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Abstrax:t. Equations for steady plane MHD orthogonM flows of viscous incompressible fluid

of finite electrical conductivity are recast in the hodograph plane by using the Legendre trans-

form function of the streamfuntion. Three examples are studied to illustrate the dew.loped

theory. Solutions and geometries for these examples are determined.
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1. Introduction. This paper deMs with the application of the hodograph transforma-
tion for solving a system of non-linear partiM differential equations governing steady plane
magnetohydmdynanfic flow of a viscous incompressible fluid in the presence of a magnetic
field. W. F. Ames [1] has given an excellent survey to this method together with its

plications to various other fields. Recently. O. P. Chandna et M. [2.3] used the hodograph
and Legendre transformations to study non-Newtonian steady plane Migned and trans-

verse MHD flows. O. P. Chandna et M. [4] Mso applied this technique to Navier Stokes
eq,ations. In this paper we consider the magnetic and wh,city field vectr are nmt,Mly

orthogonM and the dectficM conductivity of the fltid is taken to be fitfite. Since electricM

conductivity is finite for most viscous fluid, our acc,unting for finite electficM conductiv-

ity mes the flow problem realistic and attractive from both a mathematic md physicM
point of view. We study our flows with the objective of deternfining exact solutions to

vious flow configurations. The plan of this paper is fdlows: In section 2 the equations
e cst into a convenient form for this work. Section 3 contns the transformation of

equations to the hodograph pirate so that the role of independent vables x. y and the

dependent vibles u. v are interchanged. In section 4 we introduce a Lee,dre transform
function of the streamfunctim and obtn a system of thr equations in the Legendre
trsform fimction md the proportionty fimction. In section 5. we demonstrate the use

of theoreticM results found in section 4 by deternfining solutions to the following flows: (a)
vortex flows (b) radiM flows (c) spiral flows

2. Basic equations. The steady, plane flow of viscous, incompressible fluid of fiidte

electficM conductivity is governed by the following system f equations:

0,.

,, +,, + , + *ja (.)

1
.H ,H j + K (2.4)
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o + o (.)
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where u. v axe the components ,,f tile velocity fieht V. HI. H2 e the component of the
magnetic field H. p the pressure. ( the constant fluid density, p the c,mstant c,cient of
scosity d p* the constant magnetic permeability. Here K is arbitrary constant of
integration obtned from the diffusion equation

curl[VxH-p.al curlH] =0

Introducing the functions

o- N.h- 5<IV +v

where

to the above system of equations, we obtain the following system:

+ :-- o (8)

Oh
0- vw pw. p.*jH2 (2.8)

Oh
-Cuw + pw, + p*jH (2.9)

1
uH2 vH, .-=-j + K {11)

0. + -y 0 (2.10)

OH2 OHa (2.11)J= Oz

(2.12)

of seven partial differential equations in seven unknowns u. ,,. Hi. Hz.w. j and h as functions
of z.y.
We consider our flows to be orthogonal flows. A plane flow is,said to be orthogonal when

the velocity field vector and the magnetic field vector are mutually perpendicttlar in the
flow region. From this definition, we have

H k x/(z.v)V (2.15)

where k (0.0. I) and f is a scalar fimctiou.
Using (2.15) in the system of equations (2.8) to (2.14). we get

+ 0 (2.16)

Oh
O C"’" lUa, p*jfu (2.17)

Oh
-(,uw +, p*jfv (2.18)

f(uz + ,,2) 7 + K

of of-f. + ,,- ,, o

(2.19)

(2.20)
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o.f of

(’2.22)
0!1

3. Equations in the Hodograph Plane. Letting the flow vm’iables u u(x,.!l), v
v(z. !1) to bc such that. in the regi,m ,ff fl,w under cmsideration, the .lacbian

we may consider x. y as fimctions of u. v By means

: :( ,,. v).
we derive the following relations

Ou 0y
0- J 0.", s
o -s--.

