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ABSTRACT. An altemative method is shown for solving the differential equation y(k)-f(x)y 0 by

means of series. Also included is a result for a sequence of functions {S,,(x)}. which gives conditions
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1. Introduction

Consider the differential equation y" f(x)y 0 for a < x < b where fis a given function continuous

on a x s b. Iff is analytic then the method of power series may be used to solve for y. However, for

more generalf, heuristics suggest that one "iterate" to a solution by finding a sequence offunctions {f,,(x)}:".

that satisfy f,,"(x)-f,_l(x)f(x). Then possibly f,(x) is a solution. Under suitable hypothesis this is

indeed the case. The results can be generalized to the differential equation y(’)-f(x)y -0 as shown in

Theorem A. The proof depends on an interesting result, Theorem 1, which gives conditions that insure

that the limit of the kh derivative is the kh derivative of the limit. Theorem 1 generalizes the usual result

found in Advanced Calculus books for differentiating the limit of a sequence of functions. We also include

two examples that illustrate the method of solution when k 2.

2. Statement ofTheorems

Theorem A. Suppose f is continuous on [a,b], c [a,b], and k is a natural number. Define the

sequence of functions {f,(x)}. by
(o)foCx a) + a)x +... + a, 1. # O,

f(x) f,_l(u)" f(u)du dul...duk_ + n 1,2

where a"),a") a (’)
1, are constants, n 0,1, 2 (Note f,(x) is any/h antiderivative ofL -(xif(x).)

If the ries L(x) converges uniformly on [a,b] to some nction S(x) then )(x) converges
-0 -0

uniformly to S)(x) for a x b, j 1,2,...,k, andS()(x)-S(x) f(x) on [a,b].
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Remark: All derivatives at the endpoints a and b are necessarily one sided.

As mentioned, the proof of Theorem A depends on the following interesting result for sequences of

differentiable functions:

Theorem 1. Suppose (i) {S,(x)}’. is a sequence of real functions defined on an interval [a,b] and

k is a natural number;

(ii) S,’(x),S,"(x) St,,k)(x) exist at each x [a,b], n 1,2

(iii) {St,k)(x)}’.l converges uniformly on In,b];

{sa-l)(c)}’.l converge(iv) eitherthereisac .[a,b]such thateachof {S,(c)}’.l, {S,’(c)}’.l,
or there are distinct points cl ct such that each of {S,(cl)}’., S,(c2)’.1 {S,,(ck)}.l

converge.
Then

each of the sequences {S)(x)}.l converges uniformly on [a,b] to differentiable functions,

j 0,1,2 k 1, and

dx---7 S,(x) -TS,(x) j- 1,2 k.

3. Discussion and Proofs

In order to prove Theorem 1 we need some preliminary results. First is a standard result from Advanced

Calculus.

Theorem 0. Suppose that {S,,(x)}’.l is a sequence of real functions differentiable on an interval

a x b and such that

(i) {S,’(x)}. converges uniformly on [a,b];

(ii) {S,,(c)}’. converges for some c In, b ].

Then {S,(x)}. converges uniformly on [a,b] to a function S(x), and imS,(x) -S’(x)-

im**( S,,(x,), a ,x b.

For a justification of Theorem 0, see [1 ], pp. 45 I-2.

Also required is the following

Lenuna. Suppose k is a natural number, {p,(x)}. is a sequence of polynomials each of degree k,

and cl ,c/ are k + 1 distinct numbers. If {p,(c)}.l converges for j 1 ,k + 1 then {pn(x)}’.
converges

for each x tE [:1 to a polynomial h (x) where either h (x) 0 or degree of h (x) is k, and convergence is

uniform on each bounded closed interval in [:l. Moreover, lira

Proof: Let Q(x) (x cl)(x c2)...(x c 1). Using the Lagrange Interpolation formula, we have

for each n, ._, p,,(c.)Q(x)
(2.1)p,,(x) .1Q’(c)(x-c)"
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Clearly for each x,

h(x) :-,lim p,(x)- kl [li,,mp,(c,)lQ(x). Q’(c)(x-c)

exists and is finite; moreover h (x) is a polynomial of degree k. For each x in some interval In, b],
/, (p(c)-hCc))Q(x) /,

Ip’(x)-h(x)[ ,
Q’(ci)(x-ci) Mi, Ip"(c,)-h(c)l

whereM > 0 is such that

Q(x)
max

Q,(ci)(x_ci)
M for j- 1,2,...,k +1.

