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ABSTRACT. We use perturbation techniques to solve the polynom/al equation in Banach

space. Our techniques provide more accurate information on the location of solutions

and yield existence and uniqueness in cases not covered before. An example is given

to justify our method.
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i. INTRODUCTION.

In this paper we use perturbation techniques to find solutions of the abstract

polynomial equation of degree k,

(x) x+_-+---x +MIX+M0 (.)

in a Banach space X over the field F of real or complex numbers.

Obviously (i.i) is a natural generalization of the scalar polynomial equation of

the first kind to the more abstract setting of a Banach space.

The case k 2 has been examined in [i], [7], [8]. Here we investigate the

case k a 2. The principal new idea in this paper is the introduction of an equation

similar to (i.i),

z Fk(Z) Nkzk+Nk_Izk-l+ +N2z2+Nlz+M0. (1.2)

The’results are then obtained under suitable choices of the N ’s, p 1,2,---,k.
P

Our method is a generalization of the one’s discussed [8], [9] by L. B. Rall,

namely, the method of successive substitutions and Newton’s method. It always provides

a more accurate information on the location of the solutions and it also yields exis-

tence and uniqueness results for (i.i) in the cases not covered before. For z 0

and A
2 M2-I our results coincide with theorems in [8], [9], but even then we are

able to provide more accurate information on the location of the solutions. In order

to justify this, in Part 2 of our paper we compare our results with the results in [8],
[9], [i0] using as an example a special case of (i.i), namely the famous Chandrasekhar’s

equation
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for X C[0,13 d 0 k 0.5. Stronger resets for even more gener fo= of

(1.3) have reav been obtained in [3], [6] and elsewhere. In this paper we Just use

(1.3) as exple to justi o method.

2. BASIC CONCEPTS AND THEOREMS.

DEFINITION i. Denote by L(X,Y) the linear space over the field F of the lin-

ear operators from a linear space X into a linear space Y. For k 2,3,--. a

linear operator from X into the space L(}-I,Y) of (k-1)-linear operators from X

into Y is called k-linear operator from X into Y. For example, if a k-linear

operator M
k

from X into Y and k points Xl,X2,..-,xk E X are given, then

z XlX2---xk
will be a point of Y, the convention being that operates on Xl, the (k-l)-
linear operator x1

operates on x2, and so on. The order of operation is impor-

tant. Finally, denote L(X,Y) by L(X) if X Y.

NOTATION i. Given a k-linear operator i from X into Y and a permutation

i (il,i2,.-.,ik) of the integers 1,2,...,k, the notation (i) can be used for

the k-linear operator from X into Y such that

e-eX.()Sx... i
or ll x,x2,..-,x x.

Thus, there are k’. k-linear operators (i) associated with a given k-linear

operator .
DEFINITION 2. A k-linear operator M] from X into Y is said to be symmetric

if

for all i E Rk, where denotes the set of all permutations of the integers

l, 2, ,k. The symmetric k-linear operator

=..
is called the mean of Mk-

NOTATION 2. The notation

p k, E L(,Y), for the result of applying to x E X p-times will be

used. If p < k, then xP will represent a (k-p)-linear operator from X into

Y. For p k, note that

%x %x (i)
for all i E Rk, x X. It follows from (2.1) that the multilinear operators

M2,---, in (1.1) may be assumed to be symmetric without loss of generality, since

each M.I in (1.1) may be replaced by Mi, i 2,3,.--,k, without changing the value
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of Yk(x’. Oniess tne contrary is exolicitly staked, ne mttlilinear operators

2,3,.-.,k will be assumed o be symmetric.

Assume from now on tha% X,Y are Banach spaces.

DIN!TiON 3. A linear operaor L from X into Y is said to be bounded if

fILl! u lill (2.2)

is finite. Tne quantity IILII is called the bound (or norm) of L.

DEFINITION 4. For k 2 2, a k-linear operator . from X into Y is said

to be bounded if it is a bounded linear operator from X into L(xk-I,Y), the Banach

space of bounded (k-l)-linear operators from X into Y. The bound (or norm)

of L-(-’is defined by (2.2), with being considered to be an element of

L(X, -l,y)).
NOTATION 3. ae space of bounded k-linear operatoms from X into Y will be

denoted henceforth by L(,Y). Note that by Definitions (3) and () if L(,Y)
and p k then

DEFINITION 5. An abstract polynomial operator Pk from X into Y of degree

k defined by

(x) x+_-+--- + + %_ + o’
is said to be bounded if its coefficients M

i,
i 1,2,-..,k are bounded multilinear

operators from X into Y. From now on we assume Pk is bounded.

DEFINITION 6. Let z be fixed in X and define the polynomial qk of degree
+

k on B by

qk (r )-z
L’i llz II)-llz

r+"
(r+ llz ll)-

r.

