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1. Introduction

Let E := (E, ‖·‖) be a normed space, A a nonempty subset of E, and T : A → E a single-
valued map. Whenever the equation T(x) = x has no solution inA, it is natural to ask if there
exists an approximate solution. Fan [1] provided sufficient conditions for the existence of an
approximate solution a ∈ A (called a best approximant) such that

‖a − T(a)‖ = d(T(a), A) := inf{d(T(a), x) : x ∈ A}, (1.1)

where A is compact and convex and T is continuous. However, there is no guarantee that
such an approximate solution is optimal. For suitable subsets A and B of E and multimap
T : A → 2B, Sadiq Basha and Veeramani [2] provided sufficient conditions for the existence
of an optimal solution (a, T(a)) (called a best proximity pair) such that

d(a, T(a)) = d(A,B) := inf{‖x − y‖ : x ∈ A, y ∈ B}. (1.2)

Srinivasan and Veeramani [3, 4] extended these results and obtained existence theorems
of equilibrium pairs for constrained generalized games. Kim and Lee [5, 6] generalized
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Srinivasan and Veeramani results and obtained existence theorems of equilibrium pairs for
free n-person games. Recently, Al-Thagafi and Shahzad [7] generalized and extended the
above results to Kakutani multimaps.

In this paper, we establish the existence of a best proximity pair for which the best
proximity set is nonempty for a finite family of multimaps whose product is either an Aκ

c -
multimap or a multimap T : A → 2B such that both T and S ◦ T are closed and have the
KKM property for each Kakutani multimap S : B → 2A. As applications, we obtain existence
theorems of equilibrium pairs for free n-person games as well as free 1-person games. Our
results extend and improve several well-known and recent results.

2. Preliminaries

Throughout, E := (E, ‖·‖) is a normed space, A and B are nonempty subsets of E, 2A is the
family of all subsets of A, coA is the convex hull of A in E, intA is the interior of A in
E, C(A,B) is the set of all continuous single-valued maps, d(x,A) := inf{d(x, a) : a ∈ A},
and d(A,B) := inf{‖a − b‖ : a ∈ A and b ∈ B}. A map T : A → 2B is called a multimap
(multifunction or correspondence) if T(x) is nonempty for each x ∈ A. A multimap T : A →
2A is said to have a fixed point a ∈ A if a ∈ T(a); the set of fixed points of T is denoted by
F(T). A multimap T : A → 2B is said to be (a) upper semicontinuous if T−1(D) = {x ∈ A :
T(x) ∩ D/=∅} is closed in A whenever D is closed in B, (b) compact if T(A) is compact in
B, (c) closed if its graph Gr(T) := {(x, y) : x ∈ A and y ∈ T(x)} is closed in A × B and (d)
compact-valued (resp., convex) if T(x) is compact (resp., convex) in B for every x ∈ A. A
map f : A → B is proper if f−1(K) is compact in A whenever K is compact in B. A map
f : A → E is quasiaffine if the set Q(x) := {a ∈ A : ‖f(a) − x‖ ≤ r} is convex for every x ∈ E
and r ∈ [0,∞).

Lemma 2.1 (see [8]). Let A and B be nonempty subsets of a normed space E. If T : A → 2B is an
upper semicontinuous multimap with compact values, then T is closed.

The set of all a ∈ A such that ‖a − x‖ = d(x,A), denoted by PA(x), is called the set of
best approximations in A to x ∈ E. The multimap PA : E → 2A is called the metric projection
on A. Whenever A is compact and convex, PA is upper semicontinuous with compact and
convex values (see [8]).

A polytope P in A is any convex hull of a nonempty finite subset D of A. Whenever
X is a class of maps, denote the set of all finite compositions of maps in X by Xc and denote
the set of all multimaps T : A → 2B in X by X(A,B). Let A be an abstract class of maps [9]
satisfying the following properties:

(1) A contains the class C of continuous single-valued maps;

(2) each T ∈ Ac is upper semicontinuous with compact values;

(3) for any polytope P , each T ∈ Ac(P, P) has a fixed point.

