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1. Introduction

In recent years, various extensions and generalizations of the variational inequalities have been
considered and studied. For details, we refer to [1–33], and the references therein. It is well
known that one of the most interesting and important problems in the variational inequality
theory is the development of an efficient iterative algorithm to compute approximate
solutions of various variational inequalities and inclusions. In 1994, Hassouni and Moudafi
[8] introduced a perturbed algorithm for solving a class of variatioanl inclusions. In 2003,
Fang and Huang [7] introduced the definitions of H-monotone operator and its resolvent
operator, established the Lipschitz continuity of the resolvent operator, constructed an iterative
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2 Fixed Point Theory and Applications

algorithm, and obtained the existence of solutions for a class of variational inclusions and
convergence of the iterative algorithm. In 2004, Liu and Kang [19] established several existence
and uniqueness theorems and convergence and stability results of perturbed three-step
iterative algorithm with errors for a class of completely generalized nonlinear quasivariational
inequalities.

Inspired and motivated by the recent research works in [1–28], in this paper, we
introduce and study a new class of general nonlinear implicit variational inequalities, which
includes the variational inequalities and variational inclusions in [1–28] as special cases.
By applying the resolvent operator technique and fixed point theorem, we suggest a new
perturbed three-step iterative process with errors for solving the general nonlinear implicit
variational inequalities. Several existence and uniqueness results of solutions for the general
nonlinear implicit variational inequalities involvingH-monotone, strongly monotone, relaxed
monotone, relaxed Lipschitz and generalized pseudocontractive operators, and convergence
and stability results of the perturbed three-step iterative process with errors are given. The
results presented in this paper extend, improve, and unify a host of results in recent literatures.

2. Preliminaries

Throughout this paper, we assume that X is a real Hilbert space endowed with a norm ‖ · ‖
and an inner product 〈·, ·〉, respectively, 2X stands for the family of all the nonempty subsets
of X, and I denotes the identity operator on X. Assume thatH,g,m,A, B,C,D, E : X → X and
N,M : X ×X → X are operators, andW : X ×X → 2X is a multivalued operator. Given f ∈ X,
we consider the following problem: find u ∈ X such that

f ∈ N
(
A(u), B(u)

) −M
(
C(u), D(u)

)
+W

(
(g −m)(u), E(u)

)
, (2.1)

which is called the general nonlinear implicit variational inequality, where (g−m)(x) = g(x)−m(x)
for all x ∈ X.

Some special cases of problem (2.1) are as follows.

(A) If f = M = 0, E = I, then problem (2.1) reduces to the following problem: find u ∈ H
such that

0 ∈ N
(
A(u), B(u)

)
+W

(
(g −m)(u), u

)
, (2.2)

which is called the completely generalized strongly nonlinear implicit quasivariational
inclusion in [20].

(B) Iff = 0, E = I,N(x, y) = M(x, y) = x for any x, y ∈ X, then problem (2.1) is equivalent
to finding u ∈ X such that

0 ∈ A(u) − C(u) +W
(
(g −m)(u), u

)
, (2.3)

which is called the generalized nonlinear implicit quasivariational inclusion in [10].

(C) If f = 0,N(x, y) = M(x, y) = x, andW(x, y) = W(x) for any x, y, z ∈ X, then problem
(2.1) collapses to seeking u ∈ X such that

0 ∈ A(u) − C(u) +W
(
(g −m)(u)

)
, (2.4)

which is called the generalized equation by Uko [23].
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(D) If f = M = 0, g − m = I, N(x, y) = x, and W(x, y) = W(x) for any x, y ∈ X, then
problem (2.1) is equivalent to finding u ∈ X such that

0 ∈ A(u) +W(u), (2.5)

which was introduced and studied by Fang and Huang [7].

For appropriate and suitable choices of the operators H,g,m,A, B,C,D, E,N,M,W
and the element f , one can obtain various classes of variational inequalities and variational
inclusions in [1–33] as special cases of problem (2.1).

We now recall and introduce the following definitions and results.

Definition 2.1. Let N : X × X → X, g, b, c,H : X → X be operators and let W : X → 2X be a
multivalued operator.

