\left. ON M-IDEALS IN B ${\underset{i}{i}=1}_{\infty}^{\sum_{p}} \oplus_{r}{ }^{n_{r}}{ }_{i}\right)$

CHONG-MAN CHO
Department of Mathematics College of Natural Science Hangyang University Seoul 133, Korea
(Received May 8, 1986)

ABSTRACT. For $1<p, r<\infty, X=\left(\sum_{i=1}^{\infty} \oplus_{p} \ell_{r}^{n}{ }^{n}\right),\left\{n_{i}\right\}$ bounded, the space $K(X)$ of all compact operators on X is the only nontrivial M-ideal in the space $B(X)$ of all bounded linear operators on X.

KEY WORDS AND PHRASES. Compact operators, hermitian element, M-ideal.
1980 AMS SUBJECT CLASSIFICATION CODE. Primary 46A32, 47B05, secondary 47 B 05.

1. INTRODUCTION.

Since Alfsen and Effros [1] introduced the notion of an M-ideal, many authors have studied M-ideals in operator algebras. It is known that $K(X)$, the space of all compact operators on X, is an M-ideal in $B(X)$, the space of all bounded linear operators on X, if X is a Hilbert space or $\ell_{p}(1<p<\infty)$. Smith and Ward [2] proved that M-ideals in a C*-algebra are exactly the closed two sided ideals. Smith and Ward [3], and Flinn [4] proved that, for $1<p<\infty, K\left(\ell_{p}\right)$ is the only nontrivial M-ideal in $B\left(\ell_{p}\right)$. The purpose of this paper is to generalize this result to $B(X)$, where $X=\left(\sum_{i=1}^{\infty} \oplus_{p} \ell_{r}^{n}\right)^{n}$, for $1<p$, $r<\infty$ and $\left\{n_{i}\right\}$ a bounded sequence of positive integers. In this proof, the ideas and results of [4], [2], [5] and [3] are heavily used.

2. NOTATIONS AND PRELIMINARIES.

If X is a Banach space, $B(X)$ (resp. $K(X)$) will denote the space of all bounded linear operators (resp. compact linear operators) on X.

A closed subspace J of a Banach space X is an L-summand (resp. M-summand) if there is a closed subspace \tilde{J} of X such that X is the algebraic direct sum of J and \tilde{J}, and $\|x+y\|=\|x\|+\|y\|$ (resp. $\|x\|=\max \{\|x\|,\|y\|\}$) for $x \in J, y \varepsilon \tilde{J}$. A projection $P: X \rightarrow X$ is an L-projection (resp. M-projection) if $\|x\|=\|P x\|+\|(I-P) x\|$ (resp. $\|x\|=\{\|P x\|,\|(I-P) x\|\}$ for every $x \varepsilon X$.

A closed subspace J of a Banach space X is an M-ideal in X if $J^{\perp}=\left\{x^{*} \varepsilon x^{*}:\left.x^{*}\right|_{J}=0\right\}$ is an L-summand in X^{*}.

If $\left(X_{i}\right)_{i=1}^{\infty}$ is a sequence of Banach spaces for $1 \leq P \leq \infty, \sum_{i=1}^{\infty} \bigoplus_{p} X_{i}$ is the space of all sequences $x=\left(x_{i}\right)_{i=1}^{\infty}, \quad x_{i} \varepsilon X_{i}$, with the norm $\|x\|=\left(\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{p}\right)^{1 / p}<\infty$ if $1 \leq p<\infty$ and $\|x\|=\sup _{i}\left\{\left\|x_{i}\right\|\right\}<\infty$ if $p=\infty$.

An element h in a complex Banach algebra A with the identity e is hermitian if $\left\|e^{i \lambda h}\right\|=1$ for all real $\lambda[6]$.

If J_{1} and J_{2} are complementary nontrivial M-summands in A (i.e. $A=J_{1} \oplus_{\infty} J_{2}$), P is the M-projection of A onto J_{1} and $z=P(e) \varepsilon J_{1}$, then z is hermitian with $z=z^{2}$ [2, 3.1], $z J_{i} \subseteq J_{i}(i=1,2)$ and $z J_{2} z=0[2,3.2$ and 3.4$]$. since $I-P$ is the M-projection of A onto $J_{2}, e-z=(e-z)^{2}$ is hermitian, $(e-z) J_{i} \subseteq J_{i}(i=1,2)$ and $(e-z) J_{1}(e-z)=0$.
If M is an M-ideal in a Banach algebra A, then M is a subalgebra of A [2, 3.6]. If $h \varepsilon A$ is hermitian and $h^{2}=e$, then $h M \subseteq M$ and $M h \subseteq M \quad[4$, Lemma 1].