(2.2)

Uniform convergence follows from inequality (2.2). By first differentiating (2.1) and then passing to the

limit with n we obtain limp(’(x)- h l’(x), x I:1.

We proceed to the

Proof ofTheorem 1. We use induction on k. The case k 1 is given by Theorem 0. So assume the

,theorem holds for k 1 and let {S,(x)’.l satisfy (i)-(iv). If {S,,(c)}*, {S,, ’(c )}* {St-)(c):*, each
converge then {S0’- )(x)}.l converges uniformly by Theorem 0 and hence the conclusion follows from

the induction hypothesis and Theorem 0. Next suppose {S,,(Q)}*, S,,(c2)}’ {S,,(c,)}*[ each converge
and define

Gs,l(X (Sk)(U)du sk 1)(X) sk-X)(c,)
1

2

a.,(x) =f 6.,_,(u)du -S.(x)-p.(x)

where p,(x) := S,(x)- f... f f S{,)(ul)duldu2...du-S,(x)-G,.k(x) is a uniquely determined poly-
k 2

nomial of degree k- 1, each n. Repeated use of Theorem 0 shows {G,,.i(x)}:’. converges uniformly on

In,b], for j 1,2,...,k, and in particular {G,,.(x)}. converges uniformly. Since {S,(cj)}. converges

thenp,, ci)}-1 converges, forj 1,..., k. By the lemma the sequence ofpolynomials {p,(x)}:’. converges

uniformly to a polynomial h(x) where either h(x).O or degree of h(x) is <k- 1, and {p]->(x)}:’.
converges to h(-l)(x). Becausepj’-l)(x)-St,,’-l}(cl), n 1,2 then {S,’-)(cl)}. converges. It follows

d(,,l 1)(x)) the inductionthat {St’-l)(x)}.l converges uniformly. Also lim St./’)(x)- - im St’ Now

hypothesis can be used and the conclusion obtained. []
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We are now able to give the

Proof of Theorem A. Apply Theorem to the sequence of real functions

S,(x)-o(X)+A(x)+... +L(x), n-o,1,2,....

Note that each S.(x) has k derivatives and

s:(x) (x) +A(x) + +L_(x)) /(x)

-S._,(x)’f(x) for n 1.

By hypothesis {S,,(x)}. converges uniformly on [a,b] to S(x). Hence {St,)(x)}.t converges uniformly

to S(x), f(x). By Theorem 1, we obtain that the sequence of functions {S,)(x)}’. converges uniformly

and S.(x) $,,(x) for ] 1, 2 k. Thus for a x b,

lim($._(x) ]’(x))-S(x)l(x).

"/’his proves Theorem A. I

4. Examples and Remarks

We give some applications of Theorem A.

Example 1" Consider y" (Axk)y 0, a .,: x b, where A, k are constants, k 0, and f(x) Ax is

continuous and bounded by M on [a,b]. We may assume c 0 [a,b] and la bl. Let fo(x) and

for n let

Ax A’xz /4

lt(X)’ck + 1)(k + 2)’ fCx)’Ck + 1)(k + 2)(2k + 3)(2k +4)’

["(x)’(k + 1)(k + 2)(2k + 3)(2k + 4)...(nk + 2n 1)(nk + 2n)’