(a1) g is said to be Lipschitz continuous and strongly monotone if there exist positive constants
s and t satisfying, respectively,

∥∥g(x) − g(y)
∥∥ ≤ s

∥∥x − y
∥∥,

〈
g(x) − g(y), x − y

〉 ≥ t‖x − y‖2, ∀x, y ∈ X; (2.6)

(a2) W is said to bemaximal monotone ifW is monotone and (I+ρW)(X) = X for any ρ > 0;

(a3) W is said to be H-monotone if W is monotone and (H + ρW)(X) = X for any ρ > 0;

(a4) b is called strongly monotone with respect to H and the first argument of N if there
exists a positive constant s satisfying

〈
N
(
b(x), u

) −N
(
b(y), u

)
,H(x) −H(y)

〉 ≥ s‖x − y‖2, ∀x, y, u ∈ X; (2.7)

(a5) b is called relaxed Lipschitzwith respect toH and the first argument ofN if there exists
a positive constant s satisfying

〈
N
(
b(x), u

) −N
(
b(y), u

)
,H(x) −H(y)

〉 ≤ −s‖x − y‖2, ∀x, y, u ∈ X; (2.8)

(a6) b is called relaxed monotone with respect to H and the second argument of N if there
exists a positive constant s satisfying

〈
N
(
u, b(x)

) −N
(
u, b(y)

)
,H(x) −H(y)

〉 ≥ −s‖x − y‖2, ∀x, y ∈ X; (2.9)

(a7) b is called generalized pseudocontractive with respect to g if there exists a positive
constant s satisfying

〈
b(x) − b(y), g(x) − g(y)

〉 ≤ s‖x − y‖2, ∀x, y ∈ X; (2.10)

(a8) N is called Lipschitz continuous with respect to the first argument if there exists a
positive constant s satisfying

∥∥N(x, u) −N(y, u)
∥∥ ≤ s‖x − y‖, ∀x, y ∈ X. (2.11)
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Similarly, we can define the Lipschitz continuity of N with respect to the second arg-
ument. On the other hand, if N(x, y) = x for any x, y ∈ X, then Definition 2.1 reduces to
the usual concepts of strong monotonicity, relaxed monotonicity, and Lipschitz continuity. It is
known that a maximal monotone operator need not be H-monotone for some H, and if W is
H-monotone andH is strictly monotone, thenW is maximal monotone.

Definition 2.2 (see [7]). Let H : X → X be a strictly monotone operator and let W : X → 2X be
an H-monotone operator. For any given ρ > 0, the resolvent operator RH

W,ρ : X → X is defined
by

RH
W,ρ(x) = (H + ρW)−1(x), ∀x ∈ X. (2.12)

Definition 2.3 (see [34]). Let g : X → X be an operator and x0 ∈ X. Assume that xn+1 = f(g, xn)
define an iteration procedure which yields a sequence of points {xn}n≥0 in X. Suppose that
F(g) = {x ∈ X : x = g(x)}/=∅ and {xn}n≥0 converges to some u ∈ F(g). Let {zn}n≥0 ⊂ X and
εn = ‖zn+1 − f(g, zn)‖ for all n ≥ 0. Iflimn→∞εn = 0 implies that limn→∞zn = u, then the iteration
procedure defined by xn+1 = f(g, xn) is said to be g-stable or stablewith respect to g.

Lemma 2.4 (see [35]). Let {an}n≥0, {bn}n≥0, and {cn}n≥0 be nonnegative sequences satisfying

an+1 ≤
(
1 − tn

)
an + tnbn + cn, ∀n ≥ 0, (2.13)

where {tn}n≥0 ⊂ [0, 1],
∑∞

n=0tn = ∞, limn→∞bn = 0, and
∑∞

n=0cn < ∞. Then limn→∞an = 0.

Lemma 2.5 (see [7]). Let H : X → X be a strongly monotone operator with constant r and let
W : X → 2X be an H-monotone operator. Then the resolvent operator RH

W,ρ : X → X is Lipschitz
continuous with constant r−1.

3. Existence, convergence, and stability

Now, we use the resolvent operator technique to establish the equivalence between the general
nonlinear implicit variational inequality (2.1) and the fixed point problem.