Note that by Descartes rule of signs [5] the equatio= q(r) qk(r)-r 0 has two

positive solutions s
I
& s

2
or none.

THEOREM i. Assume that q(r) has two positive solutions s
I
< s

2
such that

q (r) < i, r (Sl,S2). Then Pk has a unique fixed point in the ball (z,r)
Ix X llx-zll r], where r (s,s) (Sl,S2).

PROOF. Claim I. Pk maps U(z,r) into U(z,r).

l(x-zll l(x)-(z)+(z)-zll l%(-(z)ll+ ll(z)-ll

I%I Ira2 ,(/ ,z )/...+ I% ,( (+ ,z ,)-+( llz ,)- ,z II+-- .+ ,z if-Sr

+ ,P(z)-z,
or

q(r) 0 which is true by hypothesis.

(Note that claim i is true even if s
I

s
2

and r [Sl,S2]).
Claim 2. Pk is a contraction operator on U(z,r). IF Xl,X2 U(z,r), then as

in claim 1,
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bui

ql (r) < by hypothesis.

The result now follows from the contraction mapping principle.

]+DINITION 7. Define he polynomial q}:(r of degree k on

%( I1-%_ it; + I- llz IF +--- + I%-i li. iz !# + %_ (r) + I1. (z)-. It.
Note that

(’-)--. I#o + .." " z-’ /

IIMo-o " "-5_" " * "-:" + (F. z )-z

11.-5. I1" i1"-I1" I1- I1" I1". " " II- I1" I1"
if z is a fixed point of (1.2).

The proof of the following theorem follows from Theorem 1 and the above observation.
THEOREM 2. Suppose that there exists a solution z satisfying (1.2) and that

(r) k(r)-r has two positive solutions s
I
< s2. Then Pk has a unique fixed

point in U(z,r), where r (s,s) (sl,s2).

APPLICATIONS.

From now on we assume that k 2 and 0.
1

Then Theorem 2 becomes

THEOREM 3. Consider the equation

2
z M

0
+ N2z

Suppose that there exists a solution z satisfying (3.i) and

ilzll < [,/I1!1 (JIl-ll +,,/i111):]--.
(I) Then the equation

2
x Mo+M2x

has a unique solution x U(z,a), where

1

(II) Moreover, x U(z,b) where

b [1-211"2 !1" IIz i1-1:(211"2 I1" IIz I1-- )2_t, i1"2-N2 11{2 Ii" Iiz I12 ]/2:1 (211"2 II)-.
In practice, an exact solution of the auxiliary equation (3.i) can seldom be

obtained. The following theorem, whose proof is similar to that of Theorem 2, guaran-

tees that the original equation (3.2) has a solution even when we can only find an

approximate solution of (3.1).

THEOREM . Let z be fixed in X and set

1

I1z2’o-z I!" IIz

b
_ [_ IIM-N iiz I1 + IIz Ii/iil

(3.2)
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then

(I) equation (3.2) has a unique solution zn U(z,a)-

(II) this solution actually lies in U(z,b).

PRO0Y. Let us define the operator on 2: by

T(x) M
0 +M2x2.

Claim i. T maps U(z,r) into U(z,r) for r [b,a). If x U(z,r) then

T(x)- z M2x2+ M0-z
)2 2(M2-N2)(x-z+z)2+ N2(x-z +2N2z(x-z)+ (N2z +M0-z).

(:11- i!+i1 I1:) + (iiz IIi1- It/ I1 !1" ii’. I1-) + I1- I!" IIz + iiz Ir- 0

which is true for r [a,b).

Claim 2. T is a contraction operator on U(z,r). If w,v U(z,r) then

()-(v)i

%M2 (w-z+v-z+Rz) (w-v)
2(r+llz|)ll!w-vM2

So T is a contraction on U(z,r) for 0 < r < a.

Because Theorem h relies on the contraction mapping principle, it actually pro-

vides an iteration procedure for solving (3.2), namely, set

x
0

z and

M0+M2xn
2

n 1,2,--.Xn+I
REMARK 1. The iteration

M
0
+ M2xXn+I n i, 2,

converges for any x
0

(z,b) to the solution x of (3.2) at the rate of a geometric

progression with quotient

q (1 I1" liz II-z) -i1- i111 !1. Iiz 112]/.
PROOF, By Theorem 3 we have

(+ IIz !i) I
z- (111" ii- I1-) -1il-I- II. I1. I1]a/.

COROLLARY i. Under the hypotheses of Theorem 3, the solution x obtained in

Theorem 3 satisfies

PROOF. By Theorem 3,
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so that

IIx ii:o i/
coo.u.z . or ,. *c X uo t 11"11 "11"011 < z,
(I) equation (3.2) has a ique solution x U(MO,a), here

-11"1111"o
1111

(II) moreover, x U(M0,b) where-I1" I1o I!--11 I1" "o
b

11
PROOF. Apply eorem 3 with M

2
0 d z MO.