If A is a Banach algebra with the identify e, then $A^{* *}$ endowed with Arens multiplication is a Banach algebra and the natural embedding of A into $A^{* *}$ is an algebra isomorphism into [6]. If J is an M-ideal in A, then $A^{* *}=J^{\perp \perp} \oplus_{\infty}\left(J^{\perp \perp}\right)$ and the associated hermitian element $z \varepsilon J^{\perp \perp}$ commutes with every other hermitian element of $A^{* *}$ [5.22].

From now X, will always denote $\sum_{i=1}^{\infty} \oplus_{p} \ell{ }_{r}{ }_{r}{ }_{i}$, where $1<p, r<\infty$ and $\left\{n_{i}\right\}_{i=1}^{\infty} \quad a$ bounded sequence of posititve integers. An operator $T \varepsilon B(X)$ has a matrix representation with respect to the natural basis of X. From the definition, it is obvious that any diagonal matrix $T \in B(X)$ with real entries is hermitian.

Flinn [4] proved that if M is an M-ideal in $B\left(\ell_{p}\right)$ and $h \varepsilon B\left(l_{p}\right)$ is a diagonal matrix, then $h M \subseteq M$ and $M \subseteq \subseteq M$. His proof is valid for X. He also proved that if M is a nontrivial M-ideal in $B\left(\ell_{p}\right)$, then $M \geq K\left(\ell_{p}\right)$. Again his proof with a small modification is valid for X .

Thus we have observed that if M is a nontrivial M-ideal in $B(X)$, then $M \supseteq K(X)$.
If M is an M-ideal in a Banach algebra A and $h \varepsilon M$ is hermitian, then hAh $\subseteq M$.
Indeed, $(e-z) h=(e-z)^{2} h=(e-z) h(e-z)=0=h(e-z)$ and so $z h=h z=h$.
Since $z A^{* *} z \leqslant M^{\perp \perp}[2: 3.4], z A z \subseteq M^{\perp \perp}$ and hence $h A h=h z A z h \subseteq M^{\perp \perp}$. Since $h \varepsilon M$, $h A h \subseteq A \cap M^{\perp \perp}=M$. Thus if e εM, then $A=M$.
3. MAIN THEOREM.

MAIN THEOREM.
We may assume that $X=\left(\ell_{r}^{m_{1}} \oplus_{p} \ldots \oplus_{p} \ell_{r}^{m}\right) \oplus_{p}\left(\ell_{r}^{n_{1}} \oplus_{p} \ldots \oplus_{p} \ell_{r}^{n_{k}}\right) \oplus_{p}\left(\ell_{r}{ }^{n_{1}} \oplus_{p} \ldots \oplus_{p} \ell_{r}^{n_{k}}\right) \oplus_{p} \ldots$

Set $\alpha=m_{1}+\ldots+m_{s}$ and $\beta=n_{1}+\ldots+n_{k}$. Let N be the set of all natural numbers, $S_{0}=\{1,2, \ldots \alpha\}$ and, for $1 \leq j \leq k, S_{j}=\bigcup_{n}(n+\beta N)$, where n runs over $\alpha+n_{0}+n_{j-1}<n \leq \alpha+n_{o}+\ldots+n_{j}, n_{o}=0$. Let P_{j} be the projection on X defined by $P_{j} x=1_{S_{j}} x$ for every $x \varepsilon X$, where $i_{S_{j}}$ is the indicator function of the set S_{j}. Let $\left(e_{i}\right)_{i=1}^{\infty}$ be the unit vector basis for $X . A=\sum_{i j} a_{i j} e_{j} \otimes e_{i} \varepsilon B(X)$ is the operator with matrix $\left(a_{i j}\right)$ with respect to $\left(e_{i}\right)_{i=1}^{\infty}$.

LEMMA 1. If M is an M-ideal in $B(X)$ and contains $A=\Sigma a_{i j} e_{j} \mathbf{e}_{i}$ such that $\left(a_{i i}\right)_{i \geq 1} \varepsilon \ell_{\infty} \backslash c_{o}$, then $M=B(X)$.