Lemma 3.1. Let λ and ρ be two positive constants, let H : X → X be a strictly monotone operator, let
W : X ×X → 2X be a multivalued operator such that for any fixed x ∈ X,W(·, E(x)) is H-monotone,
and

Y (x) = H
(
(g −m)(x)

) − ρN
(
A(x), B(x)

)
+ ρM

(
C(x), D(x)

)
+ ρf, ∀x ∈ X, (3.1)

where H,g,m,A, B,C,D, E : X → X and N,M : X × X → X are operators. Then the following
statements are equivalent:

(b1) the general nonlinear implicit variational inequality (2.1) possesses a solutio u ∈ X;

(b2) there exists u ∈ X satisfying

g(u) = m(u) + RH
W(·,E(u)),ρ

(
Y (u)

)
; (3.2)
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(b3) the mapping G : X → X defined by

G(x) = (1 − λ)x + λ
[
x − (g −m)(x) + RH

W(·,E(x)),ρ
(
Y (x)

)]
, ∀x ∈ X (3.3)

has a fixed point u ∈ X.

Proof. It is clear that (b1) holds if and only if Y (u) ∈ (H + ρW(·, E(u)))((g − m)(u)), which is
equivalent to (3.2) by the definition of the resolvent operator. On the other hand, (3.3) means
that G has a fixed point u ∈ X if and only if (3.2) holds. This completes the proof.

Remark 3.2. Lemma 3.1 extends and improves Lemma 3.1 in [1, 7, 10, 12, 19–22, 32], Theorem
3.2 in [6], Lemma 3.2 in [25], Theorem 2.1 in [8, 24, 26], and Lemma 2.2 [27].

Based on Lemma 3.1, we suggest the following perturbed three-step iterative process
with errors for the general nonlinear implicit variational inequality (2.1).

Algorithm 3.3. Let A,B,C,D, E, g,m,H,Hn : X → X,N,M : X × X → X be operators, W,Wn :
X × X → 2X satisfy that for any x ∈ X,W(·, E(x)) is H-monotone and Wn(·, E(x)) is Hn-monotone
for each n ≥ 0. Given f, u0 ∈ X, the iterative sequence {un}n≥0 is defined by

wn =
(
1 − cn

)
un + cn

[
un − (g −m)

(
un

)
+ RHn

Wn(·,E(un)),ρ

(
Y
(
un

))]
+ rn,

vn =
(
1 − bn

)
un + bn

[
wn − g

(
wn

)
+m

(
wn

)
+ RHn

Wn(·,E(wn)),ρ

(
Y
(
wn

))]
+ qn,

un+1 =
(
1 − an

)
un + an

[
vn − (g −m)

(
vn

)
+ RHn

Wn(·,E(vn)),ρ

(
Y
(
vn

))]
+ pn, n ≥ 0,

(3.4)

where Y is defined by (3.1), {pn}n≥0, {qn}n≥0, and {rn}n≥0 are sequences in X introduced to take into
account possible in inexact computation, and the sequences {an}n≥0, {bn}n≥0, and {cn}n≥0 are sequences
in [0.1] satisfying

∞∑

n=0

an = ∞,
∞∑

n=0

∥∥pn
∥∥ < ∞, lim

n→∞
∥∥qn

∥∥ = lim
n→∞

bn
∥∥rn

∥∥ = 0. (3.5)

Remark 3.4. Algorithm 3.1 in [1, 7, 12, 19, 21, 25, 32], Algorithm 2.1 in [8, 27], and Algorithm 5.1
in [9, 11], the Ishikawa-type perturbed iterative algorithm in [10], the Ishikawa-type perturbed
iterative algorithm with errors in [20], Algorithms 3.1 and 3.2 in [22] are special cases of
Algorithm 3.3 in this paper.

Next, we study those conditions under which the approximate solutions un obtained
from Algorithm 3.3 converge strongly to the unique solution u ∈ X of the general nonlinear
implicit variational inequality (2.1), and the convergence, under suitable conditions, is stable.

