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1. INTRODUCTION.

Abelian theorems for the Whittaker transform of functions and of distributions

are obtained as the complex variable of the transform approaches 0 or in absolute

value inside a wedge region in the right half plane. The setting for these Abelian

theorems is motivated by the initial and final value results of Doetsch [1, sections

33 and 3h] for the Laplace transform of which the Whittaker transform is a generali-

zation. Our results here generalize Abelian theorems previously obtained by Zemanian

[2, sections 8.6 and 8.7], Akhaury [3-4], Moharir and Saxena [5], and Tiwari and Ko

[6] in the generality of the transform variable being in a wedge and in the generality

of the parameters.

2. THE WHITTAK2_2 FUNCTION.

Let k kl+ik2 and m ml+im2 be complex parameters which satisfy

(ml-kl+(i/2)) > 0. Let s be a complex variable with s e #> {s sl+is2 e : s
I

> 0}.

For s > the Whittaker function Wk,m(s) (Erdlyi et al [7, (2), p. 264]) is given by

-s/ m+(/) 0Wk,m( s
e s -su m-k-(1/2 )re+k-(1/2rlm-ki(1/2-)) e u (l+u du (2.1)

Let p be a positive real parameter. For K > 0 being a fixed real number put

{s Sl+iS2 e ’ sI
> 0 and Is21 < KSl); PK is a wedge in the right half planePK

>. Using (2.1) with the gamma function taken to the left of the equality and estimate
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analysis on the exponentials and powers as in Carmichael and Hayashi [8, Lemma 2.2,

p. 70] and Carmichael and Hayashi [8, proofs of Theorems 3.1 and 3.2], we have the

following important estimate for this paper"

(2ml+l)/4 F (ml-kl+(i/2)
IWk,m(pSt)I <_ (I+K2) exp(1Im21/2)ir(m_k+(i/2))l Wkl,ml(PSlt)

SEPK t>0.

3. THE WHITTAKER TRANSFORM FOR FUNCTIONS.

Let k,m, and r be complex parameters, and let p and q be real parameters.

be a complex variable. The function

(2,2)

Let s

,m (s) (st)r-(1/2)
p,q,r

0
exp(-qst/2) Wk,m(pSt) f(t) dt (3.1)

is the Whittaker transform of the function f(t) where __Wk,m(pSt) is the Whittaker

function. The general whittaker transform defined in (3.1) was first considered by

Srivastava [9] for certain values of the parameters and variable which depend upon the

order of growth of f(t).

In this section we prove initial and final value Abelian theorems for the

’whittaker transform defined in (3.1). For this purpose we now place conditions on

the parameters and variable noted above; these restrictions will hold throughout the

remainder of this section. The complex parameters k,m, and r satisfy

Re(m-k+(1/2)) > 0 and Re(r) > Re(m) > 0 with Re(r) > (1/2). The real parameters p and

q are positive. The complex variable s is in >, that is Re(s) > 0.

We now state and prove an initial value Abelian theorem.

THEOREM 3.1. Let q ql+iq2 be complex with Re(q) ql > (-1). Let

f(t), 0 < t < , be a complex valued function such that there is a real number c > 0

for which (e-ct f(t)) is absolutely integrable over 0 <_ t < and such that (f(t)/t)
is bounded on 0 < t < y for all y > 0. Let the Whittaker transform Fk’m (s) of (t)

p,q,r
exist for s e @>. If there is a complex number m for which

Rim
f(t 3.2

(:
t/0+ tq

then for each fixed K > 0

im sq+l ,m (s)

s e PK A(q,k,m,p,q",) (3.3)

where

A(D,k,m,p,q,r)

PROOF.

z+(z/2)
p F (q+m+r+l) r (q+r-m+l)
((p+q)/2 )q+m+r+l r (q+r-k+( 3/2

2Fl[n+m+r+l,m-k+(1/2)[ ;q+r-k+(3/2) C]Z
q+p

Using Erdlyi et al [i0, (16), p. 216] we have

tq (st)r-(1/2) exp(-qst/2) Wk,m(pSt) dt s A(q,k,m,p,q,r).
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From (3.1) and (3.h) we obtain

sn+l ,m (s) a A(n,k,m,p,q,r)
p,q,r

s+ o ()r-(l) expC-qst/2) Wk,m(pSt) (fCt)-atO) dt (3.5)

