ALMOST COMPLEX SURFACES IN THE NEARLY KAEHLER S ${ }^{6}$

SHARIEF DESHMUKH

Department of Mathematics
College of Science
King Saud University
P.O. Box 2455, Riyadh-11451

Saudi Arabia
(Received March 14, 1990 and in revised form May 20, 1991)

Abstract

It is shown that a compact almost complex surface in S^{6} is either totally geodesic or

 the minimum of its Gaussian curvature is less than or equal to $1 / 3$.KEY WORDS AND PHRASES. Almost complex surfaces, nearly Kaehler structure, totally geodesic submanifold, Gaussian curvature.
1991 AMS SUBJECT CLASSIFICATION CODE. 53C40

1. INTRODUCTION.

The six dimensional sphere S^{6} has almost complex structure J which is nearly Kaehler, that is, it satisfies $\left(\nabla_{X} J\right)(X)=0$, where $\bar{\nabla}$ is the Riemannian connection on S^{6} corresponding to the usual metric g on S^{6}. Sekigawa [1] has studied almost complex surfaces in S^{6} and has shown that if they have constant curvature K, then either $K=0,1 / 6$ or 1 . Under the assumption that the almost complex surface M in S^{6} is compact, he has shown that if $K>1 / 6$, then $K=1$ and if $1 / 6 \leq K<1$, then $K=1 / 6$. Dillen et al [2-3] have improved this result by showing if $1 / 6 \leq K \leq 1$, then either $K=1 / 6$ or $K=1$ and if $0 \leq K \leq 1 / 6$, then either $K=0$ or $K=1 / 6$. However, using system of differential equations (1) (cf. [5], p. 67) one can construct examples of almost complex surfaces in S^{6} whose Gaussian curvature takes values outside $[9,1 / 6]$ or $[1 / 6,1]$. The object of the present paper is to prove the following:

THEOREM 1. Let M be a compact almost complex surface in S^{6} and K_{0} be the minimum of the Gaussian curvature of M. Then either M is totally geodesic or $K_{0} \leq 1 / 3$.
2. MAIN RESULTS. Let M be a 2-dimensional complex submanifold of S^{6} and g be the induced metric on M. The Riemannian connection $\bar{\nabla}$ of S^{6} induces the Riemannian connection ∇ on M and
connection ∇^{\perp} in the normal bundle ν. We have the Gauss and Weingarten formulae

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X} Y+h(X, Y), \quad \nabla_{X} N=-A_{N} X+\nabla_{X}^{\perp} N, \quad X, Y \in \mathscr{C}(M), \quad N \in \nu \tag{2.1}
\end{equation*}
$$

where h, A_{N} are the second fundamental forms satisfying $g(h(X, Y), N)=g\left(A_{N} X, Y\right)$ and $9(M)$ is the Lie-algebra of vector fields on M. The curvature tensors \bar{R}, R and R^{\perp} of the connections $\bar{\nabla}$,
∇ and $\nabla \perp$ respectively satisfy

$$
\begin{gather*}
R(X, Y ; Z, W)=\bar{R}(X, Y ; Z, W)+g(h(Y, Z), h(X, W))-g(h(X, Z), h(Y, W)) \tag{2.2}\\
\bar{R}\left(X, Y ; N_{1}, N_{2}\right)=R^{\perp}\left(X, Y: N_{1}, N_{2}\right)-g\left(\left[A_{N_{1}}, A_{N_{2}}(X), Y\right)\right. \tag{2.3}\\
{[\bar{R}(X, Y) Z]^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z), X, Y, Z, W \varepsilon \oiint(M), N_{1}, N_{2} \varepsilon \nu,} \tag{2.4}
\end{gather*}
$$

where $[\bar{R}(X, Y) Z]^{\perp}$ is the normal component of $\bar{R}(X, Y) Z$, and

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{\boldsymbol{X}}^{\perp} h(Y, Z)-h\left(Y, \nabla_{X} Z\right) .
$$

The curvature tensor \bar{R} of S^{6} is given by

$$
\begin{equation*}
\bar{R}(X, Y ; Z, W)=g(Y, Z) g(X, W)-g(X, Z) g(Y, W) . \tag{2.5}
\end{equation*}
$$

LEMMA 1. Let M be a 2-dimensional complex submanifold of S^{6}. Then $\left(\bar{\nabla}_{\boldsymbol{X}} J\right)(Y)=0$, $X, Y \varepsilon \mathscr{G}(M)$.

