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Let C be nonempty closed convex subset of real Hilbert space H. Consider C a nonexpansive
semigroup J = {T(s) : s > 0} with a common fixed point, a contraction f with coefficient0 < a <1,
and a strongly positive linear bounded operator A with coefficient y > 0. Let 0 < y < y/a.
It is proved that the sequence {x,} generated iteratively by x, = (I — a,A)(1/ tn)jg"T(s)ynds +
anyY f(xn), Yn = (I = PnA)xy + Buy f(x,) converges strongly to a common fixed point x* € F(J)
which solves the variational inequality ((yf — A)x*,z — x*) <0 for all z € F(J).

Copyright © 2008 Lihua Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction and preliminaries

Let C be a closed convex subset of a Hilbert space H, recall that T : C— C is nonexpansive
if |[Tx — Ty|| < ||x — y|| for all x,y € C. Denote by F(T) the set of fixed points of T, that is,
F(T):={xeC:Tx =x}.

Recall that a family 3 = {T(s) | 0 < s < o} of mappings from C into itself is called a
nonexpansive semigroup on C if it satisfies the following conditions:

(i) T(0)x = x forall x € C;
(ii) T(s+t) =T(s)T(t) forall s,t > 0;
(iii) ||T(s)x =T (s)y| < ||lx = y|| forall x,y € C and 5 > 0;

(iv) forall x € C,s | = T(s)x is continuous.

We denote by F(J) the set of all common fixed points of J, that is, F(J) =
No<s<oo F(T'(5)). It is known that F(J) is closed and convex.
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Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems (see, e.g., [1-5] and the references therein). A typical problem
is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping
on a real Hilbert space H:

1
I)£1€1é1§<Ax,x> - <x/b>r (11)

where C is the fixed point set of a nonexpansive mapping T on H, and b is a given point in
H. Assume that A is strongly positive, that is, there is a constant y > 0 with the property

(Ax,x) > ¥||lx|* Vxe€H. (1.2)

It is well known that F(T) is closed convex (cf. [6]). In[3] (see also [4]), it is proved that the
sequence {x,} defined by the iterative method below, with the initial guess xy € H chosen
arbitrarily,

Xpe1 = (I =y A)Txy + ayb, n>0 (1.3)

converges strongly to the unique solution of the minimization problem (1.1) provided that
the sequence {a,} satisfies certain conditions.

On the other hand, Moudafi [7] introduced the viscosity approximation method
for nonexpansive mappings (see [8] for further developments in both Hilbert and Banach
spaces). Let f be a contraction on H. Starting with an arbitrary initial xo € H, define a
sequence {x,} recursively by

Xni1 = (1= 04)Txy + 0uf (x,), n>0, (1.4)

where {0, } is a sequence in (0, 1). It is proved [7, 8] that under certain appropriate conditions
imposed on {oy,}, the sequence {x,} generated by (1.4) strongly converges to the unique
solution x* in C of the variational inequality

(I-f)x*,x-x*)>0, xeC. (1.5)

Recently, Marino and Xu [9] combined the iterative method (1.3) with the viscosity
approximation method (1.4) considering the following general iteration process:

X1 = (I = 4y A)Txy + anyf(xn), n>0, (1.6)

and proved that if the sequence {a, } satisfies appropriate conditions, then the sequence {x;}
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generated by (1.6) converges strongly to the unique solution of the variational inequality
((A-yf)x*, x-x*)>0, x€eC, (1.7)
which is the optimality condition for the minimization problem

meig%(Ax,x) - h(x), (1.8)

where h is a potential function for yf (i.e., h'(x) = yf(x), for x € H).
In this paper, motivated and inspired by the idea of Marino and Xu [9], we introduce
the composite implicit general iteration process (1.9) as follows:

tn
Xy = (I - dnA)%J‘O T(S)ynds + an}/f(xn)/ (1 9)

Yn = (I = BnA)Xn + By f (xn),

where {a,}, {Bn} C (0,1), and investigate the problem of approximating common fixed point
of nonexpansive semigroup {T(s) : s > 0} which solves some variational inequality. The
results presented in this paper extend and improve the main results in Marino and Xu [9],
and the methods of proof given in this paper are also quite different.

In what follows, we will make use of the following lemmas. Some of them are known;
others are not hard to derive.