Theorem 3.5. Let H : X → X be strongly monotone and Lipschitz continuous with constants s
and h, respectively. Let Hn : X → X be strongly monotone with constant sn for each n ≥ 0 and let
g : X → X be Lipschtiz continuous and strongly monotone with constants t and p, respectively. Assume
thatm,A, B,C,D, E, : X → X are Lipschitz continuous with constants q, a, b, c, d, and e, respectively.
Let W,Wn : X × X → 2X satisfy that for each x ∈ X,W(·, E(x)) is H-monotone and Wn(·, E(x)) is
Hn-monotone for each n ≥ 0. Let N : X ×X → X be Lipschitz continuous with constants i and j with
respect to the first and second arguments, respectively. Let M : X × X → X be Lipschitz continuous
with constants k and l with respect to the first and second arguments, respectively. Suppose that A is
strongly monotone with constant α with respect toH(g −m) and the first argument ofN, C is relaxed
Lipschitz with constant γ with respect to H(g − m) and the first argument of M, and D is relaxed
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monotone with constant δ with respect to H(g −m) and the second argument of M. Let

P =
√
1 − 2p + t2 + q + ηe, J = i2a2 − T2,

T = jb +
√
h2(t + q)2 − 2γ + k2c2 +

√
h2(t + q)2 + 2δ + l2d2,

K = α − s(1 − P)T, L = h2(t + q)2 − s2(1 − P)2 > 0.

(3.6)

Let {xn}n≥0 be any sequence in X and define {εn}n≥0 ⊂ [0,∞) by

εn =
∥∥xn+1 −

{(
1 − an

)
xn + an

[
yn − (g −m)

(
yn

)
+ RHn

Wn(·,E(yn)),ρ

(
Y
(
yn

))]
+ pn

}∥∥,

yn =
(
1 − bn

)
xn + bn

[
zn − (g −m)

(
zn

)
+ RHn

Wn(·,E(zn)),ρ
(
Y
(
zn

))]
+ qn,

zn =
(
1 − cn

)
xn + cn

[
xn − (g −m)

(
xn

)
+ RHn

Wn(·,E(xn)),ρ

(
Y
(
xn

))]
+ rn, ∀n ≥ 0,

(3.7)

where Y is defined by (3.1). If there exist positive constants ρ, η, and ηn satisfying

∥∥RH
W(·,x),ρ(z) − RH

W(·,y),ρ(z)
∥∥ ≤ η‖x − y‖, ∀x, y, z ∈ X, (3.8)

∥∥RHn

Wn(·,x),ρ(z) − RHn

Wn(·,y),ρ(z)
∥∥ ≤ ηn‖x − y‖, ∀x, y, z ∈ X, n ≥ 0, (3.9)

lim
n→∞

∥∥RHn

Wn(·,E(x)),ρ
(
Y (x)

) − RH
W(·,E(x)),ρ

(
Y (x)

)∥∥ = 0, ∀x ∈ X, (3.10)

lim
n→∞

ηn = η, lim
n→∞

sn = s, (3.11)

P + s−1ρT < 1, (3.12)

and one of the following conditions:

∣∣ρ −KJ−1
∣∣ < J−1

√
K2 − LJ, J > 0, |K| >

√
LJ ; (3.13)

∣∣ρ −KJ−1
∣∣ > −J−1

√
K2 − LJ, J < 0, (3.14)

then for any given f ∈ X, the general nonlinear implicit variational inequality (2.1) has a unique
solution u ∈ X and the sequence {un}n≥0 defined by Algorithm 3.3 converges strongly to u. Moreover,
if there exists a constant β > 0 satisfying

an ≥ β, ∀n ≥ 0, (3.15)

then limn→∞xn = u if and only if limn→∞εn = 0.

Proof. First of all, we claim that the mapping G defined by (3.3) has a unique fixed point u ∈ X,
where λ is a constant in (0, 1]. Let x, y be two arbitrary elements in X. Note that g is Lipschtiz
continuous and strongly monotone with constants t and p, respectively. It follows that

∥∥x − y − [
g(x) − g(y)

]∥∥ ≤
√
1 − 2p + t2‖x − y‖. (3.16)
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Since A is strongly monotone with constant αwith respect toH(g −m) and the first argument
of N,C is relaxed Lipschitz with constant γ with respect to H(g − m) and the first argument
of M, and D is relaxed monotone with constant δ with respect to H(g − m) and the second
argument ofM, it follows from the Lipschitz continuity ofA,B,C,D, andH, and the Lipschitz
continuity of N andM with respect to the first and second arguments, respectively, that

∥
∥y(x) − y(y)

∥
∥

≤ ∥∥H
(
(g −m)(x)

) −H
(
(g −m)(y)

) − ρ
[
N
(
A(x), B(x)

) −N
(
A(y), B(x)

)]∥∥

+ ρ
∥
∥N

(
A(y), B(x)

) −N
(
A(y), B(y)