<_ I
1

+ 12
where

s+]- Iy I)(st) r-(
0

exp(-qst/2) Wk,m(pSt) (f(t)-etn) dtl

12 IsO+I (st) r-(l12) exp(-qstl2) Wk,mCpst) (fCt)-t) dt

Y

for y > 0 arbitrary for the moment. For s e PK we use the boundedness hypothesis on

(f(t)/t), (2.2), and estimates as in obtaining (2.2) to obtain

I
1

sn+l Iy to
0

st)r-(i/2 exp(-qst/2) Wk,m(pSt) ((f(t)Itn)-) dt

(nl+ml+rl+l)12
)/2)

sup nI+I F (ml-kl+(l/2
t <_ y I(f(t)/tn)-l sz Ir(m- k

(3.7)

tl (slt)rl-(1/2) expC-qslt/2) Wkl,ml(PSlt) tit.

The integrand in the integral of this last estimate is positive valued for t >_ 0 for the

variable sI
> 0 and the parameters Ol,p,q,kl,ml, and r1. We thus replace the integral

in the last estimate in (3.7) by an integral over 0 < t < and use (3.h) for the

variable sI
> 0 and the parameters Ol,p,q,kl,ml, and rl; by so doing the estimate (3.7)

can be continued as

I
1 <_ (I+K2

(rll+:ml+rl+l)/2
ep(( Iql+ll +lrl

r (ml-kl+(l/2) sup CfCt)/tn)-A(rll’kl’ml’P’q’rl) iI’(m-k+(172) )1 o<t<_y

and this bound is independent of s e PK and holds for each fixed y > 0. We now consider

12 given in (3.6). By hypothesis there is a real number c > 0 for which (e-ct f(t)) is

-ct
absolutely integrable over 0 <_ t < . Putting e into 12 and using (2.2) and esti-

mates for s e PK we have
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12 --I sn+l y (st) r-(1/2) exp(-(qs-2c)t/2) Wk,m(pSt)(e-ct(f(t)-tn)) dt

< (+K)(n++r+)/ nl+l P(ml-k+(i/2))"((l_l+ll+lrl )/)
ir(-+ i )1

rl-(l/2)
(slt) exp(-(qsl-2C)tl2) Wkl,ml(PSlt) e-ct(f(t)-tO) tit.

In this theorem we desire to prove (S.S) as li + (R), PK" As sl (R), PK, then

necessarily sI Re(s) / . Thus we now assume without loss of generality that

sI Re(s) > (2c/q) in the remainder of this proof for the fixed c > 0 and q > 0; and

for such s
I

Re(s) we know that

exp(-(qSl-2C)tl2) <_ l, t >_ O. (3.10)

As t / then (PSlt) here mince p > 0 and sI
> 0. From properties of Wkl,ml(PSlt)

(Whittaker and Watson Ill, Chapter 16]) including the growth at (see also Tiwari and

Ko [6, line 2+, p. 351]) we have that

(psIt)
rI-(112)

Wkl,ml(PSlt) is positive, finite valued, and continuous as a

function of t on y (_t ( and

rl-(l/2)
im (Pslt) Wkl,ml(pslt) Oi
t/+

thus [(PSlt)rl-(I/2) Wkl,ml(PSlt) attains its maximum at some point t tsl
depending on sI such that Y

_
tsl < . Using this fact and (3.10) we continue (3.9) as

12 < (l+K2) (nl+ml+rl+l)/2

r (l-kl+(l/2) nl/l -/(i12) rl-(ll2)
P Psltsl) WkI ,m1 PsItsl

"c ((t)
(3.11)

< (i+K) ((121+11+121 )/2)
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I’(m-z+Czl) -rz+Czl)
Ir(m k +(z/a))l

(PY).nl.I )nl+r1+( i/2(Psltsl

421

Wkl ’ml (PSltsl 0
le-Ct(f(t) mt) dt

where the last inequality is obtained from the fact that y <_ tsl < and i+i > 0. For

l Re() > (-1) we have (te-ct) is absolutely.lntegrable over 0 < t < ; this com-

bined with the assumption in this theorem that (e’Ctf(t)) is absolutely integrable over

0 < t < yield that the integral in the estimate (3.11) is finite. From the hypothesis

(3.2) and the estimate (3.8), which is independent of s e PK’ given E/2 we can choose

y > 0 small enough so that I
1

< /2. We now fix this y > 0 and it depends only on

E > O. As noted above, as Isl + + , s e PK’ then necessarily s
I

Re(s) + , and as

this happens (Psltsl) + since p > 0 is fixed and y <_ tsl < =. Using the growth

property at of the Whittaker function Wkl,ml, (3.11) shows that 12 can be made

smaller than 6/2 if sl is chosen large enough, s PK" Combining these facts with

(3.5) yields the desired conclusion (3.3). The proof is complete.