Thusf,"(x)-f,_(x)" f(x)andl(x) torax b,n 1,2,.... eseriesLconverges

by the ratio test f(x) converges uniformly on [a,b] to a nctionS(x) by the Weierstrass M-test. Now

let go(x)- x and for n I, let

+3 A2x +5

g(x)’(k + 2)(k + 3)’ gzCx)’Ck + 2)(k + 3)( + 4)( + 5)

ASx +

g.(x)-(t + 2)(t + 3)( +4)( + 5)...(nt + )(n + + 1)’

As before g,,"(x) g,,_(x), f(x) and g.(x)l s , ,,.., a -:x s b, n 1,2 so that ,.og,(x) converges

uniformly on [a,b] to a function T(x). By Theorem 1, S(x) and T(x) are solutions to y"-Axky 0. Since
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the Wronskian of S(x) and T(x) is W(x) -S(x)T’(x)- T(x) S’(x) and W(0) ,, 0 then S(x) and T(x) are

linearly independent on [a,b], see e.g. [2], pp. 111-113. It follows that the general solution is

CIS(x)+C2T(x) for constants C1, C2. In particular if k -0 andA > 0 then

(vr"x)2"/1 sinh(x/’x)
S x x/(2nx)

2.

cosh(V"x) and T x

and if k 0 andA < 0 then

1 (-1)" (V’x)2-/1 sin(qx)S(x)- o (-1)"(x/x)2--cos(,/-[-]x) and T(x)-,_] (2n + 1)!

These solutions are the same as those obtained by elementary methods.

Example 2: Consider y"-Aey-0, -a <x <a, where A, k are constants, a >0, k s0 and

f(x) -Ae.
Aeu A :’e.___Let f0(x)- 1, (X)-k2 f2(x)-(k2)(2k)2,

A,e
,

L(x) [(k)C2k)...(nk)

Then f,"(x)-.[,_l(x)f(x) and IL(x)l ’" for Ixl a, n 1,2 T series (IAI’W"( converges by
[(’)(. !)] [(’)(.,)]

the Ratio Test so ]’.(x) + Y A’"
converges uniformly on [-a,a] to a function S(x). Now let

[(" (. )l

c =O, go(X)=X,

Ae A2e2 [
gl(x, "---X -) g2(x, (k,2(2k,21x -(l + 1/2)

[(k’)(n!)]
x- l+++...+-n

Then g,"(x)-g,_l(x)" f(x)and [g,(x)[ (lalel") [In[ +i-(1 +5+ +)] "-b, for Ix[ a,n 1,2
[(")(..,)1’

Since Yb, converges by the Ratio Test then x + ,Yl g,(x converges uniformly on [-a,a] to some T(x).

To see that S(x) and T(x) are linearly independent letx -x(u)- k-lln u ,, fi -et. Then

and

T(xCu))---ff-+..l Ck. n!) --- 1+.+... +-n

S(xCu))-,. (k’. n!) +-+ +

Note S(x(u)) has a Maclaurin Series but T(x(u)) does not; hence S(x) and T(x) are linearly independent.

Thus CS(x)/ C2T(x), C1, C2 constants, is the general solution to

y" -Ae’y O -a x a
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We conclude with some remarks. Theorem 1 is a generalization of Theorem 0 and is of interest by
itself. It is possible to improve Theorem by generalizing hypothesis (iv) e.g., to include in (iv) a third

alternative as follows: cl c,_1 are distinct points and each of {S,,(c)}’ {S,(c,_)}’ and {S,,’(c)}*
converge. It may be possible to generalize Theorem A to differential equations that include intermediate

derivatives, e.g., y" + g(x)y’ + f(x)y -O, f(x) and g(x) continuous on [a,b ]; such a generalization would

require an improvement of Theorem 1. As seen in the examples, linearly independent solutions to the

differential equation are obtained by using linearly independent functions for/(x). Finally, we note that

difficulties in the application of Theorem A may occur when finding the kth antiderivative of f,, _(x)f(x),
and thus this method of solution may be impractical for such cases.

*Note: The first author is deceased.
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