Let T : A → 2B. We say that (e) T is an Aκ
c -multimap [9] if for every compact set K

in A, there exists an Ac-multimap f : K → 2B such that f(x) ⊆ T(x) for each x ∈ K, (f)
T is a K-multimap (or Kakutani multimap) [10] if T is upper semicontinuous with compact
and convex values, (g) S : A → 2B is a generalized KKM-multimap with respect to T [11] if
T(coD) ⊆ S(D) for each finite subset D of A, (h) T has the KKM property [11] if, whenever
S : A → 2B is a generalized KKM multimap w.r.t. T , the family {S(x) : x ∈ A} has the finite
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intersection property; (i) T is a PK-multimap [12] if there exists a multimap g : A → 2B

satisfying A =
⋃{int g−1(y) : y ∈ B} and co(g(x)) ⊆ T(x) for every x ∈ A. Note that each Aκ

c -
multimap has the KKM property and each K-multimap (resp., Ac-multimap, PK-multimap)
is an Aκ

c -multimap (see [9, 13, 14]).
Let A and Bi be nonempty subsets of a normed space E for each i ∈ In := {1, 2, . . . , n}.

Define

A0
i :=

{
a ∈ A : ‖a − b‖ = d(A,Bi) for some b ∈ Bi

}
,

B0
i :=

{
b ∈ Bi : ‖a − b‖ = d(A,Bi) for some a ∈ A

}
,

(2.1)

A0 :=
⋂

i∈InA
0
i . For n = 1, let A0 := A0

1 = A0 and B0 := B0
1.

The following result is a part of [7, Theorem 3.1].

Lemma 2.2. Let A and Bi be nonempty subsets of E for each i ∈ In:

(a) PA(B0
i ) = PA0

i
(B0

i ) = A0
i ;

(b) if A0
i and Bi are compact (resp., convex), then B0

i is compact (resp., convex);

(c) if A0
i is nonempty, compact, and convex and B0

i is convex, then PA0
i
|B0

i
is a K-multimap.

Remark 2.3. We note, from part (a) of Lemma 2.2 and the definitions of A0, A0
i , and B0

i , that

(a1) A0
i is nonempty if and only if B0

i is nonempty;

(a2) PA(B0
i ) = A0 if and only ifA0

i = A0; so [5, Theorems 1, 2, and 4] by Kim and Lee are
valid only whenever A0

i = A0;

(a3)
⋂n

i=1PA(B0
i ) =

⋂n
i=1PA0

i
(B0

i ) =
⋂n

i=1A
0
i = A0. So A0 /=∅ if and only if

⋂n
i=1PA0

i
(yi)/=∅

for some (y1, . . . , yn) ∈
∏n

i=1B
0
i .

Lemma 2.4 (see [11, 14]). Let A be a nonempty convex subset of a normed space E. If T : A → 2A

is a closed and compact multimap having the KKM property, then T has a fixed point.

Lemma 2.5 (see [15]). For each i ∈ In, let Bi be a nonempty, compact, and convex subset of a normed
space E, Pi :

∏n
j=1Bj → 2Bi a map such that

(a) xi /∈ coPi(x) for each x = (x1, . . . , xn) ∈ B :=
∏n

j=1Bj ;

(b) P−1
i (y) is open in B for each y ∈ Bi.

Then there exists b ∈ B such that Pi(b) = ∅ for each i ∈ In.

Lemma 2.6 (see [5, 6, 15, 16]). Let B be a nonempty, compact, and convex subset of a normed space
E and P : B → 2B a map such that

(a) x /∈ coP(x) for each x ∈ B.

Assume that one of the following conditions is satisfied:

(b1) if z ∈ P−1(y), then there exists some y′ ∈ B such that z ∈ intP−1(y′);

(b2) P−1(y) is open in B for each y ∈ B.