As an example for which Theorem 3.1 is applicable, let f(t) t/(l+t2), =l, c=l,

and u=l. Another example is obtained if we take f(t) t2/(l+t2), O l+i, c=l, and

c:--O.

We now obtain a final value Abelian theorem for the Whittaker transform of

functions.

THEOREM 3.2. Let l + i2 with l > (-1). Let f(t), 0 <_ t < =, be a complex

valued function such that there is a real number c > 0 for which (e-ct f(t)) is abso-

lutely integrable over 0 <_t < and such that (f(t)/t0) is bounded on y <_ t < for all

y > O. Let the Whittaker transform Fk’m (s) of f(t) exist for s e >. If there is a
p,q,r

complex number for which

Aim f(t)
(3.12)

t++ t

then for each fixed K > 0

n sn+Z,m (s)
Isl/o P’’
S e PK

s" (3.13)

PROOF. Using (3.) and arguing as in (3.5) we have

Is ml Fk’mp,q,r(S)- A(k,m,p,q,r) _< II + 12 (3.1h)

where II and 12 are defined in (3.6) for y >0 arbitrary. Let K >_ 0 be arbitrary but
fixed and s PK" Using the boundedness hypothesis on (f(t)/t), (2.2), and analysis
as in (3.7) and (3.8) we have
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< (+K) (+m+rl+l)/
exP((l21 +121 +1 =21 )/a)

F (ml-kl+( 1/2
(3.15)

and the right side of (3.15) is independent of s e PK" We now consider II in (3.6).
For the real number c > 0 in the hypothesis we argue as in (3.9) and obtain

I
1
< (I+K2)

-rl+(1/2
P

r (ml-kl+( 1/2
hl+ls Ir(m k +(Z/2))I

(PSlt)
0

exp( qsl-2c )t/2 Wkl ,ml (PSlt)
le-Ct(f(.t)-tn) dt

(3.16)

rl-(1/2) -rl+(1/2)
where we have put p into the right side and hence have also put p

there. The desired conclusion (3.13) in this theorem is to be obtained as

Isl / 0, s e PK; as Isl 0, s e PK’ then necessarily sI Re(s) 0 +; we thus may

assume without loss of generality here that 0 < sI
< (l/p) for the fixed parameter

p > 0. As t / 0+, 0 < PSlt < t / 0+ for all sI
< (l/p); by the growth condition at

0 in Tiwari and Ko [6, line h+, p. 351] or Whittaker and Watson [ll, Chapter 16] we

can choose constants M and T such that

Wkl ,m
1
(PSIt) Wkl ,mI

(Pslt) <_ M (PSlt)(i/2)-ml,

0 < PSlt < t < T < y, sI < (l/p);

(3.17)

here M is independent of sI < (l/p) and of t < T and of PSlt < t < T and T is indepen-
dent of s

I < (l/p). Returning to (3.16) and using (3.17) and the fact that

exp(-qslt/2) <_ l, t > 0, we have

I
1 <_ (l+K2)(hl+ml+rl+1)/2 -rl+(1/2) cyexp((In21+II+Ir21)/2) p e

hl+l r (m-kl+(1/2))
s
1

Ir(m k +(/2))1
M (PSlY) rl-ml le-ct (f(t)- th) dt

0

(3.8)

+ (PSlt)
T Wkl,ml(pslt) e

-ct (f(t) th) Idt I’
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In (3.18), as in (3.11), we have

-ct (f(t)- t)i dt < ;

(e-ct f(t)) is absolutely integrable over 0 ! t < by assumption and (e-ct to is

absolutely integrable over 0 ! t < since c > 0 and Re() > (-1). Now

rl-(i/)
Wkl(PSlt) ,ml(PSlt) is a continuous function of t on the closed bounded

interval T ! t ! y for each fixed sl, 0 < s
I

< (l/p); hence this product attains its

maximum on T ! t y at a point tsl depending on sI
< (l/p). Continuing (3.18) we

then have

I
I <_ (i+)

(ql+ml+rl+l)/2
)/2)

-ri+(i/2)
P

rll+l F(ml-kl+(1/2 rl-ml rl-(1/2)
eCY si !4 (PSlY) + (PSitsi) Wki,mi(psitsi)

r (m k +(1/2 )1

0 le-Ct(f(t)- tn) dt.