PROOF. By multiplying by diagonal matrices from both sides, and as in Lemma 2 [4], we may assume that $A=\sum_{i=1}^{\infty} e_{f(i)} e_{f(i)}$, where $f(i+1)-f(i) \geq \beta, f(i) \varepsilon S_{j}$ for all i and a fixed $j(1 \leq j \leq k)$. Fix $\ell(\ell \neq j, 1 \leq \ell \leq k)$ and s $\left(\alpha+n_{o}+\ldots+n_{\ell-1}<s \leq \alpha+n_{0}+\ldots+n_{\ell}\right)$, and let $g(i)=s+(i-1) \beta(i=1,2,3 \ldots)$. CLAIM: $B=\sum_{i=1}^{\infty} e_{g(i)} e_{f(i)} \varepsilon M$. Suppose $B \notin M$. Choose $\Phi \varepsilon M^{\perp}$ so that $\|\Phi\|=1=\Phi(B)$. Since $\|B\|=1$ and $A B=B, \Psi \varepsilon B(X)^{*}$ defined by $\Psi(G)=\Phi(G B)$ has norm one and attains its norm at $A \varepsilon M$. Hence $\Psi \varepsilon \tilde{M}$ and $\|\Phi+\Psi\|=2$, where $B(X)^{*}=M^{+} \Theta_{1} M^{2} \quad$ Since $|(\Phi+\Psi)(G)|=|\Phi(G+G B)| \leq\|\Phi\|\|G\|\|I+B\|$, $\|\Phi+\Psi\| \leq\|I+B\|$. To draw a contradiction, we will show that $\|I+B\|<2$. Let j and ℓ be as above. For $x \in X$ with $\|x\|=1,\|x\|^{p}=\left\|\dot{P}_{j}\right\|^{p}+\left\|\left(I-P_{j}\right) x\right\|^{p}$. Let $t=\left\|P_{j} x\right\|^{p}$, then $1-t=\left\|\left(I-P_{j}\right) x\right\|^{P}$. Since $B x$ has support in S_{j} and $\|B x\| \leq\left\|\left(I-P_{j}\right) x\right\|$, we have
$\|(I+B) x\| \leq 1+\|B x\| \leq 1+(1-t)^{1 / p}$
$\left\|\left(I-P_{j}\right) x+B x\right\| \leq\left(2\left\|\left(I-P_{j}\right) x\right\|^{p}\right)^{1 / p}=2^{1 / p}(1-t)^{1 / p}$. Hence $\|(I+B) x\|=\|x+B x\| \leq\left\|P_{j} x\right\|+\left\|\left(I-P_{j}\right) x+B x\right\| \leq t^{1 / p}+2^{1 / p}(1-t)^{1 / p}$ Obvious1y, $F(t)=t^{1 / p}+2^{1 / p}(1-t)^{1 / p}$ is continuous on $[0,1]$ and $F(0)=2^{1 / p}<2$ so $F(t)<2$ for all $0 \leq t \leq \delta$. For $\delta \leq t \leq 1,1+(1-t)^{1 / p}<2$. By (3.1) and (3.2) above, $\|(I+B)\|<2$. Contradiction! Hence $B \varepsilon M$.

Similarly $C=\sum_{i=1}^{\infty} e_{f(i)} e_{g(i)} \varepsilon M$ (use $\|C\|=1, C A=C, \Psi(G)=\Phi(C G), I+C$ is the adjoint of $I+B$. Hence $\|I+C\|<2$).

Since M is an algebra, $1_{S+\beta N} \cdot I=C B \varepsilon M$. Thus for all $i=\alpha+1, \alpha+2, \ldots, \alpha+\beta$,
$1_{i+\beta N} \cdot I \varepsilon M$. Since $1_{S_{O}}$. I is compact, $1_{S_{o}}$. $I \varepsilon M$. This proves $M=B(X)$.

COROLLARY 2. If M is an M-ideal in $B(X)$ and there exists an isometry $\tau: B(X) \rightarrow B(X)$ so that $\tau(M)$ contains an $A=\sum a_{i j} e_{j} \otimes e_{i}$ with $\left(a_{i i}\right)_{i>1} \varepsilon \ell_{\infty} \|_{o}$, then $M=B(X)$.