Then there exists b ∈ B such that P(b) = ∅.
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3. Best proximity results

Lemma 3.1. Let A and Bi be subsets of a normed space E such that A0
i (resp., B0

i ) are nonempty,
compact (resp., closed), and convex for each i ∈ In. Suppose that f : A0 → A0 is a continuous, proper,
quasiaffine, and surjective self-map, and P : Y → 2A

0
is a multimap defined by P(y1, . . . , yn) :=

⋂n
i=1PA0

i
(yi) for each (y1, . . . , yn) ∈ Y :=

∏n
i=1B

0
i . Then f−1P : Y → 2A

0
is a K-multimap.

Proof. Fix i ∈ In. Since A0
i is compact and convex, then PA0

i
: E → 2A

0
i is a K-multimap.

As B0
i is closed, we conclude, from Lemma 2.2(c), that PA0

i
|B0

i
is a K-multimap and, hence,

P : Y → 2A
0
is a K-multimap. Let S := f−1P . As f is surjective and

S(Y ) = f−1P(Y ) ⊆ f−1(A0) = A0, (3.1)

then S : Y → 2A
0
is a multimap. To show that S is upper semicontinuous, let D be a closed

subset of A0 and let {ym} be a sequence in S−1(D) such that ym = (ym1, . . . , ymn) → y =
(y1, . . . , yn) ∈ Y as m → ∞. Choose a sequence {xm} in D such that xm ∈ S(ym). Then
f(xm) ∈ P(ym) ⊆ A0 for each m ≥ 1. As D is compact, we may assume that xm → x ∈ D as
m → ∞. The continuity of f and the compactness of A0 imply that f(xm) → f(x) ∈ A0 as
m → ∞. Since f(xm) ∈ PA0

i
(ymi), it follows that

∥
∥f(x) − yi

∥
∥ ≤ ∥

∥f(x) − f(xm)
∥
∥ +

∥
∥f(xm) − ymi

∥
∥ +

∥
∥ymi − yi

∥
∥

=
∥
∥f(x) − f(xm)

∥
∥ + d

(
ymi,A

0
i

)
+
∥
∥ymi − yi

∥
∥

(3.2)

for each m. Letting m → ∞, we obtain ‖f(x) − yi‖ = d
(
yi,A

0
i

)
. This implies that f(x) ∈

PA0
i
(yi) and hence f(x) ∈ P(y). From this, we conclude that x ∈ S(y) ∩ D and y ∈ S−1(D).

Therefore, S−1(D) is closed and hence S is upper semicontinuous.
Notice, as f is proper and P(y) is compact, that S(y) is compact. Also, as f is

quasiaffine, the set

Q(yi) :=
{
a ∈ A0 :

∥
∥f(a) − yi

∥
∥ = d

(
yi,A

0
i

)}
(3.3)

is convex. For a1, a2 ∈ S(y), we have f(a1), f(a2) ∈ P(y) and hence f(a1), f(a2) ∈ PA0
i
(yi).

This implies that a1, a2 ∈ Q(yi) and, by the convexity of Q(yi), yλ := λa1 + (1 − λ)a2 ∈ Q(yi)
for each λ ∈ [0, 1]. Thus f(yλ) ∈ PA0

i
(yi) and hence f(yλ) ∈ P(y). From this, we conclude that

yλ ∈ S(y) and hence S(y) is convex. Therefore, S : Y → 2A
0
is a K-multimap.

Definition 3.2. Let A and Bi be nonempty subsets of a normed space E, Ti : A → 2Bi a
multimap for each i ∈ In, f : A′ → A′ a self-map of a nonempty subset A′ of A, and
a ∈ A. If d(f(a), Ti(a)) = d(A,Bi), one says that (f(a), Ti(a)) is a best proximity pair. The
best proximity set for the pair (f(a), Ti(a)) is given by

Ti
a(f) :=

{
b ∈ Ti(a) : d(f(a), Ti(a)) = ‖f(a) − b‖ = d(A,Bi)

}
. (3.4)

For n = 1, let Ta(f) := T1
a(f). Whenever f is the identity map, we write Ti

a instead of Ti
a(f).
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Definition 3.3. Let T : A → 2B be a multimap. One says that T is a KKM0-multimap if T and
S ◦ T : A → 2A are closed and have the KKM property for each K-multimap S : B → 2A.

