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ABSTRACT. This paper describes some new finite difference methods of order 2 and 4

for computing eigenvalues of a two-point boundary value problem associated with a fourth

order differential equation of the form (py")" + (q r)y 0. Numerical results

for two typical eigenvalue problems are tabulated to demonstrate practical usefulness

of our methods.
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i. INTRODUCTION.

We shall consider the fourth order linear differential equation

p(x) d2y + [q(x) -%r(x)]y 0, <_ a <_ x b

dx2 dx2
(1.1)

associated with the following pairs of homogeneous boundary conditions

y(a) y(b) y"(a) y"(b) 0. (1.2)

Such boundary value problems occur in applied mathematics, engineering and modern

physics, (see ref. [I-4}. in the differential equation (1.1) the functions p(x), q(x),

r(x) C[a,b] and satisfy the conditions

p(x) > 0, q(x) 0 and r(x) > 0, x [a,b]. (1.3)

We cannot compute the exact values of the eigenvalues for which the boundary

value problem (i.I) (1.2) has a nontrivial eigensolution y(x) for arbitrary chocies

of the functions p(x), q(x) and r(x). We resort to numerical methods for computing

approximate values of . The most eononly used technique for approximating A for

WhiCh e-sysCem (i.I) (1.2) has a nontrivial eigenfunction y(x) is by finite

difference methods.
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Recently, the author [2] has analysed some new finite different methods of order

2 and 4 for computing eigenvalues of a two point boundary value problem involving the

differential equation (i.I) with p(x) m associated with one of the following pairs

of homogeneous boundary conditions:

(a) y(a) y(b) y’(a) y’(b) 0

(b) the same boundary conditions as (1.2) (1.4)

(c) y(a) y’(a) y"(b) y’"(b) 0.

Chawla and Katti [3] have developed a numerical finite difference method of order

2 for approximating the lowest eigenvalue I of the system (I.i) (l.4(a)) with p(x)

m i. A fourth order method was later developed by Chawla [4] for the numerical

treatment of the same problem. This latter method leads to a generalized seven-band

symmetric matrix eigenvalue problem.

Let I be any eigenvalue of the system (i.I) (1.2) and let y(x) 0 be the

corresponding eigenfunction. Then on multiplying (1.1) by y(x) and integrating the

resulting equation from a to b, we find after integration by parts and on using

(1.2), that b b

/a p(y")2 dx + /a qy2d
% > 0 (1.5)

fab ry2dx

in view of (1.3).

The purpose of this brief report is to present two new finite difference

methods for computing approximate values of for the system (I.i) (1.2). These methods

lead to general{zed five-band and nine-band symmetrlx matrlx eigenvalue problems

and provide 0(h2) and 0(h4) -convergent approximations for the eigenvalues.

2. A SECOND ORDER METHOD

For a positive integer N > 5, let h= (b a)/(N + i) and x. a + ih,

i 0(1)N + i. We shall designate Yi Y(Xi) Pi P(Xi) qi q(xi) and r
i r(xi).

Note that the differential system (i.I) (1.2) is equivalent to

(a) y"(x) v(x)/p(x) y(a) y(b) 0

(b) v"(x) + [q(x) Ar(x)] y(x) 0 (2.1)

v(a) v(b) O.

Now the central difference approximation to 2.1(a) is

-Yi-i + 2Yi Yi+l + h2(vi/Pi) + h4 Y(4)(Si) 0 (2.2)
12

8i (Xi-l’Xi+l) i I(1)N

The preceding system can be conveniently written in matrix form

1v h
4

JY + h2p + T1
0

12
where Y (yi), V (vi) T1 (pi) are N-dimensional colunm vectors with

Pi Y(4)(Oi) P diag (i i) and J (jmn) is a tridiagonal matrix so that

(2.3)
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2, m n

-I, Im n (2.4)

In an analogous manner, on discretizing 2.1(b), we get

h4
JV h2Qy + %h2Ry + T2 0

where Q diag (qi
#i ( (Xi-l’Xi+l)"

where

v(4)R diag (ri) and T2 (oi) with o. (#)
1 i

Next, we eliminate v between (2.3) and (2.5) to obtain

AY (JPJ + h4Q)Y lh4Ry + F

(2.5)

(2.6)

r [h6T2 h4jPTI (2.7)

It can be verified that the matrix A JPJ + h4Q is a five-band symmetric matrix.