The estimate (3.19) holds for all sI, 0 < s
I

< (i/p). The constants c,K, and M are

independent of sI, 0 < s
I

< (i/p), as are all of the parameters p, k kI
+ ik2,

m mI + im2, r r
I

+ ir
2

and q ql + iq2 and the yet to be chosen constant y > 0.

Again as sl 0, s a PK’ then s
I

Re(s) 0+. Recall that T <_ tsl <_y for

0 < s
I

< (I/p) in (3.19) and T is independent of Sl, 0 < s
I

< (i/p), but dependent

on y > 0. (Recall (3.1).) As sI O+ then 0 < Psltsl <_PSlY 0+. Thus as

sl 0, s PK’ the growth condition Tiwari and Ko [6, line +, p. 351] and

Whittaker and Watson [ii, Chapter 16] applied to Wkl,ml(PSltsl yields constants M’

and T’ which are independent of s
I

such that

Wki,ml(Psitsi) Wki,mi(PSitsi) ! M’ (PSitsi)(i/2)-mi
0 < Psltsl ! PslY < T’

(3.20)

for 0 < s
I

< (l/p). Using (3.20) in (3.19) and combining the resulting estimate on

I
1
with the estimate (3.15) on 12, the proof can be completed similarly as in the

proof of Theorem 3.1.

Examples of the applicability of Theorem 3.2 similar to those after the proof

of Theorem 3.1 for Theorem 3.1 can be constructed by the reader.
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4. THE WHITTAKER TRANSFORM FOR DISTRIBUTIONS.

We construct a Whittaker transform for distributions as in Pathak [12]. We

define the differential operators D 0,1,2, as in Paths/< [12 (3), p. 4];

the seminorms _Ya, 0,1,2, and the test functions V (0,) are given in

Pathak [12, p. 6].

LEMMA 4.1. Let s # 0 and Re(s) > (a/p). Let Re(m) > 0. We have

((st)re-(i/2)
PROOF.

exp(-pst/2) Wk,m(pSt)) e Va(0,) as a function of t e (0).

The proof is by Pathak [12, Lemma l, p. 6]. Nothing different is intro-

duced by having p > 0 in the exponential term and in Wk,m(pSt) here.

Let V (0,) denote the space of generalized functions defined on V (0,) (PathOs:

[12 p. 6]). Let U V (0,). Let U have the meaning given in Pathak [12 P. 7]"
a

that is U e Va(0,) for each a > U and U ff Va(0,) for any a < U" Because of

Lemma 14.1 we can form

wTk’m[u;s] <U
t

(st)m-(I/2) exp(-pst/2) Wk, (pst)> s e U (14.1)
p m

where U {s:s#O Re(s) > qU’ < Arg(s) < ’} and Re(m) > O. We call wTk’m[u;s]
p

the distributional Whittaker transform of U V (0,,); by Pathak [12 Theorem l, p. g]
a

WTk’m[u;s] is an analytic function of s in fU"P
The set of seminorms {a} 01,2 which defines and generates the

topology of V (0) is a mu_itinorm in the sense of 7.emanian [13 p. 8] as noted in
a

Pathak [12 p. 6] here Y0 is a norm. nus the hypotheses of Ze.n+/-an [13 Theorem

1.8-1 p. 18] are satisfied; by this result, given U V (0’) there exist a positive

constant and a nonnegative integer N which depend only on U such that

< u, > < c :o,, , v()’ va(o,). (.)

We shall call the number N here the order of the generalized function U e Va(0,).
We obtain Abelian theorem. for the distributional Whitter transform; in so

doing we use the results of section 3. Thus in the remainder of this section we assume

that the complex parameters k and m satisfy Re(m-k + (1/2)) > 0. By comparing the forms

(3.1) and (4.1) we see that the complex parameter r and the real parameter q of (3.1)

and section 3 are now taken to be r m and q p in this section. We thus must make

the restriction Re(m) > (i/2) in the remainder of this section because Re(r) was

necessarily so restricted in section 3.