Theorem 3.4. LetA and Bi be subsets of a normed space E, A0
i (resp., B

0
i ) nonempty, compact (resp.,

closed), and convex, and Ti : A → 2Bi a multimap for each i ∈ In. Suppose that
⋂n

i=1PA0
i
(yi) is

nonempty for each (y1, . . . , yn) ∈ Y and T : A0 → 2Y is a KKM0-multimap (resp., Aκ
c -multimap)

where T(x) :=
∏n

i=1Ti(x) for each x ∈ A0 and Y :=
∏n

i=1B
0
i . Then, for each continuous, proper,

quasiaffine, and surjective self-map f : A0 → A0, there exists a ∈ A0 such that the best proximity set
Ti
a(f) is nonempty and closed.

Proof. Fix i ∈ In. Define P : Y → 2A
0
by P(y1, . . . , yn) :=

⋂n
i=1PA0

i
(yi) for each (y1, . . . , yn) ∈

Y . Let f : A0 → A0 be a continuous, proper, and quasiaffine self-map. As
⋂n

i=1PA0
i
(yi) is

nonempty for each (y1, . . . , yn) ∈ ∏n
i=1B

0
i , it follows from Lemma 3.1 that f−1P : Y → 2A

0

is a K-multimap. Now, assume that T : A0 → 2Y is a KKM0-multimap. It follows from
the definition of a KKM0-multimap that f−1P ◦ T : A0 → 2A

0
is a closed multimap having

the KKM property. As A0 is a compact set, f−1P ◦ T is a compact multimap. By Lemma 2.4,
there exists a ∈ A0 such that a ∈ (f−1P ◦ T)(a) and hence f(a) ∈ P(T(a)). Thus, there exists
(b1, . . . , bn) ∈ T(a) =

∏n
i=1Ti(a) such that f(a) ∈ P(b1, . . . , bn) =

⋂n
i=1PA0

i
(bi) ⊆ A0. Hence,

f(a) ∈ PA0
i
(bi) ⊆ A0

i and bi ∈ Ti(a) ⊆ B0
i . This implies that there exists a′

i ∈ A0
i such that

‖a′
i − bi‖ = d(A,Bi) and hence

d
(
A,Bi

) ≤ d(f(a), Ti(a)) ≤
∥
∥f(a) − bi

∥
∥ = d

(
bi, A

0
i

) ≤ ∥
∥a′

i − bi
∥
∥ = d

(
A,Bi

)
. (3.5)

Thus d(f(a), Ti(a)) = ‖f(a) − bi‖ = d(A,Bi).
Next, assume that T : A0 → 2Y is an Aκ

c -multimap. Then, there exists an Ac-
multimap T ′ : A0 → 2Y such that T ′ is upper semicontinuous with compact values and
T ′(x) :=

∏n
i=1T

′
i(x) ⊆ T(x) for each x ∈ A0 for every x ∈ A0. Since f−1P ◦ T ′ : A0 → 2A

0
is

an Aκ
c -multimap (hence, a multimap having the KKM property) and f−1P ◦ T ′ is closed, then

T ′ : A0 → 2Y is a KKM0-multimap. It follows from the previous paragraph that there exists
(a, b) ∈ A0 × Y such that b = (b1, . . . , bn), bi ∈ T ′

i(a), and

d
(
f(a), T ′

i(a)
)
=
∥
∥f(a) − bi

∥
∥ = d

(
A,Bi

)
. (3.6)

As d(A,Bi) ≤ d(f(a), Ti(a)) ≤ d(f(a), T ′
i(a)), we conclude that

d
(
f(a), Ti(a)

)
=
∥
∥f(a) − bi

∥
∥ = d

(
A,Bi

)
. (3.7)

Therefore, in both cases, the best proximity set Ti
a(f) is nonempty and its closedness

follows from the continuity of the norm.

