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1. Introduction

The Banach fixed point theorem for contraction mappings has been extended in many
directions (cf. [1–28]). Very recently Agarwal et al. [1] presented some new results for
generalized nonlinear contractions in partially ordered metric spaces. The main idea in
[1, 20, 26] involve combining the ideas of iterative technique in the contraction mapping
principle with those in the monotone technique.

Recall that if (X,≤) is a partially ordered set and F : X → X is such that for x, y ∈
X, x ≤ y implies F(x) ≤ F(y), then a mapping F is said to be non-decreasing. The main result
of Agarwal et al. in [1] is the following fixed point theorem.

Theorem 1.1 (see [1, Theorem 2.2]). Let (X,≤) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Assume there is a non-decreasing function
ψ : [0,+∞) → [0,+∞) with limn→∞ψn(t) = 0 for each t > 0 and also suppose F is a non-decreasing
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mapping with

d
(
F(x), F(y)

) ≤ ψ
(
max

{
d(x, y), d

(
x, F(x)

)
, d

(
y, F(y)

)
,
1
2
[
d
(
x, F(y)

)
+ d

(
y, F(x)

)]
})

(1.1)

for all x ≥ y. Also suppose either

(a) F is continuous or

(b) if {xn} ⊂ X is a non-decreasing sequence with xn → x in X, then xn ≤ x for all n hold.

If there exists an x0 ∈ X with x0 ≤ F(x0) then F has a fixed point.

Agarwal et al. [1] observed that in certain circumstances it is possible to remove the
condition that ψ is non-decreasing in Theorem 1.1. So they proved the following fixed point
theorem.

Theorem 1.2 (see [1, Theorem 2.3]). Let (X,≤) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. Assume there is a continuous function
ψ : [0,+∞) → [0,+∞) with ψ(t) < t for each t > 0 and also suppose F is a non-decreasing mapping
with

d
(
F(x), F(y)) ≤ ψ(max

{
d(x, y), d

(
x, F(x)

)
, d

(
y, F(y)

)}) ∀x ≥ y. (1.2)

Also suppose either (a) or (b) holds. If there exists an x0 ∈ X with x0 ≤ F(x0) then F has a fixed point.

The problem to extend the result of Theorem 1.2 to mappings which satisfy (1.1)
remained open. The aim of this note is to solve this problem by using more refined technique
of proofs. Moreover, we introduce a concept of g-monotone mapping and prove some fixed
and common fixed point theorems for g-non-decreasing generalized nonlinear contractions
in partially ordered complete metric spaces.

2. Main results

Definition 2.1. Suppose (X,≤) is a partially ordered set and F, g : X → X are mappings of X
into itself. One says F is g-non-decreasing if for x, y ∈ X,

g(x) ≤ g(y) implies F(x) ≤ F(y). (2.1)

Now we present the main result in this paper.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Assume there is a continuous function ϕ: [0,+∞) → [0,+∞)
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with ϕ(t) < t for each t > 0 and also suppose F, g : X → X are such that F(X) ⊆ g(X), F is a
g-non-decreasing mapping and

d
(
F(x), F(y)

) ≤ max
{
ϕ
(
d
(
g(x), g(y)

))
, ϕ

(
d
(
g(x), F(x)

))
, ϕ

(
d
(
g(y), F(y)

))
,

ϕ

(
d(g(x), F(y)) + d(g(y), F(x))

2

)} (2.2)

for all x, y ∈ X for which g(x) ≥ g(y). Also suppose

if
{
g
(
xn

)} ⊂ X is a non-decreasing sequence with g
(
xn

) −→ g(z) in g(X)

then g
(
xn

) ≤ g(z), g(z) ≤ g(g(z)) ∀n hold.
(2.3)

Also suppose g(X) is closed. If there exists an x0 ∈ X with g(x0) ≤ F(x0), then F and g have a
coincidence. Further, if F, g commute at their coincidence points, then F and g have a common fixed
point.