To prove our initial value theorem for wTk’m[u;s] we need the following lemma.
P

LEMMA 4.2. Let U e Va(0,) for a > U and let the support of U be in

T it < , T > 0. Let s e PK with (p Re(s)) > max {l, p GU, 4a). There are constants

B > 0 and Y0 > 0 which are independent of s such that

m+kl+N- 1/2
wTkm[u;s] <_B (i + sI) exp(-PSlY0/h), s

I
Re(s), (4.3)

where N is the order of U.



ABELIAN THEORERS FOR WHITTAKER TRANSFORMS 425

PROOF. The proof of this lemma is in the spirit of that of Zemanian [2, Lemma i,

p. 2h6]. Choose a function (t) e C such that for any nonnegative integer m we have

d(k(t)

dt

-<t <,

where M is a constant which depends only on a; 0 < l(t) < I; k(t) i for T < t < ;

and the support of k(t), denoted supp(k), is contained in Y0 ! t < , 0 < Y0 < T.

Then by the usual proof we have <U, > <U, >, e Va(0,), since supp(U) [T,);
and the value of <U,$> <U, l> is independent of the choice of k(t) satisfying the

above properties. Let Re(s) > GU" With N being the order of U e Va(0,) we apply (.2)

and the definition Pathak [12, (12), p. 6] of the seminorms to obtain

w;m[u; s] <Ut, X(t) (st)m-(I/2) exp(-pstl2)Wk,m (pst) > !

max sup eat )m-( 112<--C a 0,i, N 0 < t < D(kCt) (st expC-pst/2) Wk,m(pSt))

for Re(s) > GU" From Pathak [12, (8), p. 5] we have

m (f(t)) [ As t8 fJ(t)’ 0 1,2 (I.5)
8=0

where the A8
are complex constants. Using (h.5), the Leibnitz rule, the boundedness

(IdB-(k(t))/dtS-61< MS,._ in (4.6) below), and Slater [lh;
of the derivatives of k(t)

(2..17), p. 25] we continue (.) as

w[us]l <_

max sup eat Ii t< C
=0,i, ,N 0 < t < %

=C

ds i/2)
k(t) (st)m-( exp(-pst/2) Wk,m

dt 8,

max sup eat
m=0 1 ,N 0 < t <

. Ag t
g

(pst)I

8 d8-

0!p:A=
(.l (t)

(l’-i- dt6- [ )m-(/2)(st exp(-pst/2) Wk,m
dt

(pst)

max sup at m 81
< C a=0 1 ,N 0 < t < e I : --(s)-,

8=0 8 0

-m*(112) ) )m-(112)-(12)t8 p (ps) (-i (pst exp(-pst/2)

II
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Wk+C12),m-(12)(pst)

max
C
a=0, l, ,N

sup 8 8’. MS, 60 < t <" [ A
8B=c 6=0

p-m+(ll2)+-S Jsl-S leat (pst)m-Cll2)-(12) +8 exp(-pst/2)

Wk+CSl2),m_C12)(pst)

Now recall m
1

Re(m) >_ (1/2), p Re(s)) > max {i, po
U 4a}, and s e PK in the

hypothesis of this lemma; under these restrictions we use the growth properties of the

Whittaker function (Whittaker and Watson [ii, Chapter 16] and Tiwari and Ko [6, p. 351])

and analysis as in the proof of Pathak [12, Lemma 2, pp. 7-8] to obtain a constant C
8

such that

e
at (pst)m-(1/2)-(6/2)+8 exp(-pst/2) Wk+(6/2),m_(6/2)(pst)l <

<_ C8
(l+sI) exp(-PSlt/4)

holds for t > 0 and all relevant values of the parameters. Now in (4.6) we notice that

-m+(/)+-SIp-m+(i/2)+6-81 p Since (p Re(s)) > max {i, lU,ha} and s g PK’ the

texan Isl -8, 0,i, , S 0, i, ,c, in (h.6) is bounded by a constant which

depends on and 8. Now recall that supp(k) [y0 ,) with 0 < YO < T so that the sup in

(h.h) and (h.6) is actually taken over Y0 < t < . Hence for the values of t actually

being considered in (h.h) and (h.6), the estimate in (h.7) holds for Y0 < t < with the

term exp(-PSlt/h) replaced by exp(-PSlY0/h). Combining these facts with (h.7) and (h.6)

we obtain a constant B which depends on the generalized function U and on its order N

such that the desired conclusion (.3) holds; the constants B and Y0
s. The proof is complete.

are independent of

We now prove an initial value Abelian theorem for the distributional Whittaker

transform where the element U e V (0,) is assumed to have support in [0,).