Lemma 1.1 (Marino and Xu [9]). Assume that A is a strongly positive linear bounded operator on
a Hilbert space H with coefficient ¥ > 0and 0 < p < ||A||™L. Then |1 - pA|| <1-7.

Lemma 1.2 (Shimizu and Takashi [10]). Let C be a nonempty bounded closed convex subset of H
and let 3 = {T(s) : 0 < s < oo} be a nonexpansive semigroup on C, then for any h > 0,

%J;T(s)xds -T(h) <1ft T(S)Xd5>

lim sup
t)o

t= yeC

=0. (1.10)

Lemma 1.3. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let J =
{T(t) : 0 <t < oo} be a nonexpansive semigroup on C. If {x,} is a sequence in C satisfying the
following properties:

(i) xp — z
(i) limsup,_, limsup,_, |[T(t)x, — x| =0,
where x,, — z denote that {x,} converges weakly to z, then z € F(J).

Proof. This lemma is the continuous version of Lemma 2.3 of Tan and Xu [11]. This proof
given in [11] is easily extended to the continuous case. O
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2. Main results

Lemma 2.1. Let H be a Hilbert space, C a closed convex subset of H, let 3 = {T(s) : s > 0} bea
nonexpansive semigroup on C, {t,} C (0, 00) is a sequence, then I — (1/ tn)ff)"T(S)ds is monotone.

Proof. In fact, forall x,y € H,

(ron - e (- 2 o

1 (t 1 (t
~ -yl = (x v [ TEds - [ T(s)yas)
nJo nJo (2.1)
ty

T(s)x—T(s)y||ds

1
S L |

0

> lx -yl = [lx - ylI* =0.
0

Theorem 2.2. Let C be nonempty closed convex subset of real Hilbert space H, suppose that f :
C—C is a fixed contractive mapping with coefficient 0 < a« < 1, and 3 = {T(s) : s > 0} is a
nonexpansive semigroup on C such that F(J) is nonempty, and A is a strongly positive linear bounded
operator with coefficient y > 0, {a,,}, {n} C (0,1), {t,} C (0, 00) are real sequences such that

lima, =0, B =o(an), lim t, = oo, (2.2)

n— oo n—oo

then for any 0 <y <¥/a, there is a unique {x,} € C such that

xn = (I - a,A) tlftnT(s)ynds +any f(xn),
nJo 2.3)

Yn = (I = PuA)Xn + Puy f(xn),

and the iteration process {x,} converges strongly to the unique solution x* € F(J) of the variational
inequality ((yf — A)x*,z—x*) <0 forall z € F(J).

Proof. Our proof is divided into five steps.

Since a, —0, f, —0 as n— oo, we may assume, with no loss of generality, that a,, <
lA]IT, Pn < |A|I"! for alln > 1.

(i) {x,} is bounded.

Firstly, we will show that the mapping T,{ : C— C defined by

T! = (I - a,A) %J‘OHT(S) [(I = BuA) + Buy f]ds + any f (2.4)
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is a contraction. Indeed, from Lemma 1.1, we have for any x, y € C that

1"
I/ =Tyl < - Al [ 1T - fud)x+ furs o)

=T()[(I=BuA)y +Buyf )] [lds + any || f(x) = fF )|
< (=) [ [(T = PuA)x + Puy f ()] = [(T = puA)y + Puy f W] || + anyallx -yl
< (L-any) [T = BuAllllx = yll + Buyallx = yll] + awya|x - y||
< (1 -any)[1=Pu(y —yo)]llx - yll + awyallx -yl
= {1 =) [1-Bu(¥ - yo)] + anya}llx -yl
= {[1-an(y —ym)] = (1= ) Bu (¥ - yo) Hlx - |
<[I-an(y —ya)]llx -yl < llx -yl
(2.5)

Let x,, € C be the unique fixed point of T/. Thus,

xp = (I - a,A) tlJ‘tnT(s)ynds +any f(xn),
nJo (2.6)

Yn = (I = PuA)Xn + Buy f(xn)

is well defined. Next, we will show that {x,} is bounded.
Pick any z € F(J) to obtain

|xn = z|| = || (I-a,A) <%f;nT(s)ynds - z> +a, (yf (xn) — Az)