Ou

!t ( ",. v)

0,. _jO Io-;
Ov y Oz

(3.1)

O9 0(. u) 0(0. v) yO(O. j) I0.. sbZ;;,i 0,,.,)
(3.3)

Og O(g ,10(=.9) 0(z.9)

where g g(x. y) 9 ( u. v). y(u. v )) 9( u.. v is any continuously differentiable func-
tion.
Employing these trsfi)rmation relations for the first order ptiM derivatives appearing

in the system of equations {2.16) to (2.22). wbtn the system of equations in the {u, v)
plane as follows:

O Oy
0 + 0 (3.4)

yO(..y) 0,- ,JW, U*3/u (3.5)

jo(=..)
1

f(u2 + t’2)= 3 + K (3.7)

01=.]) ,, =0 (3.8)] + "0(,,. ,,

o, .ol

where

,]= O(c,y)-a 0(.) O(ffa,y)
(3.11)b( ,,. ,, W,

O(u. ,, W 0(,. ,,
This is a system of seven partial differential equations in six unknown hmetions z

=(u.v).y y(u.v).D tO(u.v).] f-(u.v).3 j(u.v) and . .(u.v) aad an arbi-
trary constant K. Once ac. y../. and . are deternfined, we can find u u(z. y). v
v(z.y).w w(z.y).f f(x.y),j j(.y) and h h(x.y) which are the solutions for the
system of equations (2.16 to (2.22).

j(z.v)=
O(u ,,) ](u. "v (3.2)
0(,. v) 0(,,.. ,,
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Equations in Legendre transform function and j(u. v).
The equation of c(mtilmity iml)lies the existence f a streamfimcti(m /,(. y)..o that

d/, -vd + ,.d or -v. Oj u (3.12)

Likewise equation (3.4) implies the existence of a fltnction L(u. v). called the Legendre
transform flmction of the streamflmction ,/,(x. ). so that

OL cOL
dL -ydu + xdv or -y. x (3.13)

and the two functions ,/,(x. y) and L( u. v) are related by

L(u. v ,, uy + l’( x. y) (3.14)

Introducing L(u. v) into the system of equations (3.4) to (3.10). we obtai,t

Cvff- pJW p*]fu (3.15)
O(’,t. V)

where

](,,.: + ,’:)= -:-s + K

0( OL OL

[ o(’: o, ],,.1)
"/= g LU o(,,. ,,) + v

o(,t. v) j

(3.16)

(3.17)

(3.19)

(3.20)

(3.21)

O( 8L,. a) O(wa wO(u. v) O( ,t. v)

By using the integrability condition

we eliminate (u.v) from equations (3.15) amd (3.16) to obtain

0 or.(.sw,)

or_,, B)+t* O(u.,,)
o o, (O’L(w,,.B) + B \-, + ]

o
0( ,. ,, ]

(3.22)

(3.23)
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Employing (3.17) in (3.23) and making use ,f (3.18). we get

OL

O{ .,. ,)

+tt*"o/ v
O( ... t,

0 ot "" +v2[)] 0

From {3.17) and {3.19). we obtain

o(-2,,,.h
,u.’o(,, + ,,2)/_ j ,,

0(,,. ,’--- + v-- t*

(3.24)

In sunmmry, we have the following theorem:

Theorem 1. If L(u. v is the Legendre transform function of a streamfunction of steady
plane orthogonal flow of an incompressible viscous fluid of finite electrical conductivity and

](u, v)is the transformed proportionality fimction, then L(u. v) and ](u. v) must satisfy

equations (3.18), (3.24) and (3.25) where &. , Wx. W2 and are given by 3.10). (3.21).
(3.22} and (3.17}.
Once a solution L(u. v ). /(u. v is found, for which J evaluated from (3.21) satisfies

0 < IJI < . the solution for the velocity components are obtained by solving equations

{3.13) sinndtaneously. Having obtained the velocity components u u(, y ). v v{ x, y ),
we obtain f(, y in the physical plane fl’om the solution for ](u, v in the h<dograph plane.

Using V(z. y) and f(z. y in 2.6 ). (2.7). (2.9) and (2.10), we deternfine other flow variables

in the physical plane.
We now develop the remdts of the above theorem in polar coordinates (q.O) in the

hodograph plane. Defining

(")q2 u2+v2.0__tall-1

we have the following transformation relations

0 0 sin 0 0
Ou Oq q O0

c9 c9 cos 0 O
&--- sin Oqq + q O0

O(F.G) O(F*.G*) O(q.O) 10(F*.G*)
0(.,, v) O( q. O) O(u. v) q O(q. O)

where F(u. v) F*(q. 0), G(u. v) G*(q. O) are continuously differentiable functions.