THEOREM h.l. Let U e V
a

(0,) for a > U such that over some right neighborhood

(0, t0) of zero U is a regular distribution corresponding to a complex valued function

f(t) such that there is a real number c > 0 for which (e-ct f(t)) is absolutely inte-

> -1, let (f(t)/tD) be bounded on 0 < tgrable over 0 <_ t <_ t
O

For i+i2, i
< y’ for all y’ < t

O
Let the Whittaker transform Fa’_m,m(,s), s e >, exist for the

p
function which is f(t) on 0 < t < y’ and which is zero on y’ <_ t < for all y’ < t

O
If there is a complex number for which

f(t)
(.8)

t0+ t
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then for each fixed K > 0

im s+l WTk,m[ U ;s

( ,k,m,p,p ,m)sePK

c,. (h.9)

PROOF. We decompose U into U
1

0 < T < t
O

We now have

+ U
2
where supp(UI) [0,T] and supp(U2)

_
[T,=),

wTk’m[u;s WTk,m" wTk,m
p p tU1;s] + [u2;s].p

(4.1o)

h.2 is applicable to WTk’m [U2;s] since supp(U2) C [T,), T > 0. Recall thatLemma as
p

Isl , s e PK’ then necessarily sI Re(s) . Thus by the conclusion (4.3) of

Lemma 4.2 and the estimate

(nl+l)/2 nl+lsn+l ! (+K) (s) exp(ln21/2) s s PK’

we have

im sn+l wTkm[u2 s

s e RE A(h,k,m,p,p,m)
o.

Extend the function f(t) in the hypothesis, which is known on 0 < t < to, to

0<t< by

(t) =If(t)’ 0 < t < T
0, Tit <.

Then (t) satisfies the hypotheses of Theorem 3.1 and wTkm[ul;s] wTk;m[(t);s]
with this latter Whittaker transform equaling the function Whittaker transform of

(t) defined in (3.1). Thus by Theorem 3.1

Zim s+I wTk’m[u
I
;s

Combining (4.10), (4.11), and (4.12) we have the desired result (4.9). The proof is

complete.

V’COROLLARY 4.1. Let U a(0’) for a > U such that over some right neighbor-

hood (0,t0) of zero U is a regular distribution corresponding to a function f(t)
which is Lebesgue integrable over 0 <_ t < . Let D nl+i2, i > (-I). Let

(f(t)/t) be bounded on 0 < t < y for all y > 0 and let (4.8) be satisfied for some

complex number a. Then for each fixed K > 0 (4.9) holds.
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PROOF. Since f(t) is Lebesgue integrable over 0 <_ t < then (e-ct f(t)) is

absolutely integrable over 0 <_ t < for any fixed c > 0. The result thus follows

immediately by Theorem

We now proceed to obtain a final value Abelian theorem for the distributional

Whittaker transform. First we need to make some comments concerning this transform.

of a distribution of the form assumed in the final value theorem below. Let

[t
O

> O. Assume over some intervalU e V (0,), a > oU, with supp(U) ,), t
Oa

y < t < with 0 < to < y that U is a regular distribution corresponding to a complex

valued function f(t). Then U can be decomposed as U U
1

+ U
2
with supp(UI)

_
[t0,T1

and supp(U2) [T,), T > y. We then have

WTk’m [U;s] WTk’m [Ul;S] + WTk’m [U2;s].P P P
(h.13)

From the definition (h.l) WTk’m [U;s] is defined for s e U in which Re(s) > OUP
Because of the form of the U V (0,) assumed above and the assumptions on f(t)

a
in the final value Theorem h.2 below, where we use the above decomposition, we can

take G
U 0 here, and (h.13) will be well defined in Theorem h.2 for sI

Re(s) > 0.

Because of this we may let sl0, s PK’ in the final value theorem below as

desired.