)∥∥

+ ρ
∥∥H

(
(g −m)(x)

) −H
(
(g −m)(y)

)
+M

(
C(x), D(x)

) −M
(
C(y), D(x)

)∥∥

+ ρ
∥∥H

(
(g −m)(x)

) −H
(
(g −m)(y)

) −M
(
C(y), D(x)

)
+M

(
C(y), D(y)

)∥∥

≤ [∥∥H
(
(g −m)(x)

) −H
(
(g −m)(y)

)∥∥2

− 2ρ
〈
N
(
A(x), B(x)

) −N
(
A(y), B(x)

)
,H

(
(g −m)(x)

) −H
(
(g −m)(y)

)〉

+ ρ2
∥∥N

(
A(x), B(x)

) −N
(
A(y), B(x)

)∥∥2]1/2 + ρjb
∥∥x − y

∥∥

+ ρ
[∥∥H

(
(g −m)(x)

) −H
(
(g −m)(y)

)∥∥2

+ 2
〈
M

(
C(x), D(x)

) −M
(
C(y), D(x)

)
,H

(
(g −m)(x)

) −H
(
(g −m)(y)

)〉

+
∥∥M

(
C(x), D(x)

) −M
(
C(y), D(x)

)∥∥2]1/2

+ ρ
[∥∥H

(
(g −m)(x)

) −H
(
(g −m)(y)

)∥∥2

− 2
〈
M

(
C(y), D(x)

) −M
(
C(y), D(y)

)
,H

(
(g −m)(x)

) −H
(
(g −m)(y)

)〉

+
∥∥M

(
C(y), D(x)

) −M
(
C(y), D(y)

)∥∥2]1/2

≤
[√

h2(t + q)2 − 2αρ + ρ2i2a2 + ρT
]
‖x − y‖.

(3.17)

In view of Lemma 2.5, (3.3), (3.6), (3.8), (3.16), and (3.17),we deduce that
∥
∥G(x) −G(y)

∥
∥

≤ (1−λ)∥∥x−y∥∥+λ∥∥x−y−(g−m)(x)+(g−m)(y)
∥∥+λ

∥∥RH
W(·,E(x)),ρ

(
Y (x)

)−RH
W(·,E(y)),ρ

(
Y (y)

)∥∥

≤
[
1 − λ

(
1 −

√
1 − 2p + t2 − q

)]∥∥x − y
∥∥ + λ

∥∥RH
W(·,E(x)),ρ

(
Y (x)

) − RH
W(·,E(y)),ρ

(
Y (x)

)∥∥

+ λ
∥∥RH

W(·,E(x)),ρ
(
Y (x)

) − RH
W(·,E(y)),ρ

(
Y (y)

)∥∥

≤
[
1 − λ

(
1 −

√
1 − 2p + t2 − q − ηe

)]∥∥x − y
∥∥ + λs−1

∥∥Y (x) − Y (y)
∥∥

≤ (
1 − λ(1 − θ)

)‖x − y‖,
(3.18)

where

θ = P + s−1
[√

h2(t + q)2 − 2ρα + ρ2i2a2 + ρT
]
> 0. (3.19)
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In light of (3.6), (3.12), and (3.19), we derive that

θ < 1 ⇐⇒
√
h2(t + q)2 − 2ρα + ρ2i2a2 < s(1 − P) − ρT ⇐⇒ Jρ2 − 2Kρ < −L. (3.20)

It follows from one of (3.13) and (3.14) that

θ < 1. (3.21)

Thus (3.18) implies that G is a contraction mapping, and hence G has a unique fixed point
u ∈ X. By Lemma 3.1, we conclude that the general nonlinear implicit variational inequality
(2.1) possesses a unique solution u ∈ X and

u =
(
1 − cn

)
u + cn

[
u − (g −m)(u) + RH

W(·,E(u)),ρ
(
Y (u)

)]

=
(
1 − bn

)
u + bn

[
u − (g −m)(u) + RH

W(·,E(u)),ρ
(
Y (u)

)]

=
(
1 − an

)
u + an

[
u − (g −m)(u) + RH

W(·,E(u)),ρ
(
Y (u)

)]
, ∀n ≥ 0.

