (@f = —preK— (4.6)
A general solution for (4.5) is
#(8)
*(q.0) = ——— (4.7)
f*(q.0) Fa)
where ¢ () is an arbitrary function of 6.
Using (4.7) in (4.6). we get
1 ¢ poK _ . 4 (4.8)
Fla) a0~ so " F@Q
Differentiating (4.8) with respect to 6. we obtain
8" (6)4(8) — $2(8) — s KF ()¢ (6) = 0 (4.9)
We consider two cases: ¢ () =0 and ¢ (6 ) # 0.
(i) $(6) #0
Equation (66) can be written as
8" (6)4(8) — 4" (6) _
KF" 4.10
5(0) ‘o (Q) ( )
Equation (4.10) implies that
¢"(6)6(8) — ¢°(6)
=C 4.11
46) (@1
pwoKF (q)=C (4.12)

where C is an arbitrary constant.
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Since F'(q) # 0. it follows from equation (-1.12) that

K=0 and (C=0

Hence. equation (4.11) reduces to

$(6) 40
$®) 9

Integrating (4.14) twice with respect to 6. we get
H(8) = Docxp|Dy6)

where Dy and D arc nonzero arbitrary coustants.

Using (4.13) and (4.15) in (4.8). we obtain
D; 1

proq

F(q) =
Integrating (4.16) with respect to q. we have
D
F(q) = ——tnq+ Ds
nro

where Dj is an arbitrary constant.
Substituting (4.15) and (4.1G) in (4.7). we obtain

*o D
fre) = ‘Lg——z— exp[D16)
1

Employing (4.18) in the expression for w*(q) given in (4.2). we get

w*(g)=0

Using (4.16). (4.18) and (4.19) in the equation (4.4). we obtain

24*352D:
Lo 02 2 exp(2D16) =0
D}

(4.13)

(+.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

which is impossible since the left hand side of the above equation is greater than zero.
Therefore. L*(q) = 2LIng + Dj is not the Legendre transform function of the stream-

u*o

function of the flow.
(ii) ¢(6) =0
In this case. we have
$(8) = Dy = constant

Employing (4.20) in (4.8). we get

. D
F(q)=~174q. K+#0

Hence.

~D4 2
F(q) = ok ¢ + Ds

From (4.2). (4.7). (4.20) and (4.22). we obtain
. K
)=~

q

2K
- D,

wt

(4.20)

(4.21)

(4.23)

(4.24)
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Using (4.21). (4.23) and (4.24) in equation (4.4). we find that equation (4.4) is identically
satisfied. Therefore.

L*(q.0) = F(q) = ==+ D;5.K #0 (4.25)

"K
is a Legendre transform function of the flow for which f*(q) is given by (4.23).
Writing (4.25) in the (w.v) - plane. we have

L(u.v) = '?—I}(u.z + %)+ D; (4.26)

Employing (4.26) in (3.13). we obtain

V(z.y) = g:(-—y..t) (4.27)
From (4.23) and (4.27). we determine
D2
flz.y) = Wzi_y{)‘
-D, )
H(z.y) = flz.y)—v.u) = o (.y) (4.28)

Using (4.24). (4.27). (4.28) in equations (2.9) and (2.10). and integrating. we obtain
2
he.y) = (% +97) + Do (4.20)
i

where Ds is an arbitrary constant.
From (2.7). we determine the pressure to be

2
p(z.y) = %(z’ +9%) + De (4.30)
2D3

Summing up, we have the following theorem:

Theorem 2. If L*(q.6 ) = F(q) is the Legendre transform function of streamfunction
for a steady. plane. orthogonal flow of an incompressible viscous fluid of finite electrical
conductivity. then the flow in the physical plane is a vortex flow given by equations (4.27),
(4.28) to (4.30).

Application 2. (Radial flow)
We let
L*(q.6) = A6 +B.A#0 (4.31)

to be the Legendre transform funciton. where A and B are arbitrary constants.
Evaluating J*. w *. W} and W3 * as before. we get

¢
J‘=-—X2-w =Wy =W;=0 (4.32)
Following the same analysis as in previous applications. we obtain the system of equa-
tions

af* _ 4.33
0 =0 ( )
of* wu'0cA,, u'oKA
+ - (4.34)
Oq q f ¢

Equations (4.33) yields
=1 (4.35)
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Therefore. equation (4.34) becomes an ordinary differential equation which has the gen-
eral solutions:
(i) p*aA#£2

roKA v
fla) = ,::704?3 g7+ Eyg (4.36)
(ii) p*oA=2
2K E.
) = e tnq + 7 (4.37)

where E; and E; are arbitrary constants.
Proceeding as before. we obtain the following theorem:

Theorem 3. If L*(q.6) = A6 + B is the Legendre transform function of streamfunction
for a steady. plane. orthogonal flow of a viscous incompressible fluid of finite electrical
conductivity. then the flow in the physical plane is a radial flow given by equations:

(1) A#2/pa

Ax Ay
V(z.y) = (—1_2 b, +y'-’)
w=0
GoKA .
f(t-ll)———mq 2+ Eyg

where
¢’ = A%/(2* +97)

[ wroKA _, —wrea] Ay _fl‘_) 4.38
H(z.y) = [,—MI + Eiq Ty Tty (4.38)
2u*o K
praA -2

i(z.y) = p*oEyq'2—1 oY) (4.39)

pay) = [ jHade + jHady = S04 (2" +47) (4.40)

where j. H; and H, are given by (4.38) and (4.39).
(i) A=2/p*e

2 z Y
Vien) =125 (r’ +y? a2 +y2)

w=0

2K E;

flz.y) = 72—-1,’11q+ q—;

where

2 _ 4

= (2 + )

2 [2K E, —y z ) 441
s =5 e 2| (G wi “a

j(z.y) = p*oK(lng? — 1) + u* o E, (4.42)

q

and the pressure is given by (1.40) where now j. Hy and Ha are given by (4.41) and (1.42).

Application 3. (Spiral flow)
Letting
L*(q.0) = G1tnq + G,0 (4.43)

to be the Legendre transform function. where G; and G are non-zero arbitrary constants.
Evaluating J*.w*. W} and W3 as before. we get
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It = 'G-i':f?ﬁ W =Wy =W = (4.44)

Proceeding as in previous applications. we obtain the following system of equations:

2_G‘. * .G.l.a_f... gz.oL 4.45
q2f+qaq+q=ao =0 (4.45)

G, 9f*  G,of* 4.46

qog Tpos "’ (4.49)

q of* af* .
wa ¢*f* +G,+G2 G"’a G‘ao =p'0K (4.47)
From (4.45) and (4.46). we get
fr=0

which is a trivial solution for the system of equations (4.45) to (4.47). Therefore. the spiral
flow is not possible.
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