Proof. Let x0 ∈ X be such that g(x0) ≤ F(x0). Since F(X) ⊆ g(X), we can choose x1 ∈ X so
that g(x1) = F(x0). Again from F(X) ⊆ g(X) we can choose x2 ∈ X such that g(x2) = F(x1).
Continuing this process we can choose a sequence {xn} in X such that

g
(
xn+1

)
= F

(
xn

) ∀n ≥ 0. (2.4)

Since g(x0) ≤ F(x0) and F(x0) = g(x1),we have g(x0) ≤ g(x1). Then from (2.1),

F
(
x0
) ≤ F(x1

)
. (2.5)

Thus, by (2.4), g(x1) ≤ g(x2). Again from (2.1),

F
(
x1
) ≤ F(x2

)
, (2.6)

that is, g(x2) ≤ g(x3). Continuing we obtain

F
(
x0
) ≤ F(x1

) ≤ F(x2
) ≤ F(x3

) ≤ · · · ≤ F(xn
) ≤ F(xn+1

) ≤ · · · . (2.7)

In what follows we will suppose that d(F(xn), F(xn+1)) > 0 for all n, since if F(xn+1) =
F(xn) for some n, then by (2.4),

F
(
xn+1

)
= g

(
xn+1

)
, (2.8)

that is, F and g have a coincidence at x = xn+1, and so we have finished the proof. We will
show that

d
(
F
(
xn

)
, F

(
xn+1

))
< d

(
F
(
xn−1

)
, F

(
xn

)) ∀n ≥ 1. (2.9)
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From (2.4) and (2.7) we have that g(xn) ≤ g(xn+1) for all n ≥ 0. Then from (2.2) with
x = xn and y = xn+1,

d
(
F
(
xn

)
, F

(
xn+1

)) ≤ max
{
ϕ
(
d
(
g
(
xn

)
, g

(
xn+1

)))
, ϕ

(
d
(
g
(
xn

)
, F

(
xn

)))
,

ϕ
(
d
(
g
(
xn+1

)
, F

(
xn+1

)))
,

ϕ

(
d(g(xn), F(xn+1)) + d(g(xn+1), F(xn))

2

)}
.

(2.10)

Thus by (2.4),

d
(
F
(
xn

)
, F

(
xn+1

)) ≤ max
{
ϕ
(
d
(
F
(
xn−1

)
, F

(
xn

)))
, ϕ

(
d
(
F
(
xn−1

)
, F

(
xn

)))
,

ϕ
(
d
(
F
(
xn

)
, F

(
xn+1

)))
, ϕ

(
1
2
d
(
F(xn−1

)
, F

(
xn+1

))
)}

.

(2.11)

Hence

d
(
F
(
xn

)
, F

(
xn+1

)) ≤ max
{
ϕ
(
d
(
F
(
xn−1

)
, F

(
xn

)))
, ϕ

(
d
(
F
(
xn

)
, F

(
xn+1

)))
,

ϕ

(
1
2
d
(
F
(
xn−1), F

(
xn+1

))
)}

.

(2.12)

If d(F(xn), F(xn+1)) ≤ ϕ(d(F(xn−1), F(xn))), then (2.9) holds, as ϕ(t) < t for t > 0.
Since we suppose that d(F(xn), F(xn+1)) > 0 and as ϕ(t) < t for t > 0, then

d(F(xn), F(xn+1))) ≤ ϕ(d(F(xn), F(xn+1))) it is impossible.
If from (2.12) we have d(F(xn), F(xn+1)) ≤ ϕ(d(F(xn−1), F(xn+1))/2), and if

d(F(xn−1), F(xn+1))/2 > 0, then we have

d
(
F
(
xn

)
, F

(
xn+1

)) ≤ ϕ
(
1
2
d
(
F
(
xn−1

)
, F

(
xn+1

))
)

<
1
2
d
(
F
(
xn−1

)
, F

(
xn+1

))

≤ 1
2
d
(
F
(
xn−1

)
, F

(
xn

))
+
1
2
d
(
F
(
xn

)
, F

(
xn+1

))
.