We now state R’s theorem for comparison. e proof c be fod in [8], [].
TOR 5. If }M.Mo<I then

(I) equation (3.2) has a solution x X satising

2 11!111"o
1111

(II) moreover, x is que in U(x,R), here

PROPOSITION 1. Asse"

(I) the theses of eor 3, 5 e ’satisfied;

(z) (11-12-)) zi l+ o1 > o.

PROOF. By Theorem 3,

By Theorem 5,

so it is enough to show

x-zil b so llx! b+ll

x

or

(II.IFII.-. il)11 zll- IIz + !i’11 > o

and the result follows from (II).

REMARK 2. If the evaluation of II M2-N2 in Theorem 3 is difficult, then

(a) we can look for a z such that:
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2J 1t%1 (J IP’-2-21 + 4 It% Ii)

and sar the iteration wiT.,h z
O

z"

(b} we can apply the theorem in the bali

z-211%1!. .1i (211%!!. .ll-z)2
211.21

U(z,a’). where b a’ < a

1!%1i +1! , )1i 2 ?/
and

provided that the quantity under the radical is nonnegative.

b a’ < a, we have

U(z,b) c U(z,a’ c U(z,a).

Also note that sice

EXAMPLE I. For the equation of Chandrasekhar,

x(s) l+x(s)01 s
s x(t )dr,

we have X C[0,1] with the sup-norm. The operator Q X X

Q(x) x(s) x(t)dt

is quadratic since the symmetric bilinear operator M
2
:X X X X

M2(x,y) (s) y(t)dt+y(s) x(t)dt
satisfies

M2(x,x) Q(x) for all x X.

We will prove that the norm IIM211 in 2. Now

s- dt in 2

and since always

defined by

defined by

(3.3)

Q 11"2
we obtain

in 2 g I1" It-
The proof will be completed if we prove that

But by the definition of

SO

I1%11 in 2.

"2,

ilM2 x T dt
S

I1" in 2.

=in2

We now apply Theorem 5 and Corollary 2 to (3.3) with

5, equation (3.3) has a unique solution in U(x,R),

B= XM2.
where

According to Theorem

R J!-4l in 2
2k in 2

provided that i- 4X in 2 > 0, i.e., k < .36067"’’. According to Corollary 2,
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equation (3.3, has a uniaue solution

l-2X in
2kin 2

(II) moreover, x U(l,a), where

l-2k in 2-9/i-X in 2
a

2k in 2

provided that l-hl in 2 > O, i.e., k < .36067"".

on

[].

wner6

One can now see by comparing the above that Corollary 2 under the same condition

gives a better information on the location of the solution than Theorem 5 [8],

of

equation in Proposition 2 or 3.

PROPOSITION 2. If z E X

Our next goal is to use Theorem h to obtain solutions of (3.3) for a wider range

k. It is not necessary to assume B has any connection with Chandrasekhar’s

satisfying

then for

is a solution of the equation

z + kMe(z,z],..

or by taking the square root of both sides of the above inequality and using

h < (e Ie I1"11 II) -x

we get

(-) <

e =t =o ono oe tm t i=at zo IIz II-
If z is not exact solution of the quaatic eqtion

z M
0

+ 2z,z),
then we can use the following generalization of Proposition

we have

since

hold.

PROOF. To apply Thoerem 3 we need

I111 < i:J.. I111 (dl.-hl Iil + Jh I111)]-

x M
0

+ klM2(x,x)

where

c. [, I1 IIz II(--x I1 II-IIz II)]-
the conclusions of Theorem 3 for the equation
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and

PROPOSITIOn( Le I.
C

z be flxed in i and }, > C

Tnen for any k satisfying k < k_ < C the equation

x MO/XIM2(x,x)
has a unique solution in U(z,a), and in fact this solution lies in U(z,b). Here

i

I

PROOF. Similar to Proposition 2.

REMARK 3. According to Corollary 2 or Theorem 5 and the discussion following

Example i, Chandrasekhar’ s equation

z(s) l+kM2(z(s),z(s)) l+ksz(S)o s+t dt (3

has a solution z provided that k < .36067376"’’. But now using Proposition 3 and

the iteration suggested in Remark 1 for a sttitable x
0 ZN(I we can extend the

range of l until .424059379"’’. Here are some characteristic values for l the

norm of the corresponding approximate solution ZN(1) and CI().

llzN()ll

35 1.44474532 .38h363732

.38 1.53401867 39512252
39 1.558263525 .399942101

.4 1.5981923 .40524h331

.4 1.6833661 420163281

.k23 1.6961/4492k .423011429

.42h 1.7005561 .42400047

.42h059378 1.70073716 .424059379

.424059379 1.700973721 .424059379

Note that the above results coincide at least at six decimal places with the ones

obtained in [2], [3] and [I0].

i.
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