(3.22)

Next, we prove that limn→∞un = u. Set

θn = Pn + s−1n
[√

h2(t + q)2 − 2ρα + ρ2i2a2 + ρT
]
,

Pn =
√
1 − 2p + t2 + q + eηn,

gn =
∥∥RHn

Wn(·,E(u)),ρ
(
Y (u)

) − RH
W(·,E(u)),ρ

(
Y (u)

)∥∥, ∀n ≥ 0.

(3.23)

In terms of (3.11), (3.19), and (3.21), we know that limn→∞θn = θ < 1. Hence there exists some
positive integer Q satisfying

θn <
1
2
(1 + θ) < 1, ∀n ≥ Q. (3.24)

Using Lemma 2.5, Algorithm 3.3, (3.22), and (3.24), we know that for n > Q,

∥∥wn − u
∥∥

≤ (
1 − cn

)∥∥un − u
∥∥ + cn

[∥∥un − u − (g −m)
(
un

)
+ (g −m)(u)

∥∥

+
∥∥RHn

Wn(·,E(un)),ρ

(
Y (un)

) − RH
W(·,E(u)),ρ

(
Y (u)

)∥∥] +
∥∥rn

∥∥

≤
[
1 − cn

(
1 −

√
1 − 2p + t2 − q

)]∥∥un − u
∥∥

+cn
[∥∥RHn

Wn(·,E(un)),ρ

(
Y (un)

)−RHn

Wn(·,E(un)),ρ

(
Y (u)

)∥∥+
∥∥RHn

Wn(·,E(un)),ρ

(
Y (un)

)−RHn

Wn(·,E(u)),ρ
(
Y (u)

)∥∥

+
∥∥RHn

Wn(·,E(u)),ρ
(
Y (u)

) − RH
W(·,E(u)),ρ

(
Y (u)

)∥∥] +
∥∥rn

∥∥
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≤
[
1 − cn

(
1 −

√
1 − 2p + t2 − q

)]∥∥un − u
∥∥

+ cn
[
s−1n

∥∥Y
(
un

) − Y (u)
∥∥ + ηn

∥∥E
(
un

) − E(u)
∥∥ + gn

]
+
∥∥rn

∥∥

≤
[
1 − cn

(
1 −

√
1 − 2p + t2 − q

)]∥∥un − u
∥∥

+ cn
{
s−1n

[∥∥H
(
(g −m)

(
un

))

−H
(
(g −m)(u)

) − ρ
[
N
(
A
(
un), B

(
un

)) −N
(
A(u), B

(
un

))]∥∥

+ ρ
∥∥N

(
A(u), B

(
un

)) −N
(
A(u), B(u)

)∥∥

+ ρ
∥∥H

(
(g−m)

(
un

))−H(
(g−m)(u)

)
+M

(
C
(
un

)
, D

(
un

))−M(
C(u), D

(
un

))∥∥

+ ρ
∥
∥H

(
(g−m)

(
un

))−H(
(g−m)(u)

)−M(
C(u), D

(
un

))
+M

(
C(u), D(u)

)∥∥]

+ eηn
∥∥un − u

∥∥ + gn
}
+
∥∥rn

∥∥

≤ (
1 − cn

)∥∥un − u
∥∥ + cnθn

∥∥un − u
∥∥ + cngn +

∥∥rn
∥∥

≤ ∥∥un − u
∥∥ + cngn +

∥∥rn
∥∥.

(3.25)

Similarly, we conclude that
∥∥vn − u

∥∥ ≤ (
1 − bn

)∥∥un − u
∥∥ + bnθn

∥∥wn − u
∥∥ + bngn +

∥∥qn
∥∥

≤ ∥∥un − u
∥∥ + bn

(
2gn +

∥∥rn
∥∥) +

∥∥qn
∥∥,

(3.26)

∥∥un+1 − u
∥∥ ≤ (

1 − an

)∥∥un − u
∥∥ + anθn

∥∥vn − u
∥∥ + angn +

∥∥pn
∥∥

≤ [
1 − (

1 − θn
)
an

]∥∥un − u
∥∥ + an

(
3gn +

∥∥qn
∥∥ + bn

∥∥rn
∥∥) +

∥∥pn
∥∥

≤
[
1 − 1

2
(1 − θ)an

]∥∥un − u
∥∥ + an

(
3gn +

∥∥qn
∥∥ + bn

∥∥rn
∥∥) +

∥∥pn
∥∥

(3.27)

for n > Q. It is easy to see that limn→∞‖un − u‖ = 0 by Lemma 2.4, (3.5), (3.10), and (3.27).
Assume that (3.15) holds. As in the proof of (3.27), we easily deduce that