Corollary 3.5. Let A and Bi be subsets of a normed space E such that A0
i (resp., B0

i ) is nonempty,
compact (resp., closed), and convex. Suppose that

⋂n
i=1PA0

i
(yi) is nonempty for each (y1, . . . , yn) ∈

Y :=
∏n

i=1B
0
i and Ti : A0 → 2B

0
i is an Aκ

c -multimap for each i ∈ In. Then, for each continuous,
proper, quasiaffine, and surjective self-map f : A0 → A0, there exists a ∈ A0 such that the best
proximity set Ti

a(f) is nonempty and closed.
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Proof. Define T : A0 → 2Y by T(x) :=
∏n

i=1Ti(x) for each x ∈ A0. As T : A0 → 2Y is an
Aκ

c -multimap, the result follows from Theorem 3.4.

Remark 3.6. Since each PK-multimap is an Aκ
c -multimap, Theorem 4.1 of [12] is a special case

of Corollary 3.5.

Corollary 3.7. Let A and Bi be subsets of a normed space E, A0
i (resp., B0

i ) nonempty, compact
(resp., closed), and convex, and Ti : A → 2Bi a multimap for each i ∈ In. Suppose that

⋂n
i=1PA0

i
(yi)

is nonempty for each (y1, . . . , yn) ∈ Y and T : A0 → 2Y is a KKM0-multimap (resp., Aκ
c -multimap)

where T(x) :=
∏n

i=1Ti(x) for each x ∈ A0 and Y :=
∏n

i=1B
0
i . Then, there exists a ∈ A0 such that the

best proximity set Ti
a is nonempty and closed.

Theorem 3.8. LetA and Bi be subsets of a normed space E, A0
i (resp., B

0
i ) nonempty, compact (resp.,

closed), and convex, Ti : A0 → 2Bi an upper semicontinuous multimap with compact values, and
Ti(x) ∩ B0

i nonempty for each x ∈ A0 for each i ∈ In. Suppose that
⋂n

i=1PA0
i
(yi) is nonempty for each

(y1, . . . , yn) ∈ Y :=
∏n

i=1B
0
i . Then, for each continuous, proper, quasiaffine and, surjective self-map

f : A0 → A0, there exists a ∈ A0 such that the best proximity set Ti
a(f) is nonempty and closed.

Proof. Fix i ∈ In. Define T ′
i : A0 → 2B

0
i by T ′

i(x) := Ti(x) ∩ B0
i for each x ∈ A0. Thus T ′

i :
A0 → 2B

0
i is an upper semicontinuous multimap with compact values. Define T : A0 → 2Y

by T(x) :=
∏n

i=1T
′
i(x) for each x ∈ A0. As A0 is compact and T : A0 → 2Y is an upper

semicontinuous multimap with compact values, then T is an Aκ
c -multimap. It follows from

Corollary 3.5 that there exists (a, b) ∈ A0 × Y such that b = (b1, . . . , bn) ∈
∏n

i=1T
′
i(a) and

d
(
f(a), T ′

i(a)
)
=
∥
∥f(a) − bi

∥
∥ = d

(
A,Bi

)
. (3.8)

As d(A,Bi) ≤ d(f(a), Ti(a)) ≤ d(f(a), T ′
i(a)), the result follows as in Theorem 3.4.