PR00F. Since $\tau(M)$ is an M-ideal in $B(X)$ and $A \varepsilon \tau(M)$, by the lemma $\tau(M)=B(X)$. Hence $M=B(X)$

THEOREM 3. If M is an M-ideal in $B(X)$ and contains a noncompact $T=\sum t_{i j} e_{j} e_{i}$, then $M=B(X)$.

PROOF. Suppose $T \in M$ and T is not compact. Wlog we may assume
$T=\sum_{k=1}^{\infty} T_{k}, T_{k}={\underset{i j}{ } \sum_{\sum_{k}+1}^{+n_{k}}}^{t_{i j}} e_{j} \otimes e_{i}, \quad\left\|T_{k}\right\|=1$ where $m_{k} \varepsilon \alpha+B N . n_{k} \varepsilon B N$, and $m_{k}+n_{k}+\beta<m_{k+1}$.

Since each T_{k} has norm one, there exists norm one vectors $x_{k}=\left(x_{i}^{k}\right) \varepsilon X, y_{k}=\left(y_{i}^{k}\right) \varepsilon X^{*}, z_{k}=\left(z_{i}^{k}\right) \varepsilon X^{*}$ all with supports in $\sigma_{k}=\left\{1: m_{k}<i \leq m_{k}+n_{k}\right\}$ so that $y_{k}\left(T_{k} x_{k}\right)=1=z_{k}\left(x_{k}\right)$.

Let $B_{k}=\sum_{j \geq 1} \quad x_{j}^{k} e_{m_{k}+1} \otimes e_{j}, \quad C_{k}=\sum_{j \geq 1} y_{j}^{k} e_{j} \otimes e_{m_{k}+1}, D_{k}=\sum_{j \geq 1} z_{j}^{k} e_{j} \otimes e_{m_{k}}+1$,
$A=\sum_{k \geq 1} e_{m_{k}+1} e_{m_{k}+1}, \quad B=\sum_{k \geq 1} B_{k}, \quad C=\sum_{k \geq 1} C_{k}$ and $D=\sum_{k \geq 1} D_{k}$. Then all of these operators have norm one and $D B=C T B=A$

Let P be the matrix obtained from the identity matrix I by interchanging $\left(m_{k}+j\right)-t h$ column and $\left(m_{k}+n_{k}+j\right)-t h$ column for all k and $j(1 \leq j \leq \beta)$. Then P is an isometry in X since $n_{k} \in \beta N$.

CEAIM. If' $B \in M$, then $M=B(X)$.
Choose $\Phi \in c_{0}^{\perp} \subseteq \ell_{\infty}^{*}$ so that $\|\Phi\|=1=\Phi((1,1,1,1, \ldots))$. Define norm one functional $\gamma \in B(X)^{*}$ by $\gamma(G)=\Phi\left(\left(g_{m_{k}+n_{k}+1, m_{k}+1}\right)_{k \geq 1}\right)$ where $G=\Sigma g_{i j} e_{j} 0 e_{i}$. Then $\gamma \& \quad M$! In fact, if $\gamma \in M^{\mathcal{L}}$, then $\gamma_{1} \varepsilon B(X)^{*}$ defined by $\gamma_{1}(G)=\Phi\left((D G)_{m_{k}}+1, m_{k}+1\right)$ has norm one and attains its norm at $B \varepsilon M$. Hence $\gamma_{1} \varepsilon \tilde{M}$ and $\left\|\gamma+\gamma_{1}\right\|=2$. But for any norm one $G \varepsilon B(X)$, we have

$$
\begin{aligned}
& \left|\left(\gamma+\gamma_{1}\right)(G)\right|=\mid \Phi\left(g_{m_{k}}+n_{k}+1, m_{k}+1\right. \\
\leq & \left.\operatorname{Sup}_{j} \sum_{j \varepsilon \sigma_{k}} \|_{j}^{k} z_{k}+g_{j, m_{k}+1}\right)_{k \geq 1} \mid \\
= & 2^{1 / p_{k}^{\prime}} \text { where } \frac{1}{p}+\frac{1}{p^{\prime}}=1 .
\end{aligned}
$$