Letting L*(q. 0). f* (q, 0). j* (q. 0), J* (q, O) and w*(q. O) to be respectively the transformed
functions of L(u, v ). f-(u, v). (u. v). J-(u, v) and (u. v) in (q, 0)- coordinates, and using
the above transformation relations in the equations of theorem 1. we obtain the following
results:

Corollary. If L*(q. 0) and f*(q. 0) are the Legendre transform functions of a streamfimc-
tion and the proportionality function respectively of the equations governing the motion
of steady plane orthogonal flow of an incompressible viscous fluid of finite electrical con-

ductivity, then L*(q. 0) azd f*(q. 0) must satisfy equations:
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OL* 0 DL*

[cos OW. + sinOW p" 0 sin 0 +
q O(q.O)

sin 0

(3.26)

0 (C08 OOOo(q.o)si# OOL... f,)] 0 (3.27}

O(eOsOOL’Oq "inO
O0 f*)

O(q. O)

(0 sin00--0-+ oo
#*oK+ sin 0

O(q. O)
(3.28)

where

w*(q.O) J*
02L*

(3.29)

1 i)2L 10L*]q_ 00__. + j (3.30)

0 OL*10(sinO(+----"’w*)
W; q. O) . Ol q. O)

w;(q.o) - o(q.o)

(3.31)

(3.32)

j* p*a (f* q2 K) (3.33)

Once a solution {L*(q.O).f*(q.O)} is known, we employ the relations

z sinO
OL* cosO OL*
Oq +

q O0
(3.34)

sin 00L* 00L*Y- q 0O
cos -q (3.35)

to obtain the velocity components in the physical plane. Having obtained u u(z. y). v

v(z.y), we get f(z.y) in the (z.y) plane from f*{q.0). The other flow variables are then

determined by using the flow equations in the physical platte.
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4. Applications. In this s,,ction we study vari,ms fl,,w l)r(,blcms as al)plicati,m, (f

rein I and its corollary.

Application 1. (Vortex flow) Let

L*(q.O) F(q).F’(q) O.F"(q) - 0 (4.1)

be the Legendre transform fimctim. Using (4.1) t,) equations (3.29) to (3.32). wc g’t

J*
q .w*(q)

qF" (q) + F’ (q)
F’(q)F"{q) F’{q}F"(q)

W =-w*’{q}c,,sOF’(q}.* w*’(q)sinOF’(q)
q q

where pme denotes differentiation with respect to q.
Employing 4.2 and (4.3 in 3.26). (3.27 and (3.28). we obtMn respectively

’ {sinO [F"(q)(J*W) + F’(q)(J*W),]
q

+cosO [F"(q)(J*W)o F’(q)(J’W)] }
O(q2f*)

0_p.*2af*F’(q Oq

oI* + =0
Oq

O0
#*aqF’(q)f* -p,*aK

F’ (q)
q

A general solution for (4.5) is

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

f*(q,O)
qF’(q)

(4.7)

where (0) is an arbitrary fltnction of O.
Using (4.7) in (4.6). we get

1 ’ (8) #*oK #,a
q

F’(q) (0) (0) F’(q)
(4.8)

Differentiating (4.8) with respect to 0. we obtain

(0)(0) ’2(0) p.*aKF’2(q)qb’(O) 0

We consider two cases: b’(O) 0 and (0) # O.
(i) _’(8) # 0

Equation (66) c be written as

(4.9)

"(0)(0)
’(o) tt*aKF (q) (4.10)

Equation (4.10) implies that

"(0)(0) =C (4.11)

#*aKF’’(q) C (4.12)

where C is an arbitrary constant.
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Since F"(q) # O. it f()ll,)w. fr()m oquati(m (-1.12) that

K O o.,t C=O (4.13)

Hence. equation (4.11) r,(lu’cs

’(0)
0 {4.14}

Integrating (4.14) twice with rcspo(’t t() 0. w(:

4,(0) (4.15)

whc’rc D1 and D2 arc nouz(;r()arbitrary (:(>nstants.

Using (4.13) and (4.15) in (4.8). we ol)tain

F(q)- (4.16)

Integrating (4.16) with respect t,) q. we haw’

F(q) D--Lnq + Da
tz*a

(4.17)

where Da is an arbitrary constant.
Substituting (4.15) and (4.16) in (4.7). we obtain

#*aD2f*(O) Dx
cxp[O O] (4.18)

Employing (4.18) in the expression for w*(q) given in (4.2). we get

w*(q) 0 (4.19)

Using (4.16). (4.18) and (4.19) in the equation (4.4). we ol)tain

2#*a D exp(2D 0) 0

which is impossible since the left hand side of the above equation is greater than zero.

Therefore. L*(q) D,.-olnq + Da is not the Legendre transform function of the stream-

function of the flow.

(ii) (0) 0

In this ease. we have
(0) Da costant (4.20)

Employing (4.20) in (4.8). we get

Hence

F (q) -q. K # O

D,
q2F(q) -f + D

From (4.2). (4.7). (4.20) and (4.22). we obtain

(4.21)

(4.22)

K
f*(q) - (4.23)

q-

2K
w* (4.24)

Da
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Using (4.21). (4.23) and (4.24) in equati(,n 4.4 ). we find that eluati(,n (4.4) is identically
satisfied. Therefi)rc.