1 (tn 2.7
<= Al [ ATy = 2lds + aulyllf ) - @+ 7 - Azl 7

< (1= a) |y - 2l + aulyllf () - FR + Iy F ) - Az]l],

v = 2l < (1= )y - =]+ awyalle, - 2] + aally (=) - Az 28)
Also

[y =2l < T = PuAllllcn = 2|l + Pullyf (xa) = Az
< (L=Pa) % = 2|l + Payallen = 2|l + Pullyf (2) - Az]| (29)
= [1=Pu(y —ya)]llxn = 2| + Bullyf (2) - Az]|.
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Substituting (2.9) into (2.8), we obtain that

o -2l < (- @) [~ uF - Y@ 00— 2l| + (1 - auP)ully F(2) - Az]
v apyallx 2l + aullyf2) - Az
= (L= @) [1 = Bu (7~ y@)] + tara) v - 2]
+ [(1- @)+ ][ (2) - Az]
= (1= (7= ya) [ + (1= )]} e - =
# [+ (1 - @)l £ (2) - Az
(7~ y) [ + (1~ @)l 00— 21| < s + (1 - DBl [y £(2) - Az,

1
0=l < =l (2) - 2],

(2.10)

7

Thus {x,} is bounded.
(i) limy, — o]l = T(s)xy]| = 0.

Denote that z,, := (1/tn)fg”T(s)ynds, since {x,} is bounded, ||z, - z|| < |ly» — z|| and
{Az,}, {f(x,)} are also bounded, From (2.6) and lim,, _, ,a, = 0, we have

l2¢n = zu|| = ||y f (xn) = Azu|| — 0 (1 — o0). (2.11)

LetK={weC:|lw-z|| <1/ -ya))lyf(z) - Az||}, then K is a nonempty bounded closed
convex subset of C and T(s)-invariant. Since {x,} C K and K is bounded, there exists r > 0
such that K C B,, it follows from Lemma 1.2 that

lim |zn = T(s)zn]| =0 Vs>0. (2.12)

From (2.11) and (2.12), we have

nlim l|xn = T(s)xu]| = 0. (2.13)

(iii) There exists a subsequence {xy, } of {x,} such that x,, — x* € F(J) and x* is the
unique solution of the following variational inequality:

(A-yf)x*,x*—z) <0 VzeF(®J). (2.14)

Firstly since

lyn = xull = Bully f (n) = A(xn) |- (2.15)
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From condition p, — 0 and the boundedness of {x,}, we obtain that ||y, — x,|| — 0. Again by
boundedness of {x,}, we know that there exists a subsequence {7y} of {n} such that x,,, — x*.
Then y,, — x*. From Lemma 1.3 and step (ii), we have that x* € F(J).

Next we will prove that x* solves the variational inequality (2.14). Since

xp = (I - a,A) éf;nT(s)ynds +any f(xn), (2.16)

we derive that

tn
(A=yf)xn = _aln(l —a,A) (I - %J‘o T(s)ds)yn + ain [(I-anA)yn— (I -ayA)x,).
(2.17)

It follows that, for all z € F(J),

((A=yf)xnyn—z) = —ain<(1 - a,A) <I - %f;nT(s)ds>yn,yn - z>

+ %((I—anA)yn - (I - apA)xn, yn — 2)

= —aln<<I - %’[:T(s)ds>yn - (I - %J‘:T(s)ds>2,yn - z> (2.18)
+ <A<I - éJ‘ZT(s)ds>yn, Yn — z>

+ %((I -, A)yn — (I — 0y A) Xy, Y — 2).
Using Lemma 2.1, we have from (2.18) that

(A=Y )Xn, Yn — z> < <A<I - éJ‘:T(s)ds>yn,yn - z> + %((I —ayA) (Yn — Xn), Yn — 2)

<(A(1- L[ TS Yynra=2) + - pullvs ) - A v .
(2.19)

Now replacing n in (2.19) with 7 and letting k — oo, we notice that

1 ('
<I - —I T(s)ds)ynk -0, (2.20)
t"k 0
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and from condition f, = o(a,) and boundedness of {x,}, we have
1
a_ﬂnk llyf (en) = ACxn) [ |yn — || — 0. (2.21)
M

For x* € F(J), we obtain

((A-yf)x*,x*—z) <0. (2.22)

From [9, Theorem 3.2], we know that the solution of the variational inequality (2.14) is
unique. That is, x* € F(J) is a unique solution of (2.14).