so $\left\|\gamma+\gamma_{1}\right\| \leq 2^{1 / p^{\prime}}$ contradiction! Thus $\gamma \notin M^{\perp}$. Since $\gamma \notin M^{\perp}$, there is G εM s.t. $\gamma(G) \neq 0$. So $\left(g_{m_{k}}+n_{k}+1, m_{k}+1\right)_{k>1} \varepsilon \quad \ell_{\infty} \backslash c_{o}$. The sequence of the diagonal entries of $P(G)$ belongs to $\ell_{\infty} f_{o}$. Thus by oorollary $2, M=B(X)$. This proves the claim. Next $\Psi \varepsilon B(X)^{*}$ defined by $\Psi(G)=\Phi\left(\left(C_{m_{k}}+1, m_{k}+n_{k}+1\right)_{k \geq 1}\right)$ is not in M^{\perp}. Indeed, if $\Psi \varepsilon M^{\perp}$, then since $\Psi_{1} \in B(X)^{*}$ defined by $\Psi_{1}(G)=\Phi\left(\left((C G B)_{m_{k}}+1, m_{k}+1\right)_{k \geq 1}\right)$ has norm one and attains its norm at $T \varepsilon M, \Psi_{1} \varepsilon \tilde{M}$ and so $\left\|\Psi+\Psi_{1}\right\|=2$. But for any norm one $G \varepsilon B(X)$, we have

$$
\begin{aligned}
\mid\left(\Psi+\Psi_{1}\right)(G) & \left|\leq \sup _{k}\right|(C G)_{m_{k}+1, m_{k}+n_{k}+1}+\sum_{j \varepsilon \sigma_{k}}(C G) m_{k}+1, j x_{j}^{k} \mid \\
& \leq \operatorname{Sup}_{K}\left\|x^{k}+e_{m_{k}+n_{k}+1}\right\| \quad \text { since CG } \varepsilon B(X),\|C G\|=1 \\
& =2^{1 / p}, \text { contradiction! }
\end{aligned}
$$

Thus $\Psi \notin M^{\downarrow}$. So there is $G=\sum g_{i j} e_{j}^{\otimes} e_{i} \varepsilon M$ such that $\left((C G)_{m_{k+1}}, m_{k}+n_{k}+1\right)_{k \geq 1} \varepsilon \ell_{\infty} \backslash c_{0}$. There is $\varepsilon>0$ such that $\left\|G_{k}\right\|>\varepsilon$ for infinitely many k, where $G_{k}=\sum_{j \varepsilon \sigma_{k}} g_{j}, m_{k}+n_{k}+1 e_{k}+n_{k}+1 \quad e_{j}$. We can choose diagonal matrices D_{1} and D_{2} in $B(X)$ so that $D_{1} G D_{2}$ has the same form as B in the claim above. Since $D_{1} G D_{2} \varepsilon M, M=B(X)$.

REFERENCES

1. ALFSEN, E. and EFFROS, E. Structure in real Banach space, Ann. of Math. 96(1972), 98-173.
2. SMITH, R. and WARD, J. M-ideal structure in Banach algebras, J Functional Analysis 27(1978), 337-349.
3. SMITH, R. and WARD, J. Applications of convexity and M-ideal theory to quotient Banach algebras, Quart. J. Math. 30(1979), 365-384.
4. FLINN, P. A characterization of M-ideals in $B\left(\ell_{p}\right)$ for $1<p<\infty$, Pacific J. Math.
$\underline{98}(1982)$, $73-80$.
5. SMITH, R. and WARD, J. M-ideas in $B\left(\ell_{p}\right)$, Pacific J. Math 81 (1979), 227-237.
6. BONSALL and DUNCAN Numerical Range of Operators on Normed space, London Math.Soc. Lecture Note Series 2, Cambridge (1971).
7. BEHRENDS, E. M-structure and the Banach-stone Theorem, Lecture notes in Mathematics 736, Springer-Verlag (1979).
8. BONSALL and DUNCAN Complete Normed Algebra, Ergebnisse der Math., 80, SpringerVerlag (1973).
9. CHO, Chong-Man and JOHNSON, W.B. A characterization of subspace of ℓ for which $K(X)$ is an M-ideal is $L(X)$, Proc. Amer. Math. Soc. Vol. 93(1985), 466-470.
10. LIMA, A. Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 227(1977), 1-62.
11. LIMA, A. M-ideals of compact operators in classical Banach spaces, Math. Scand. 44(1979), 207-217.