L*(q.O) F(q) -q" + D,.K # 0 (4.25)

is a Legendrc transfi)rm fimcti()n (,f the fl(w fir which f*(q) is giv,,n by (4.23).
Writing (4.25) in the (u.. t,) plane, we haw’

DL( ,,. , --( ,. + ,- + D (4.26)

Employing (4.26) in (3.13). we o|)tain

V(x.y)
D

-Y’) (4.27)

From (4.23) and (4.27). we deterndnc

y(x.y)
K(x: + y2)

-D4H(z.y) f(x.y)(-v.u)=
x2 + y

(x.y) (4.28)

Using (4.24). (4.27). (4.28) in equations (2.9) and (2.10). and integrating, we obtain

K2[h.(x.y) D-- ,x + y) + De

where De is an arbitrary constant.
From (2.7). we determine the pressure to be

(4.29)

K2 y2 (4.30)p(.) -( + )+ D

Summing up, we have the following theorem:

Theorem 2. If L*(q. 0 F(q) is the Legendre transform function of streamfunction
for a steady, plane, orthogonal flow of an incompressible viscous fluid of finite electrical
conductivity, then the flow in the physical plane is a vortex flow given by equations (4.27),
(4.28) to (4.30).

Application 2. (Radial flow)
We let

L*(q.O) AO + B.A :/: 0 (4.31)

to be the Legendre transform fimciton, where A and B are arbitrary constants.
Evaluating J*. v *. W* and W2 as before, we get

q4
j’=--.o,*=w;=w;=o (4.32)

Following the same analysis as in previous applications, we obtain the system of equa-
tions

0f_.* 0 (4.33)
00

Equations (4.33) yields

#*oAf, #*aKAOj_:* + (4.34)
Oq q q

f* f*(q) (4.35)
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Therefore. e(luati(,n {4.34) |,era,rues an ()rdinary ,tiff,;rential equati,n whi,’h ha the" gen-
eral solutions:

(i) p*oA # 2

tt*KA -v".f*(q) q + Ezq (4.36)
p*aA- 2

(ii) p.*aA 2

E2.f.(q) 2_ e,,q +
q_ q2

where Ex and E2 are arbitrary c(mstants.

Proceeding as before, we obtain tile fi)lh)wing theorem:

(4.37)

where

w=0

where

f(x.y) #*aKA
#*aA 2
q +

q2 A2/(x + y2)

H(z.y) _2+Ezq_V.,,.4] ( -Ay Ax )x2 + y2" x2 + y2

j(x.y) #*aEzq(2-v" ..t) + 2t,.*aK
#*aA-2

where j. Hz and H2 are given by (4.38) and (4.39).
(ii} A 2/V*a

V(x.y)
*.*tr x + y2" x2 + y2

w=0

K
f(z.y) 2t,,q + q-q2

q2 4

(t*..a)2(z2 + yZ)

2 [2q2K,nq E_] (-y x )H(x, y) 1..,--- +
x + y2" x2 + y2

(4.41)

j(x,y) *aK(lnq 1) + v*aE2 (4.42)

and the prcurc i given by (-t.-t0) wh,’rc n,w j. Hi an,l H2 ar,’ &iv,,tt ],y (4.4) arid (.12).

Application 3. (SpirM flow)
Letting

L*(q.e) Gx*nq + G2e (4.43)

to be the Legendre trsform function, where Gi and G2 are non-zero arbitry constlts.

EvMuating J*.w*.* and * before, wc get

(4.38)

(4.39)

(4.40)

Theorem 3. If L*(q.O) AO + B is tile Lcgendre transfi,rm flmcti,n )f strcaanflmction
for a steady, plane, orth()gonal flow of a viscous incompressible fluid ()f finite electrical
conductivity, then tile flow in tile physical l)lane is a radiM flow given I)y equations:
(i) A =/= 2/#*0

V(x.y)
x2 + y2" x + y2
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_q4
G + G

.,0" w; w" 0 (4.44)

Proceeding as in previous applications, we obtain the following system of equations:

2G G Of" G Of"
--] + --qOq + --- 0 (4.45)

Of" G 0 (4.46)
Oq q O0

it" a qf" + G " G1 a,q-q al O0 It"aK 14.47)

From (4.45) and (4.46). we get
f*--0

which is a trivial solution for the system of equations (4.45) to (4.47). Therefore. the spiral
flow is not possible.
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