Corollary 3.9. Let A and Bi be subsets of a normed space E, A0
i (resp., B0

i ) nonempty, compact
(resp., closed), and convex, Ti : A0 → 2Bi an upper semicontinuous multimap with compact values,
and Ti(x) ∩ B0

i nonempty for each x ∈ A0 for each i ∈ In. Suppose that
⋂n

i=1PA0
i
(yi) is nonempty for

each (y1, . . . , yn) ∈ Y :=
∏n

i=1B
0
i . Then, there exists a ∈ A0 such that the best proximity set Ti

a is
nonempty and closed.

Remark 3.10. Corollary 3.9 extends and improves [7, Theorems 3.2 and 3.4] by Al-Thagafi
and Shahzad, [5, Theorems 1 and 2] by Kim and Lee, [3, Theorem 3.4] by Srinivasan and
Veeramani, and [4, Theorem 3.2] by Srinivasan and Veeramani.

4. Equilibrium pair results for free n-person games

A free n-person game is a family of ordered quadruples (A,Bi, Ti, Pi)i∈In such that A and Bi

are nonempty subsets of a normed space E, Ti : A → 2Bi is a constraint multimap, and
Pi : B → 2Bi is a preference map where B :=

∏n
j=1Bj (see [5]). An equilibrium pair for

(A,Bi, Ti, Pi)i∈In is a point (a, b) ∈ A × B such that Ti(a) ∩ Pi(b) = ∅. For details on economic
terminology (see [5, 16]).

Theorem 4.1. Let (A,Bi, Ti, Pi)i∈In be a free n-person game such thatA and Bi are nonempty subsets
of a normed space E, Ti : A → 2Bi is a constraint multimap, and Pi : B → 2Bi is a preference map
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where B :=
∏n

j=1Bj . Assume thatA0 is nonempty, T(x) :=
∏n

i=1Ti(x) for each x ∈ A0, Y :=
∏n

i=1B
0
i ,

and for each i ∈ In,

(a) A0
i and Bi are nonempty, compact, and convex;

(b)
⋂n

i=1PA0
i
(yi) is nonempty for each (y1, . . . , yn) ∈

∏n
i=1B

0
i ;

(c) T : A0 → 2Y is a KKM0-multimap (resp., Aκ
c -multimap);

(d) xi /∈ coPi(x) for each x = (x1, . . . , xn) ∈ B;

(e) P−1
i (y) is open for each y ∈ Bi.

Then, there exists b ∈ B such that Pi(b) = ∅ and, for each continuous, proper, quasiaffine, and
surjective self-map f : A0 → A0, there exists a ∈ A0 such that the best proximity set Ti

a(f) is
nonempty and compact. If, in addition, Pi(z) is nonempty for each z/∈∏n

i=1T
i
a(f), then (a, b) is an

equilibrium pair in A0 ×∏n
i=1T

i
a(f).

Proof. Fix i ∈ In. As A0
i and Bi are compact and convex, it follows from Lemma 2.2(b)

that B0
i is compact and convex. By Theorem 3.4, there exists a ∈ A0 such that the best

proximity set Ti
a(f) is nonempty and closed. By Lemma 2.5, there exists b = (b1, . . . , bn) ∈

Y such that Pi(b) = ∅. As Pi(z) is nonempty for each z/∈∏n
i=1T

i
a(f), we conclude that

b = (b1, . . . , bn) ∈ ∏n
i=1T

i
a(f). Thus (a, b) ∈ A0 × Y , b = (b1, . . . , bn) ∈ ∏n

i=1Ti(a), Ti(a) ∩
Pi(b) = ∅ and d(f(a), Ti(a)) = ‖f(a) − bi‖ = d(A,Bi). Thus (a, b) is an equilibrium pair in
A0 ×∏n

i=1T
i
a(f).