(iv)

ty
lim sup<tlf0 T(s)ynds — x*,yf(x*) - Ax*> <0, (2.23)

n—oo n

where x* is obtained in step (iii).
To see this, there exists a subsequence {#n;} of {n} such that
1 ("
lim sup<t—f T(s)ynds — x*,y f(x*) — Ax*>
0

n—oo n

t (2.24)
= lim <H OniT(s)ynids -x%,yf(x") - Ax*>’

ni

we may also assume that x,, — z, then (1/t,,) g""T(s)ynids — z, note from step (ii) that
z € F(J) in virtue of Lemma 1.2. It follows from the variational inequality (2.14) that

1imsup<tlJ‘tnT(s)xnds —x*, yf(x*) - Ax*> =(z-x"yf(x*) - Ax*) <0. (2.25)
0

n— o0 n

So (2.23) holds thank to (2.14).
V) x, = x* (n— 0).

Finally, we will prove x, — x*. Since
lym =21 = 11 (1 = BuA) Gon = 2°) + B (r f () = Ax") |
<= BaAllllen = [ + Bully f () - Ax° (226)

< (1= =" + Pully f () = Ax'||”
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Next, we calculate

2

%0 = x*||” = || (I-a,A) <%f;nT(s)ynds - x*> +an (yf(xn) — Ax¥)

2
| (vf (xa) = Ax?)||?

= || (I-a,A) <$J’:T(s)ynds - x*)

tn
+ 20, (I - 2, A) <%IO T(s)ynds — x*>,yf(x,,) _ Ax*) (2.27)

< (=) yn = x|+ | (rf () = A |

ty
+ 20, ((I - anA) <tlf T(s)ynds — x*),yf(xn) - Ax").
nJo
Thus it follows from (2.26) that
I =2 [1* < (1= ) (1= Bud) [ = °|1* + (1 = @a¥) *Bull f (xa) = Ax[|°
1 ("
+ap ||y f(xn) - Ax"”2 + 2a"<t_,[ T(s)ynds — x*,y f (xn) — Ax*>
nJo

- 2a$l<A<tlJ‘tnT(s)ynds - x*>,yf(xn) - Ax*>

nJo

(1= @) (1= B [l = °|I* + (1= a¥)*Bull v f (x) = Ax"|®

IN

tn
e alyf (o) = A5 2y (- [ T(Shads =27, £ () - £(27))
nJo

tn
+ Zan<tlf T(s)ynds — x*,yf(x*) - Ax*>
0

n

- 2a§l<A<tlrnT(s)ynds - x*>,yf(xn) - Ax*>

nJo

IN

(1= )" (1= BT len = " |I* + 2yl = " |00 = "

+ (1= ae¥) Pully f (2n) = Ax*||?

+ay [2<tlf;nT(s)ynds -x*yf(x*) - Ax*>

1 ("™
A(—f T(s)ynds—x*>
twlo

e (rf () - x| 42 [y ee) - axl)]
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< (1= a¥)’ (1= Ba¥) || = x* || + 2awya[1 = Bu (¥ = ya) | || = x|
+ 2ayaPully f (x7) = Ax*|| |20 = x*|| + (1 = a¥)*Bull ¥ f (2xn) — Ax*||?

+ay [2<tlf;nT(s)ynds -x*,yf(x") - Ax*>

1 ("™
A(—f T(s)ynds—x*>
twlo

= (1= )" (1= ud) [l = ||” + 200ya (1 = Bu) 00 = x|
+ 2, B0y |20 = x°||* + 2anyap |y £ (x7) = Ax"| | — x|

+ (L= aa7) Pully f (xn) — Ax*||”
+ ay [2<$I:T(s)ynds -x*yf(x*) - Ax*>
e (s o) - Ax I+ 2 A ([ T6nats ) s o) - axl)|

= [(1 - auy)® + 2anya] (1 = Bu¥) || 30 — x°|| + 200 Bua®y? || 200 — ||
+ 2 yap|y f (x*) - Ax* + (1= ay)*Bully f () — Ax*

+ay [2<%I;"T(s)ynds -x*yf(x") - Ax*>

1 ("
A(—f T(s)ynds — x*>
tn 0

2

([l f (en) = Ax'|* 42

[y Gen) - ax°))|

2

|2, — x*

Ny f (n) - Ax7|
| )

eyl () - A +2

2 4 2, By |20 - x*

<[(1- an?)2 + 2apyal||x, - x*
+ 2ayap ||y f(x7) = Ax|| [l = x7[| + (1= @aY)*ully f (3x0) = Ax||?