Now, in (2.6), neglect truncation error F, replace Y by , then our method for

computing approximations A for A of the system (I.i) (1.2) can be expressed as

a generalized seven-band symmetric matrix eigenvalue problem

A AN4R (2.8)

In fact the matrix JPJ is a positive definite matrix and hence for any step-size

h > 0, the approximations A for A by (2.8) are real and positive for all p(x) > 0

and r(x) > 0. That our method provides 0(h2) convergent approximations A for l

can be established following Grigorieff [5]. We omit the proof of convergence for

brevity.

3. A FOURTH ORDER METHOD

Following Shoosmith [6] the boundary value problems 2.1(a) and 2.1(b) are

discretized by the finite difference scheme

(a) 14y0 29yI + 16y2 Y3 h2[y + 12y]

-)62yi h2y[ i 2(1)N-I,(b) (l (3.1)

h2(c) -Yn-2 + 16YN-I 29YN + 14YN+I [12YN + YN+I
It turns out the boundary value problem 3.1(a) gives rise to the linear equations

+ 12h2p-1 0 (3.2)

Similarly, for the system 2.1(b), we obtain the linear equations

M 12h 12Ah2R’y (3.3)
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where the five-band N x N matrix M is given by

29 -16 1

-16 30 -16

-16 30 -16

S

-16

1

30 -16 1

-16 30 -16

-16 29

(3.4)

The elimination of V from (3.2) and (3.3) gives our method for computing A for k of

(I.I) (1.2) in the form

(MPM + 144h4Q)TY 144Ah4RTI (3.5)

where the matrix MPM is a nine-band positive definite matrix and hence for any

step-size h > 0, the approximations A for by (3.5) are real and positive for all

p(x), r(x) > 0. As before, it can be proved from the results of Grigorieff [5] that

our present method provided 0(h4) convergent approximations A for k.

4. NUMERICAL RESULTS

In order to illustrate our methods of order 2 and 4 for the approximation of

k satisfying (I.I) (1.2), we consider the eigenvalue problems:

)4[(I + x2)y"] + 1 ),(I + x ]y 0 (4.1)
(i + x2)

y(O) y(1) y"(O) y"(1) 0

The smallest eigenvalue i 22.754, 058, 480

[eXy"] + [sin x cos x]y 0

y(O) y(1) y"(O) y"(1) 0

The smallest eigenvalue of the system (4.2) is I 181.345, 488, 233, We

list the approximations A for A and the relative errors 1 for various

values of the step-size h. It is readily verified that the relative errors

(Table I) based on generalized eigenvalue problem (2.8) provide 0(h2) convergent

approximations for the smallest eigenvalue of the system (4.1) and (4.2).

Similarly, the relative errors (Table II) based on the generalized eigenvalue

problem (3.5) do indeed provide 0(h4) -convergent approximations for the smallest

eigenvalue of the systems (4.1) and (4.2).



NEW FINITE DIFFERENCE METHODS FOR COMPUTING EIGENVALUES

TABLE I

Results based on (2.8) second order approximations

Problem N AI

(4.1) 7 22.187 2.557-2*
15 22.610 6.352-3
31 22.718 1.586-3
63 22.745 3.962-4

127 22.752 9.907-5
255 22.753 2.480-5

(4.2) 7 176.641 2.664-2
15 180.159 6.588-3
31 181.048 1.642-3
63 181.271 4.103-4

127 181.327 1.025-4
255 181.341 2.560-5

-2*We write 2.557-2 for 2.557X I0

529

TABLE II

Results based on (3.5) 4th order approximations

Problem N A

A1
(4.1) 7 22.746, 419 3.358-4

15 22. 753, 574 2. 129-5
31 22. 754, 027 1.358-6
63 22.754, 056 1.078-7

(4.2) 7 181.244, 637 5.564-4
15 181.339, 089 3.529-5
31 181.345, 093 2.175-6
63 181. 345, 470 9. 728-8
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