Corollary 4.2. Let (A,Bi, Ti, Pi)i∈In be a free n-person game such thatA and Bi are nonempty subsets
of a normed space E, Ti : A → 2Bi is a constraint multimap, and Pi : B → 2Bi is a preference map
where B :=

∏n
j=1Bj . Assume thatA0 is nonempty, T(x) :=

∏n
i=1Ti(x) for each x ∈ A0, Y :=

∏n
i=1B

0
i ,

and for each i ∈ In,

(a) A0
i and Bi are nonempty, compact, and convex;

(b)
⋂n

i=1PA0
i
(yi) is nonempty for each (y1, . . . , yn) ∈

∏n
i=1B

0
i ;

(c) T : A0 → 2Y is a KKM0-multimap (resp., Aκ
c -multimap);

(d) xi /∈ coPi(x) for each x = (x1, . . . , xn) ∈ B;

(e) P−1
i (y) is open for each y ∈ Bi.

Then, there exists b ∈ B such that Pi(b) = ∅ and there exists a ∈ A0 such that the best proximity set
Ti
a is nonempty and compact. If, in addition, Pi(z) is nonempty for each z/∈∏n

i=1T
i
a, then (a, b) is an

equilibrium pair in A0 ×∏n
i=1T

i
a.

Theorem 4.3. Let (A,Bi, Ti, Pi)i∈In be a free n-person game such that A and Bi are subsets of a
normed space E, Ti : A → 2Bi is a constraint multimap, and Pi : B → 2Bi is a preference map where
B :=

∏n
j=1Bj . Assume that A0 is nonempty, Y :=

∏n
i=1B

0
i , and for each i ∈ In,

(a) A0
i and Bi are nonempty, compact, and convex;

(b)
⋂n

i=1PA0
i
(yi) is nonempty for each (y1, . . . , yn) ∈

∏n
i=1B

0
i ;

(c) Ti | A0 is an upper semicontinuous multimap with compact values and Ti(x) ∩ B0
i is

nonempty for each x ∈ A0;

(d) xi /∈ coPi(x) for each x = (x1, . . . , xn) ∈ B;

(e) P−1
i (y) is open for each y ∈ Bi.
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Then, there exists b ∈ B such that Pi(b) = ∅ and, for each continuous, proper, quasiaffine, and
surjective self-map f : A0 → A0, there exists a ∈ A0 such that the best proximity set Ti

a(f) is
nonempty and compact. If, in addition, Pi(z) is nonempty for each z/∈∏n

i=1T
i
a(f), then (a, b) is an

equilibrium pair in A0 ×∏n
i=1T

i
a(f).

Proof. Use Theorem 3.8 instead of Theorem 3.4 in the proof of Theorem 4.1.

Corollary 4.4. Let (A,Bi, Ti, Pi)i∈In be a free n-person game such that A and Bi are subsets of a
normed space E, Ti : A → 2Bi is a constraint multimap, and Pi : B → 2Bi is a preference map where
B :=

∏n
j=1Bj . Assume that A0 is nonempty, Y :=

∏n
i=1B

0
i , and for each i ∈ In,

(a) A0
i and Bi are nonempty, compact, and convex;

(b)
⋂n

i=1PA0
i
(yi) is nonempty for each (y1, . . . , yn) ∈

∏n
i=1B

0
i ;

(c) Ti | A0 is an upper semicontinuous multimap with compact values and Ti(x) ∩ B0
i is

nonempty for each x ∈ A0;

(d) xi /∈ coPi(x) for each x = (x1, . . . , xn) ∈ B;

(e) P−1
i (y) is open for each y ∈ Bi.

Then, there exists b ∈ B such that Pi(b) = ∅, and there exists a ∈ A0 such that the best proximity set
Ti
a is nonempty and compact. If, in addition, Pi(z) is nonempty for each z/∈∏n

i=1T
i
a, then (a, b) is an

equilibrium pair in A0 ×∏n
i=1T

i
a.

Remark 4.5. Corollary 4.4 extends and improves [7, Theorem 4.1] by Al-Thagafi and Shahzad
and [5, Theorem 4] by Kim and Lee.