+ay [2<tlf;nT(s)ynds -x*yf(x*) - Ax*>
|

tn
A(lf T(s)ynds — x*>
th)o

+ zx,,(”yf(xn) - Ax*||2 +2a,

s - ax )]

25 2a, fpa’y?||x, — x* 2

= [1-2(y - ya)au] [|xn -
+2anyallyf (x7) = Ax”[[[|xn = x| + (1= @) Bully f (xn) - Ax7|*

+ay [2<tlf;nT(s)ynds -x*yf(x") - Ax*>

1 ("
A(—J‘ T(s)ynds — x*)
tn 0

I - APl )]

2+2

vl () - Ax°

(2.28)



Lihua Li et al. 11

Thus

27 - ya) s - ' |F < 2By s - '[P + 2yaplly () - Ax [y - ]

(- @) Py f () - ax)?

oy

+ [2<tlf:T(s)ynds -x*yf(x*) - Ax*>

ty
‘A(lf T(s)ynds — x*)
tw)o

W (o) = A+ P =)

el f (on) - Ax°IP + 2

< P20 = " [P+ 2@l f (x) = Ax||- [l = 2]

2y ) - ax P

+ [2<tlf:T(s)ynds -x*yf(x*) - Ax*>

tn
A<lf T(s)ynds — x*>
twlo

Iy f Gen) = Ax"| + vl - X*||2>]’

vl () - Ax| +2

(2.29)

Since {x,} is bounded, we can take a constant Ly, L, L3 > 0 such that

Ly 2 20° ||ty = x|+ 2yal|y f (x7) = Ax* ||| = x°

1 ("™
‘A(—J T(s)ynds—x*>
twlo

7

Lo > [lyf (o) - AP,

Ls > |y f (xu) = Ax*||" +2

[y o) = a2, -
(2.30)

for all n > 0. It then follows from (2.29) that

— n 1 t * * *
2(y —ya)||xn - x*||2 < BuLy + Z—Lz + 2<t_,[ T(s)ynds — x*,yf(x*) — Ax > +a,Ls.
n nJo
(2.31)
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Then

2

2(y - ya)lim sup||x,, — x*

n— oo

; Lt (232)
< lim sup <ﬁnL1 + 20, + [XnL3> + 211msup<—j T(s)ynds — x*,y f(x*) - Ax*>.
n— oo an n—oo tn 0
From condition a, — 0, 8, = o(a,,) and (2.23), we conclude that
limsup||x, — x* 2<0. (2.33)
n— oo
So x, — x*. This completes the proof of the Theorem 2.2. O

It follows from the above proof that Theorem 2.2 is valid for nonexpansive mappings.
Thus, we have that Corollaries 2.3 and 2.4 are two special cases of Theorem 2.2.

Corollary 2.3. Let T be a nonexpansive mapping from nonempty closed convex subset C of a Hilbert
space H to C, {x,} is generated by the following algorithm:

xp = (I =, A)Tyy + any f (xn),

(2.34)
Yn = (I = PnA)Xn + Py f (xn),
where {a,}, {Pn} C (0,1) are real sequences such that
lim a,, =0, B =o(an), (2.35)

n—oo

then for any 0 < y < y/a, the sequence {x,} above converges strongly to the unique solution x* €
F(T) of the variational inequality ((yf — A)x*,z—x*) <0 forall z € F(T).

Corollary 2.4. Let T be a nonexpansive mapping from nonempty closed convex subset C of a Hilbert
space H to C, {x,} is generated by the following algorithm:

Xn = (I = anA)Tyn + any f(xn),

Yn = (I = PuA)xn + fuy f (%),

(2.36)

where {a, } is a sequence in (0, 1) satisfying the following condition: im,, _, wa,, = 0, then the sequence
{x,} converges strongly to the unique solution x* € F(T) of the variational inequality ((I- f)x*, x*—
z) <0forall ze F(T).
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