PROOF. Take a unit vector field $X \varepsilon \mathscr{G}(M)$. Then $\{X, J X\}$ is orthonormal frame on M. Since S^{6} is nearly Kaehler manifold we have $\left(\bar{\nabla}_{X} J\right)(X)=0$, and $\left(\bar{\zeta}_{X} J\right)(J X)=0$. Also

$$
\left(\bar{\nabla}_{\boldsymbol{X}} J\right)(J X)=-J\left(\bar{\nabla}_{\boldsymbol{X}} J\right)(X)=0 \text { and }\left(\bar{\nabla}_{X} J\right)(X)=-\left(\bar{\nabla}_{\boldsymbol{X}} J\right)(J X)=0 .
$$

Now for any $Y, Z \varepsilon \subseteq(M)$, we have $Y=a X+b J X$ and $Z=c X+d J X$, where a, b, c and d are smooth functions. We have

$$
\begin{aligned}
\left(\bar{\nabla}_{Y} J\right)(Z) & =a\left(\bar{\nabla}_{X} J\right)(Z)+b\left(\bar{\nabla}_{X} J\right)(Z)=-a\left(\bar{\nabla}_{Z} J\right)(X)-b\left(\bar{\nabla}_{Z} J\right)(J X) \\
& =-a c\left(\bar{\nabla}_{X} J\right)(X)-a d\left(\bar{亏}_{X} J\right)(X)-b c\left(\bar{\nabla}_{X} J\right)(J X)-b d\left(\bar{\nabla}_{X} J\right)(J X)=0 .
\end{aligned}
$$

LEMMA 2. For a 2 -dimensional complex submanifold M of S^{6}, the following hold
(i) $\quad h(X, J Y)=h(J X, Y)=J h(X, Y), \quad \nabla_{X} J Y=J \nabla_{X} Y$,
(ii) $J A_{N} X=A_{J N} X, A_{N} J X=-J A_{N} X$,
(iii) $\quad\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{X} h\right)(J Y, Z)=\left(\bar{\nabla}_{X} h\right)(Y, J Z)$,
(iv) $\quad R(X, Y) J Z=J R(X, Y) Z, \quad X, Y, Z \varepsilon \oiint(M), N \varepsilon \nu$.

PROOF. (i) follows directly from Lemma 1 and equation (2.1). The second part of (ii) follows from (i). For first part of (ii), observe that for $N \varepsilon \nu$ and $X \varepsilon \mathscr{L}(M)$, $g\left(\left(\bar{\nabla}_{X} J\right)(N), Y\right)=-g\left(N,\left(\bar{\nabla}_{X} J\right)(Y)\right)=0$ for each $Y \varepsilon \mathscr{S}(M)$, that is, $\left(\nabla_{X} J\right)(N)$ is normal to M. Hence expanding $\left(\bar{\nabla}_{X} J\right)(N)$ using (2.1) and equating the tangential parts we get the first part of (ii).

From equations (2.4) and (2.5), we get

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z)=\left(\bar{\nabla}_{Z} h\right)(X, Y), \quad X, Y, Z \varepsilon \mathscr{S}(M) . \tag{2.6}
\end{equation*}
$$

Also from (i) we have

$$
\begin{equation*}
\left(\bar{\nabla}_{\boldsymbol{X}} h\right)(J Y, Z)=\left(\bar{\nabla}_{\boldsymbol{X}} h\right)(Y, J Z), \quad X, Y \varepsilon \mathscr{C}(M) . \tag{2.7}
\end{equation*}
$$

Thus from (2.6) and (2.7), we get that

$$
\left(\bar{\nabla}_{X} h\right)(J Y, Z)=\left(\bar{\nabla}_{X} h\right)(Y, J Z)=\left(\bar{\nabla}_{Y} h\right)(X, J Z)=\left(\bar{\nabla}_{Y} h\right)(J X, Z)=\left(\bar{\zeta}_{X} h\right)(Y, Z),
$$

this together with (2.7) proves (iii). The proof of (iv) follows from second part of (i).