(2.13)

Hence

d
(
F
(
xn

)
, F

(
xn+1

))
< d

(
F
(
xn−1

)
, F

(
xn

))
. (2.14)

Therefore, we proved that (2.9) holds.
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From (2.9) it follows that the sequence {d(F(xn), F(xn+1))} of real numbers is
monotone decreasing. Therefore, there is some δ ≥ 0 such that

lim
n→∞

d
(
F
(
xn

)
, F

(
xn+1

))
= δ. (2.15)

Now we will prove that δ = 0. By the triangle inequality,

1
2
d
(
F
(
xn−1

)
, F

(
xn+1

)) ≤ 1
2
(
d
(
F
(
xn−1

)
, F

(
xn

))
+ d

(
F
(
xn

)
, F

(
xn+1

)))
. (2.16)

Hence by (2.9),

1
2
d
(
F
(
xn−1

)
, F

(
xn+1

))
< d

(
F
(
xn−1

)
, F

(
xn

))
. (2.17)

Taking the upper limit as n → ∞we get

lim sup
n→∞

1
2
d
(
F
(
xn−1

)
, F

(
xn+1

)) ≤ lim
n→∞

d
(
F
(
xn−1

)
, F

(
xn

))
. (2.18)

If we set

lim sup
n→∞

1
2
d
(
F
(
xn−1

)
, F

(
xn+1

))
= b, (2.19)

then clearly 0 ≤ b ≤ δ. Now, taking the upper limit on the both sides of (2.12) and have in
mind that ϕ(t) is continuous, we get

lim
n→∞

d
(
F
(
xn

)
, F

(
xn+1

)) ≤ max
{
ϕ

(
lim
n→∞

d
(
F
(
xn−1

)
, F

(
xn

))
)
, ϕ

(
lim
n→∞

d
(
F
(
xn

)
, F

(
xn+1

))
)
,

ϕ

(
lim sup
n→∞

1
2
d
(
F
(
xn−1

)
, F

(
xn+1

))
)}

.

(2.20)

Hence by (2.15) and (2.19),

δ ≤ max
{
ϕ(δ), ϕ(b)

}
. (2.21)

If we suppose that δ > 0, then we have

δ ≤ max
{
ϕ(δ), ϕ(b)

}
< max{δ, b} = δ, (2.22)

a contradiction. Thus δ = 0. Therefore, we proved that

lim
n→∞

d
(
F
(
xn

)
, F

(
xn+1

))
= 0. (2.23)
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Now we prove that {F(xn)} is a Cauchy sequence. Suppose, to the contrary, that
{F(xn)} is not a Cauchy sequence. Then there exist an ε > 0 and two sequences of integers
{l(k)}, {m(k)}, m(k) > l(k) ≥ k with

rk = d(F(xl(k)), F(xm(k))) ≥ ε for k ∈ {1, 2, . . .}. (2.24)

We may also assume

d
(
F
(
xl(k)

)
, F

(
xm(k)−1

))
< ε (2.25)

by choosing m(k) to be the smallest number exceeding l(k) for which (2.24) holds. From
(2.24), (2.25) and by the triangle inequality,

ε ≤ rk ≤ d(F(xl(k)
)
, F

(
xm(k)−1

)
+ d

(
F
(
xm(k)−1

)
, F

(
xm(k)

)
< ε + d

(
F
(
xm(k)−1

)
, F

(
xm(k)

)
.
(2.26)

Hence by (2.23),

lim
k→∞

rk = ε. (2.27)

Since from (2.7) and (2.4) we have g(xl(k)+1) = F(xl(k)) ≤ F(xm(k)) = g(xm(k)+1), from
(2.2) and (2.4) with x = xm(k)+1 and y = xl(k)+1 we get

d
(
F
(
xl(k)+1

)
, F

(
xm(k)+1

)) ≤ max
{
ϕ
(
d
(
F
(
xl(k)

)
, F

(
xm(k)

)))
, ϕ

(
d
(
F
(
xl(k)

)
, F

(
xl(k)+1

)))
,

ϕ
(
d
(
F
(
xm(k)

)
, F

(
xm(k)+1

)))
,

ϕ

(
d(F(xl(k)), F(xm(k)+1)) + d(F(xm(k)), F(xl(k)+1))

2

)}
.

(2.28)

Denote δn = d(F(xn), F(xn+1)). Then we have

d
(
F
(
xl(k)+1

)
, F

(
xm(k)+1

)) ≤ max
{
ϕ
(
rk
)
, ϕ

(
δl(k)

)
, ϕ

(
δm(k)

)
,

ϕ

(
d(F(xl(k)), F(xm(k)+1)) + d(F(xm(k)), F(xl(k)+1))

2

)}
.