We now obtain a needed lemma for the final value result.

’LEMMA h.3. Let U e with supp(U)

_
[t0,T], 0 < t

O
< T

n i +i2 with nI > -i. For each fixed K >_ 0

Let

im
i1.o n/, [u;s] o.
sePK

PROOF. The distributional Whittaker transform

,m [Us] of U ’ exists for Re(s) > 0 By Schwartz [15 Th&orBme, p 91]
P

N d((t))U= [
=0

dt

for some nonnegative integer N, the order of U, where the g(t), e 0,i, ,N,

are continuous functions with support in an arbitrary neighborhood [tO -g, T +g ],

> 0, of [t
O

T]. Since g> 0 is arbitrary we assume here that t
O
-g > O. Using

distributional differentation and the calculation Slater [lh, (2..17), p. 25] we

have

WTk’m [U;s]
P

[ (-i) g(t) (st exp(-pst/2) Wk,m(pSt) dt

6=0 to dt



N
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-m+(i/2) (ps) (_l)(pst)m-(i/2)-(/2)ga( t P

expC-pstl2) Wk+(al2),m_Co12)(pst) dt.

Now each g(t) is continuous on to ! t ! T + hence

Iga(t)l <_ Ma, t
O

( <_ t <_ T + ([ 0,i ,N, (4.16)

for constants M a 0,i, ,N. For each a 0,i, ,N we have

(nl+l+)/2 i+i+Is+l <_ <+) ep(lll) s
I

s e PK’ rll Re(D) >-i. (4.17)

Using analysis like that in obtaining the estimate (4.7) in the proof of Lemma 4.2

we have

(pst)m-(i/2)-(cx’/2) exp(-pst/2) Wk+(a/2),m_(c12) (pst)l <_
(4.18)

ml+kl-(i/2
< C (l+sI) exp(-Pslt/4)

for constants % with a 0,i, ,N and s e PK" Again recall that as

Isl 0, s e PK’ then necessarily s
I

Re(s) 0 +. Thus by combining (4.15), (h.16),
(4.17), and (4.18) we obtain (4.14) and the proof is complete.

We now obtain a final value Abelian theorem for the distributional Whittaker

transform.

THEOREM 4.2. Let U e Va(0,), a > OU, with supp(U) _C [t0,) t
O

> 0. Over some

interval y < t < , 0 < t
O

< y, let U be a regular distribution corresponding to a

complex valued function f(t) for which there is a real number c > 0 such that

e
-ct f(t)) is absolutely integrable over y <_ t < . For l + i2’ hl > (-1),

let f(t)/t be bounded on y’ <_ t < for all y’ >_ y; and assume that

Fk’m (s), s e >, exists for the function which is f(t) on y’ < t < and which is
p,p,m

zero on 0 <_ t <_y’ for all y’ >_ y. If there is a complex number for which

im
f(t

a (4.19)
t++ t

then for each fixed K > 0

im

se PK

rl+l WTk,ms [u;s]
p

A(,k,m,p,p,m)
(4.20)
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PROOF. Decompose U into U U
1

+ U
2
with supp(Ul) [t0,T] and

supp(U2) [t,), T > y, as in the paragraph above which contains equation (h.13);

and by the discussion in that paragraph, (h.13) holds for sI
Re(s) > 0. Let the

function f(t) in the hypothesis, which is known on y < t < , be extended to

O<t<by

(t) {0 0 <t <T,
f(t), T< t<

Then (t) satisfies the hypotheses of Theorem 3.2. Now [U2;s] [(t);s]
P P

with this latter Whittaker transform equaling the function Whittaker transform of (t)

defined in (3.1). Thus the conclusion (h.20) follows from (h.13), Lemma h.3, and

Theorem 3.2. The proof is complete.

In future work we hope to extend the Abelian theorems of Joshi and Saxena [16]

and Malgonde and Saxena [17] for the H-transform to the general setting that the

complex variable of the transform approaches 0 or inside a wedge region in the right

half plane and for more general parameters, To do so we will need to use the proper-

ties of the H-function as in Srivastava et al [18]. Analysis which is associated with

that in this paper and with the corresponding H-transform problem is contained in

Sinha [19] and Joshi and Saxena [20]. The MeiJer transform is studied in Pathak [21]

which we note here because of the similarity of the MeiJer and Whittaker transforms.
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