The second covariant derivative of the second fundamental form is defined as

$$
\begin{aligned}
\left(\bar{\nabla}^{2} h\right)(X, Y, Z, W) & =\nabla^{\perp}{ }_{X}(\bar{\nabla} h)(Y, Z, W)-(\bar{\nabla} h)\left(\nabla_{X} Y, Z, W\right) \\
& -(\bar{\nabla} h)\left(Y, \nabla_{X} Z, W\right)-(\bar{\nabla} h)\left(Y, Z, \nabla_{X} W\right)
\end{aligned}
$$

where $(\bar{\nabla} h)(X, Y, Z)=\left(\bar{\nabla}_{X} h\right)(Y, Z), \quad X, Y, Z, W \varepsilon \mathcal{D}^{9}(M)$.
Let $\Pi: U M \rightarrow M$ and $U M_{p}$ be the unit tangent bundle of M and its fiber over $p \varepsilon M$ respectively. Define the function $f: U M \rightarrow R$ by $f(U)=\|h(U, U)\|^{2}$.

For $U \varepsilon U M_{p}$, let $\sigma_{U}(\mathrm{t})$ be the geodesic in M given by the initial conditions $\sigma_{U}(0)=p$, $\dot{\sigma}_{U}(0)=U$. By parallel translating a $V \varepsilon U M_{p}$ along $\sigma_{U}(t)$, we obtain a vector field $V_{U}(t)$. We have the following Lemma (cf. [5]).

LEMMA 3. For the function $f_{U}(t)=f\left(V_{U}(t)\right)$, we have
(i) $\frac{d}{d t} f_{U}(t)=2 g\left((\bar{\nabla} h)\left(\dot{\sigma}_{U}, V_{U}, V_{U}\right), h\left(V_{U}, V_{U}\right)\right)(t)$,
(ii) $\frac{d^{2}}{d t^{2}} f_{U}(0)=2 g\left(\left(\bar{\nabla}^{2}\right)(U, U, V, V), h(V, V)\right)+2\|(\bar{\nabla} h)(U, V, V)\|^{2}$.
3. PROOF OF THE THEOREM 1. Since $U M$ is compact, the function f attains maximum at some $V \varepsilon U M$. From (i) of Lemma 2, $\|h(V, V)\|^{2}=\|h(J V, J V)\|^{2}$ and thus we have $\frac{d^{2}}{d t^{2}} f_{V}(0) \leq 0$ and $\frac{d^{2}}{d t^{2}} f_{J V}(0) \leq 0$. Using (iii) of Lemma 2 in (2.8) we get that

$$
\left(\bar{\nabla}^{2} h\right)(J V, J V, V, V)=\left(\bar{\nabla}^{2} h\right)(J V, V, J V, V)
$$

The above equation together with the Ricci identity gives

$$
\begin{aligned}
\left(\bar{\nabla}^{2} h\right)(J V, J V, V, V)- & \left(\bar{\nabla}^{2} h\right)(J V, V, J V, V) \\
& =\left(\bar{\nabla}^{2} h\right)(J V, V, J V, V)-\left(\bar{\nabla}^{2} h\right)(V, J V, J V, V) \\
& =R^{\perp}(J V, V) h(J V, V)-h(R(J V, V) J V, V)-h(J V, R(J V, V) V)
\end{aligned}
$$

Taking inner product with $h(V, V)$ and using (iv) of Lemma 2, we get

$$
\begin{align*}
& g\left(\left(\bar{\nabla}^{2} h\right)(J V, J V, V, V)-\left(\bar{\nabla}^{2} h\right)(V, J V, J V, V), h(V, V)\right) \tag{3.1}\\
& \quad=R^{\perp}(J V, V ; h(J V, V), h(V, V))-2 g(h(R(J V, V) J V, V), h(V, V))
\end{align*}
$$

Now using (i) of Lemma 2, we find that $g(h(U, U), h(U, J U))=0$, that is, $g\left(A_{h(U,} U_{U)}, J U\right)=0$ for all $U \varepsilon U M_{p}$. Since $\operatorname{dim} M=2$, it follows that $A_{h(U,} U_{U)}=\lambda U$. To find λ, we take inner inner product with U and obtain $\lambda=\|h(U, U)\|^{2}$. Thus, $A_{h} U_{(U, U)}=\|h(U, U)\|^{2} U$. From equations (2.2) and (2.5) we obtain

$$
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y+A_{h(Y, Z)} X-A_{h(X, Z)}^{Y}
$$

which gives
$R(J V, V) J V=-V+A_{h(V,} J V_{J V)}-A_{h(J V,} V_{J V)}=-V+2 A_{h(V,}, V_{V)}=-V+2\|h(V, V)\|^{2} V$.