Theorem 4.6. Let (A,B, T, P) be a free 1-person game such that A and B are subsets of a normed
space E, T : A → 2B is a constraint multimap, and P : B → 2B is a preference map. Assume that

(a) A0 and B are nonempty, compact, and convex;

(b) T : A0 → 2B0 is a KKM0-multimap (resp., Aκ
c -multimap);

(c) x /∈ coP(x) for each x ∈ B;

(d) one of the following conditions is satisfied:

(d 1) if z ∈ P−1(y) for some y ∈ B, then there exists some y′ ∈ B such that z ∈ intP−1(y′);
(d 2) for each y ∈ B, P−1(y) is open in B.

Then, there exists b ∈ B such that P(b) = ∅ and, for each continuous, proper, quasiaffine, and
surjective self-map f : A0 → A0, there exists a ∈ A0 such that the best proximity set Ta(f)
is nonempty and compact. If, in addition, P(z) is nonempty for each z/∈Ta(f), then (a, b) is an
equilibrium pair in A0 × Ta(f).

Proof. Since A0 and B0 are nonempty, compact, and convex, it follows from Theorem 3.4 that
there exists (a, c) ∈ A0 × B0 such that c ∈ T(a) and d(f(a), T(a)) = ‖f(a) − c‖ = d(A,B)
and so Ta(f) is nonempty. By Lemma 2.6, there exists b ∈ B0 such that P(b) = ∅. As P(z) is
nonempty whenever z ∈ B \ Ta(f), we conclude that b ∈ Ta(f). So (a, b) ∈ A0 × B0, b ∈ T(a)
and d(f(a), T(a)) = ‖f(a) − b‖ = d(A,B). Thus (a, b) is an equilibrium pair in A0 × Ta(f).
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Corollary 4.7. Let (A, T, P) be a free 1-person game such thatA is a nonempty, compact, and convex
subset of a normed space E, T : A → 2A is a constraint multimap, and P : A → 2A is a preference
map. Assume that

(a) T : A → 2A is a KKM0-multimap (resp., Aκ
c -multimap);

(b) x /∈ coP(x) for each x ∈ A;

(c) one of the following conditions is satisfied:

(c 1) if z ∈ P−1(y) for some y ∈ A, then there exists some y′ ∈ A such that z ∈ intP−1(y′);

(c 2) for each y ∈ A, P−1(y) is open in A.

Then, there exists b ∈ A such that P(b) = ∅ and, for each continuous, proper, quasiaffine, and
surjective self-map f : A → A, there exists a ∈ A such that f(a) = b. If, in addition, P(z) is
nonempty for each z/∈ {x ∈ A : f(x) ∈ T(x)}, then f(a) ∈ T(a).

Remark 4.8. Corollary 4.7 extends and improves [7, Theorem 4.3] by Al-Thagafi and Shahzad
and [5, Theorem 3] by Kim and Lee.

Corollary 4.7 follows also from the following result.

Theorem 4.9. Let (A,B, T, P) be a free 1-person game such that A and B are subsets of a normed
space E, T : A → 2B is a constraint multimap, and P : B → 2B is a preference map. Assume that

(a) A0 and B are nonempty, compact, and convex;

(b) T | A0 is an upper semicontinuous multimap with compact values and T(x) ∩ B0 is
nonempty for each x ∈ A0;

(c) x /∈ coP(x) for each x ∈ B;

(d) one of the following conditions is satisfied:

(d 1) if z ∈ P−1(y) for some y ∈ B, then there exists some y′ ∈ B such that z ∈ intP−1(y′);

(d 2) for each y ∈ B, P−1(y) is open in B.

Then, there exists b ∈ B such that P(b) = ∅ and, for each continuous, proper, quasiaffine, and
surjective self-map f : A0 → A0, there exists a ∈ A0 such that the best proximity set Ta(f)
is nonempty and compact. If, in addition, P(z) is nonempty for each z/∈Ta(f), then (a, b) is an
equilibrium pair in A0 × Ta(f).

Proof. Use Theorem 3.8 instead of Theorem 3.4 in the proof of Theorem 4.3.
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