(2.29)

Therefore, since

rk ≤ d(F(xl(k)
)
, F

(
xl(k)+1

))
+ d

(
F
(
xl(k)+1

)
, F

(
xm(k)+1

))
+ d

(
F
(
xm(k)

)
, F

(
xm(k)+1

))

= δl(k) + δm(k) + d
(
F
(
xl(k)+1

)
, F

(
xm(k)+1

))
,

(2.30)
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we have

ε ≤ rk ≤ δl(k) + δm(k)

+max
{
ϕ(rk), ϕ

(
δl(k)

)
, ϕ

(
δm(k)

)
, ϕ

(
d(F(xl(k)), F(xm(k)+1)) + d(F(xm(k)), F(xl(k)+1))

2

)}
.

(2.31)

By the triangle inequality, (2.24) and (2.25),

ε ≤ rk ≤ d(F(xl(k)
)
, F

(
xm(k)+1

))
+ δm(k),

d
(
F
(
xl(k)

)
, F

(
xm(k)+1

)) ≤ d(F(xl(k)
)
, F

(
xm(k)−1

))
+ δm(k)−1 + δm(k) ≤ ε + δm(k)−1 + δm(k).

(2.32)

From (2.32),

ε − δm(k) ≤ d
(
F
(
xl(k)

)
, F

(
xm(k)+1

)) ≤ ε + δm(k)−1 + δm(k). (2.33)

Similarly,

ε ≤ rk ≤ δl(k) + d
(
F
(
xl(k)+1

)
, F

(
xm(k)

))
,

d
(
F
(
xl(k)+1

)
, F

(
xm(k)

)) ≤ δl(k) + d
(
F(xl(k)

)
, F

(
xm(k)−1

))
+ δm(k)−1 ≤ ε + δm(k)−1 + δm(k).

(2.34)

Hence

ε − δl(k) ≤ d
(
F
(
xm(k)

)
, F

(
xl(k)+1

)) ≤ ε + δm(k)−1 + δl(k). (2.35)

From (2.33) and (2.35),

ε − δl(k) + δm(k)

2
≤ d(F(xl(k)), F(xm(k)+1)) + d(F(xm(k)), F(xl(k)+1))

2

≤ ε + δm(k)−1 +
δl(k) + δm(k)

2
.

(2.36)

Thus from (2.36) and (2.23)we get

lim
k→∞

d(F(xl(k)), F(xm(k)+1)) + d(F(xm(k)), F(xl(k)+1))
2

= ε. (2.37)

Letting n → ∞ in (2.31), then by (2.23), (2.27) and (2.37) we get, as ϕ is continuous,

ε ≤ max
{
ϕ(ε), 0, 0, ϕ(ε)

}
< ε, (2.38)
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a contradiction. Thus our assumption (2.24) is wrong. Therefore, {F(xn)} is a Cauchy
sequence. Since by (2.4) we have {F(xn)} = {g(xn+1)} ⊆ g(X) and g(X) is closed, there exists
z ∈ X such that

lim
n→∞

g
(
xn

)
= g(z). (2.39)

Now we show that z is a coincidence point of F and g. Since from (2.3) and (2.39) we
have g(xn) ≤ g(z) for all n, then by the triangle inequality and (2.2)we get

d
(
g(z), F(z)

) ≤ d(g(z), F(xn
))

+ d
(
F
(
xn

)
, F(z)

)

≤ d(g(z), F(xn
))

+max
{
ϕ
(
d
(
g
(
xn

)
, g(z)

))
, ϕ

(
d
(
g
(
xn

)
, F

(
xn

)))
,

ϕ
(
d
(
g(z), F(z)

))
, ϕ

(
d(g(xn), F(z)) + d(g(z), F(xn))

2

)}
.

(2.40)

So letting n → ∞ yields d(g(z), F(z)) ≤ max{ϕ(d(g(z), F(z))), ϕ(d(g(z), F(z))/2}. Hence
d(g(z), F(z)) = 0, hence F(z) = g(z). Thus we proved that F and g have a coincidence.