Also from (2.3) and (2.5) we get

$$
\begin{aligned}
R^{\perp}(J V, V, h(J V, V), h(V, V)) & =g\left(\left[A_{h(J V, V)}, A_{h(V, V)}\right](J V), V\right) \\
& =-2 g\left(A_{h(V, V)} V, A_{h\left(V, V^{V}\right)}\right) \\
& =-2\|h(V, V)\|^{4}
\end{aligned}
$$

Substituting (3.2) and (3.3) in (3.1) we get

$$
\begin{equation*}
g\left(\left(\bar{\nabla}^{2} h\right)(J V, J V, V, V)-\left(\bar{\nabla}^{2} h\right)(V, J V, J V, V), h(V, V)\right)=2 f(V)(1-3 f(V)) . \tag{3.4}
\end{equation*}
$$

From (iii) of Lemma 2, it follows that

$$
(\bar{\nabla} h)(J V, J V, V)=(\bar{\nabla} h)\left(J^{2} V, V, V\right)=-(\bar{\nabla} h)(V, V, V),
$$

this together with $\nabla_{X} J Y=J \nabla_{X} Y$ of (i) in Lemma 2, gives

$$
\left(\nabla^{2} h\right)(V, J V, J V, V)=-\left(\bar{\nabla}^{2} h\right)(V, V, V, V) .
$$

Using this and (ii) of Lemma 3 in (3.4), we obtain
$\frac{d^{2}}{d t^{2}} f_{V}(0)+\frac{d^{2}}{d t^{2}} f_{J V^{\prime}}(0)=2 f(V)(1-3 f(V))+2\|(\bar{\nabla} h)(V, V, V)\|^{2}+2\|(\bar{\nabla} h)(J V, V, V)\|^{2} \leq 0$
Thus either $f(V)=0$, that is, M is totally geodesic or $1 / 3 \leq f(V)$. Since an orthonormal frame of M is of the form ($U, J U$), the Gaussian curvature K of M is given by

$$
K=1+g(h(U, U), h(J U, J U))-g(h(U, J U), h(U, J U))=1-2\|h(U, U)\|^{2} .
$$

Thus $K: U M \rightarrow R$, is a smooth function, and $U M$ being compact, K attains its minimum $K_{0}=\min K$ and we have $K_{0}=1-2 \max \|h(U, U)\|^{2}$, from which for the case $1 / 3 \leq f(V)$, we get $K_{0} \leq 1 / 3$. This completes the proof of the Theorem.

As a direct consequence of our Theorem we have
COROLLARY. Let M be a compact almost complex surface in S^{6}. If the Gaussian curvature K of M satisfies $K>1 / 3$, then M is totally geodesic.

ACKNOWLEDGEMENTS.

The author expresses his sincere thanks to Prof. Abdullah M. Al-Rashed for his inspirations, and to referee for many helpful suggestions. This work is supported by the Research Grant No. (Math/1409/04) of the Research Center, College of Science, King Saud University, Riyadh, Saudi Arabia.

REFERENCES

1. SEKIGAWA, K., Almost complex submanifolds of a 6 -dimensional sphere, Kodai Math. J. 6(1983), 174-185.
2. DILLEN, F., VERSTRAELEN, L. and VARNCKEN, L., On almost complex surfaces of the nearly Kaehler 6 -sphere II, Kodai Math. J. 10 (1987), 261-271.
3. DILLEN, F., OPOZDA, B., VERSTRAELEN, L. and VRANCKEN, L., On almost complex surfaces of the nearly Kaehler 6 sphere I, Collection of scientific papers, Faculty of Science, Univ. of Kragujevac 8(1987), 5-13.
4. SPIVAK, M., A comprehensive introduction to differential geometry, vol. IV, Publish or perish, Berkeley 1979.
5. ROS, A., Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc. 93(1985), 329-331.