∥∥(1 − an

)
xn + an

[
yn − (g −m)

(
yn

)
+ RHn

Wn(·,E(yn)),ρ

(
Y
(
yn

))]
+ pn − u

∥∥

≤ (
1 − (

1 − θn
)
an

)∥∥xn − u
∥∥ + an

(
3gn +

∥∥qn
∥∥ + bn

∥∥rn
∥∥) +

∥∥pn
∥∥

≤
(
1 − 1

2
(1 − θ)β

)∥∥xn − u
∥∥ + 3gn +

∥∥qn
∥∥ + bn

∥∥rn
∥∥ +

∥∥pn
∥∥

(3.28)

for n > Q.
Suppose that limn→∞xn = u. By virtue of (3.5), (3.7), (3.10), and (3.28), we see that

εn ≤ ∥∥xn+1 − u
∥∥ +

∥∥(1 − an

)
xn + an

[
yn − (g −m)

(
yn

)
+ RHn

Wn(·,E(yn)),ρ

(
Y
(
yn

))]
+ pn − u

∥∥

≤ ∥∥xn+1 − u
∥∥ +

(
1 − 1

2
(1 − θ)β

)∥∥xn − u
∥∥ + 3gn +

∥∥qn
∥∥ + bn

∥∥rn
∥∥ +

∥∥pn
∥∥ −→ 0

(3.29)

as n → ∞. Therefore, limn→∞εn = 0.
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Conversely, suppose that limn→∞ε = 0. It follows from (3.7), (3.22), and (3.28) that

∥∥xn+1 − u
∥∥

≤ ∥∥(1 − an

)
xn + an

[
yn − (g −m)

(
yn

)
+ RHn

Wn(·,E(yn)),ρ

(
Y
(
yn

))]
+ pn − u

∥
∥ + εn

≤
(
1 − 1

2
(1 − θ)β

)∥∥xn − u
∥∥ + 3gn +

∥∥qn
∥∥ + bn

∥∥rn
∥∥ +

∥∥pn
∥∥ + εn

(3.30)

for n > Q. Using (3.5), (3.10), (3.30), and Lemma 2.4, we infer that limn→∞xn = u. This
completes the proof.

Theorem 3.6. Let H, W, {Hn}n≥0, {Wn}n≥0, g, A, B, C, D, E, J, T, L, {xn}n≥0, and {εn}n≥0 be as
in Theorem 3.5 and

P =
√
1 − 2(p − ε) + q2 + t2 + ηe. (3.31)

Letm : X → X be generalized pseudocontractive with constant ε with respect to (I−g) and be Lipschitz
continuous with constant q. If there exist positive constants ρ, η, and ηn satisfying (3.8)–(3.12) and one
of (3.13) and (3.14), then for any given f ∈ X, the general nonlinear implicit variational inequality
(2.1) has a unique solution u ∈ X and the sequence {un}n≥0 defined by Algorithm 3.3 converges
strongly to u. Moreover, if (3.15) holds, then limn→∞xn = u if and only if limn→∞εn = 0.

Proof. Because m is generalized pseudocontractive with constant ε with respect to (I − g) and
Lipschitz continuous with constant q, g is Lipschtiz continuous and strongly monotone with
constants t and p, respectively, it follows that

∥∥(I − g)(x) − (I − g)(y) +m(x) −m(y)
∥∥

=
[∥∥m(x)−m(y)

∥∥2+2〈m(x)−m(y), (I−g)(x)−(I−g)(y)〉+∥∥(I−g)(x)−(I−g)(y)∥∥2]1/2

≤ [(
q2 + 2ε

)∥∥x − y
∥∥2 +

∥∥x − y
∥∥2 − 2〈g(x) − g(y), x − y〉 + ∥∥g(x) − g(y)

∥∥2]1/2

≤
√
1 − 2(p − ε) + q2 + t2

∥∥x − y
∥∥, ∀x, y ∈ X.

(3.32)

The rest of the proof now follows that as in the proof of Theorem 3.5. This completes the proof.