Suppose now that F and g commute at z. Set w = g(z) = F(z). Then

F(w) = F
(
g(z)

)
= g

(
F(z)

)
= g(w). (2.41)

Since from (2.3) we have g(z) ≤ g(g(z)) = g(w) and as g(z) = F(z) and g(w) = F(w), from
(2.2) we get

d
(
F(z), F(w)

) ≤ max
{
ϕ
(
d
(
g(z), g(w)

))
, ϕ

(
d
(
g(z), F(z)

))
,

ϕ
(
d
(
g(w), F(w)

))
, ϕ

(
d(g(z), F(w)) + d(g(w), F(z))

2

)}

= ϕ
(
d
(
F(z), F(w)

))
.

(2.42)

Hence d(F(z), F(w)) = 0, that is, d(w,F(w)) = 0. Therefore,

F(w) = g(w) = w. (2.43)

Thus we proved that F and g have a common fixed point.

Remark 2.3. Note F is g-non-decreasing can be replaced by F is g-non-increasing in
Theorem 2.2 provided g(x0) ≤ F(x0) is replaced by F(x0) ≥ g(x0) in Theorem 2.2.
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Corollary 2.4. Let (X,≤) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Assume there is a continuous function ϕ : [0,+∞) → [0,+∞)
with ϕ(t) < t for each t > 0 and also suppose F : X → X is a non-decreasing mapping and

d
(
F(x), F(y)

) ≤ max
{
ϕ
(
d(x, y)

)
, ϕ

(
d
(
x, F(x)

))
, ϕ

(
d
(
y, F(y)

))
,

ϕ

(
d(x, F(y)) + d(y, F(x))

2

)} (2.44)

for all x, y ∈ X for which x ≤ y. Also suppose either

(i) if {xn} ⊂ X is a non-decreasing sequence with xn → z in X then xn ≤ z for all n hold or

(ii) F is continuous.

If there exists an x0 ∈ X with x0 ≤ F(x0) then F has a fixed point.

Proof. If (i) holds, then taking g = I (I = the identity mapping) in Theorem 2.2 we obtain
Corollary 2.4. If (ii) holds, then from (2.39)with g = I we get

z = lim
n→∞

xn+1 = lim
n→∞

F(xn) = F
(

lim
n→∞

xn

)
= F(z). (2.45)

Corollary 2.5. Let (X,≤) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Assume there is a continuous function ϕ : [0,+∞) → [0,+∞)
with ϕ(t) < t for each t > 0 and also suppose F : X → X is a non-decreasing mapping and

d
(
F(x), F(y)

) ≤ max
{
ϕ
(
d(x, y)

)
, ϕ

(
d(x, F(x)

))
, ϕ

(
d
(
y, F(y)

))}
(2.46)

for all x, y ∈ X for which x ≤ y. Also suppose either

(i) if {xn} ⊂ X is a non-decreasing sequence with xn → z in X then xn ≤ z for all n hold or

(ii) F is continuous.

If there exists an x0 ∈ X with x0 ≤ F(x0) then F has a fixed point.

Remark 2.6. Since (1.2) implies (2.46) with ψ = ϕ, Corollary 2.5 is a generalization of
Theorem 1.2. If in addition ψ and ϕ are non-decreasing, then Theorem 1.2 and Corollary 2.5
are equivalent.

Taking ϕ(t) = kt, 0 < k < 1, in Corollary 2.4 we obtain the following generalization of
the results in [20, 26].

Corollary 2.7. Let (X,≤) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Suppose F : X → X is a non-decreasing mapping and

d
(
F(x), F(y)

) ≤ kmax
{
d(x, y), d

(
x, F(x)

)
, d

(
y, F(y)

)
,
d(x, F(y)) + d(y, F(x))

2

}
(2.47)
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for all x, y ∈ X for which x ≤ y, where 0 < k < 1. Also suppose either

(i) if {xn} ⊂ X is a non-decreasing sequence with xn → z in X then xn ≤ z for all n hold or

(ii) F is continuous.

If there exists an x0 ∈ X with x0 ≤ F(x0) then F has a fixed point.
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[10] Lj. Ćirić and J. S. Ume, “Nonlinear quasi-contractions on metric spaces,” Praktikà tês Akademı́as
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