Theorem 3.7. Let H, W, {Hn}n≥0, {Wn}n≥0, g, m, B, E, J , K, {xn}n≥0, and {εn}n≥0 be as in
Theorem 3.5, and

P =
(
1 + s−1

)(√
1 − 2p + t2 + q

)
+ ηe + s−1(t + q)

√
1 − 2s + h2,

T = jb +
√
1 + 2δ + l2d2 +

√
1 − 2γ + k2c2,

L = 1 − s2(1 − P)2 > 0.

(3.33)

Let A : X → X be Lipschitz continuous with constant a and strongly monotone with constant α
with respect to I and the first argument of N. Let C : X → X be Lipschitz continuous with constant
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c and relaxed Lipschitz with constant γ with respect to I and the first argument of M. Assume that
D : X → X is Lipschitz continuous with constant d and relaxed monotone with constant δ with respect
to I and the second argument ofM. If there exist positive constants ρ, η, and ηn satisfying (3.8)–(3.12)
and one of (3.13) and (3.14), then for any given f ∈ X, the general nonlinear implicit variational
inequality (2.1) has a unique solution u ∈ X and the sequence {un}n≥0 defined by Algorithm 3.3
converges strongly to u. Moreover, if (3.15) holds, then limn→∞xn = u if and only if limn→∞ε = 0.

Proof. Notice that

∥∥H
(
(g −m)(x)

) −H
(
(g −m)(y)

) − ρ
[
N
(
A(x), B(x)

) −N
(
A(y), B(x)

)]

− ρ
[
N
(
A(y), B(x)

) −N
(
A(y), B(y)

)]
+ ρ

[
M

(
C(x), D(x)

) −M
(
C(y), D(x)

)]

+ ρ
[
M

(
C(y), D(x)

) −M
(
C(y), D(y)

)]∥∥

≤ ∥∥H
(
(g −m)(x)

) −H
(
(g −m)(y)

) − (g −m)(x) + (g −m)(y)
∥∥

+
∥∥(g −m)(x) − (g −m)(y) − x + y

∥∥

+
∥∥x − y − ρ

[
N
(
A(x), B(x)

) −N
(
A(y), B(x)

)]∥∥ + ρjb

+ ρ
∥∥x − y +M

(
C(x), D(x)

) −M
(
C(y), D(x)

)∥∥

+ ρ
∥∥x − y −M

(
C(y), D(x)

)
+M

(
C(y), D(y)

)∥∥

≤
[
(t + q)

√
1 − 2s + h2 +

√
1 − 2p + t2 + q +

√
1 − 2ρα + ρ2i2a2 + ρT

]∥∥x − y
∥∥

(3.34)

for any x, y ∈ X. The rest of the proof is identical with the proof of Theorem 3.5. This completes
the proof.

Following similar arguments as in the proof of Theorems 3.5, 3.6, and 3.7, we obtain
immediately the result below:

Theorem 3.8. Let H,W, {Hn}n≥0, {Wn}n≥0, g,A, B, C,D, E, J,K, T, L, {xn}n≥0, and{εn}n≥0 be as in
Theorem 3.7, andm be as in Theorem 3.6, and

P =
(
1 + s−1

)√
1 − 2(p − ε) + q2 + t2 + ηe + s−1(t + q)

√
1 − 2s + h2. (3.35)

If there exist positive constants ρ, η, and ηn satisfying (3.8)–(3.12) and one of (3.13) and (3.14), then
for any given f ∈ X, the general nonlinear implicit variational inequality (2.1) has a unique solution
u ∈ X and the sequence{un}n≥0 defined by Algorithm 3.3 converges strongly to u. Moreover, if (3.15)
holds, then limn→∞xn = u if and only if limn→∞ε = 0.

Remark 3.9. Theorems 3.5–3.8 establish both the existence and uniqueness of solutions for the
general nonlinear implicit variational inclusion (2.1) and show the convergence and stability
of the perturbed three-step iterative process with errors under certain conditions.
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Remark 3.10. Theorems 3.5–3.8 extend, improve, and unify Theorem 3.4 in [1, 6], Theorem 2.1
in [8], Theorem 3.1 in [7, 12, 21, 22, 25, 32], Theorem 2.3 in [24], Theorem 2.2 in [26], Theorem
5.1 [9, 11], Theorem 4.1 in [10, 20], Theorems 4.1–4.3 in [19], Theorems 1 and 2 in [23], and
Theorems 3.1–3.6 in [3, 13].
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