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The least-squares finite element method (LSFEM) has received increasing attention in recent years
due to advantages over the Galerkin finite element method (GFEM). The method leads to a
minimization problem in the L2-norm and thus results in a symmetric and positive definite matrix,
even for first-order differential equations. In addition, the method contains an implicit streamline
upwinding mechanism that prevents the appearance of oscillations that are characteristic of the
Galerkin method. Thus, the least-squares approach does not require explicit stabilization and
the associated stabilization parameters required by the Galerkin method. A new approach, the
bubble enriched least-squares finite element method (BELSFEM), is presented and compared
with the classical LSFEM. The BELSFEM requires a space-time element formulation and employs
bubble functions in space and time to increase the accuracy of the finite element solution without
degrading computational performance. We apply the BELSFEM and classical least-squares finite
element methods to benchmark problems for 1D and 2D linear transport. The accuracy and
performance are compared.
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1. Introduction

In an age of increasing atmospheric pollutions, air pollution modeling is getting increasingly
important. Air pollution models are generally based on atmospheric advection-diffusion
equation. Major part of uncertainty in the model predictions is due to the presence of first-
order advective transport term which causes serious numerical difficulties. However, the
nature of difficulties seems to be substantially different in steady and unsteady advection.

In steady state advection problems, the difficulty in the form of oscillations or wiggles
is a consequence of negative (numerical) diffusion that is inherent in use of centered type
discretization for the convective terms. This applies to central finite difference method
as well as the closely related Galerkin finite element method (GFEM), both leading to
a nonsymmetric, nonpositive definite matrices as Jiang has illustrated in his text [1].
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These asymmetric matrices give rise to odd even decoupling, which causes node-to-node
oscillations in the solution. This can be tackled by severe refinement of the mesh that greatly
undermines the utility of the scheme.

Numerical difficulties of different types are encountered in the time-dependent
advection problems. Transient convection problems are governed by hyperbolic differential
equations. The characteristic lines now assume great importance. The discretization in space
now influences discretization in time and vice versa as they are now interlinked through
the characteristics. One can circumvent the issue by resorting to a Lagrangian (moving
coordinates) formulation in which the convective term vanishes. However, the formulation
is difficult and thus not very popular. The popular Eulerian formulation, therefore, must
properly accommodate the flow physics of information propagation along the characteristic
line, while discretizing in space and time.

Over the years, the Galerkin method in form of its variants has been used extensively
to solve convection problems. Classical GFEM is very dispersive in nature due to inherent
generation of the negative diffusion. Its popular variant Petrov-Galerkin provides stabilized
solutions by generating numerical diffusion. Petrov-Galerkin method using higher degree
polynomial as weighting function (Christie et al. [2]; Westerink and Shea [3]) and the
streamline upwind Petrov-Galerkin method (SUPG) by Brooks and Hughes [4] both have at
least one free parameter or an intrinsic time function that has to be tuned in order to control
the amount of artificial diffusion. This is the disadvantage of Petrov-Galerkin methods.

Donea [5] proposed Taylor-Galerkin (TG) method, where Taylor series for time
discretisation is used before applying space discretisation. The resulting Taylor-Galerkin
methods do not introduce any free parameter but they require the use of higher-order
derivatives.

LSFEM which is based on minimizing the L2-norm of the residuals is naturally suited
for a first order system of differential equations. Unlike GFEM, LSFEM formulation leads to
symmetric positive definite (SPD) matrices that can be effectively solved using matrix-free
iterative methods like preconditioned conjugate gradient method.

Jiang and Povinelli [6] pointed out the advantages of LSFEM by demonstrating and
validating the method for a variety of compressible and incompressible flow problems. Jiang
et al. [7] also developed a matrix-free LSFEM for three-dimensional, steady state lid-driven
cavity flow.

Donea and Quartapelle [8] classified the following four different least square finite
element approaches: the LSFEM proposed by Carey and Jiang [9] based on Crank-Nicolson
approximation across the time step; characteristic LSFEM by Li [10]; Taylor-LSFEM by Park
and Liggett [11, 12]; and space-time finite element method, STLSFEM by Nguyen and Reynen
[13]. The first three approaches rely on a quadratic functional associated with time discretized
version of governing equation, whereas the last one extends the least square formulation
and its finite element representation to space-time domain. Donea and Quartapelle pointed
out that the LSFEM proposed by Carey and Jiang [9] was the most interesting least square
method for advective transport problems presumably because of simplicity of its formulation
and accuracy, and its close relationship with the SUPG, Galerkin least square (Hughes et al.
[14]), and Taylor Galerkin method. They also found the space-time LSFEM very inaccurate
and diffusive; therefore, not worth recommending for advective transport problems.

The numerical difficulties faced in the form of “wiggles” can be tackled by resorting to
severe mesh refinement which forces the use of very small time steps, thereby undermining
the utility of GFEM. In a study, Surana and Sandhu [15] have demonstrated that these
oscillations can be completely eliminated by using p-version of STLSFEM, where they have
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used p-values as high as 7 in space and 11 in time to completely recover the exact solution
even after convecting the Gaussian distribution profile to some distance in the domain. But
the p-version, especially in 2- and 3-dimensional problems, becomes computationally very
expensive and difficult to program.

In the present work, we have used space-time LSFEM with linear elements enriched
with bubble modes to get reasonably accurate solutions to advective transport equation
without resorting to severe mesh refinement and p-version of LSFEM. We term this approach
the bubble-enriched least-squares finite element method (BELSFEM). The Space-time LSFEM
as described by Donea and Quartapelle [8] is second-order accurate and unconditionally
stable. Results from STLSFEM applied to pure advection problems are less accurate and
more dissipative compared to the one obtained from LSFEM using Crank-Nicolson time
discretization. Notwithstanding that STLSFEM has been chosen as it has finite element
discretization both in space and time domains essential for applying bubble modes. Results
were also generated using Crank-Nicolson LSFEM proposed by Carey and Jiang, deemed
most interesting by Donea and Quartapelle in their 1992 article, in order to be used as baseline
for comparison.

2. The least-square finite element method

Consider the transient advection equation given as

∂U

∂t
+
(
�V •∇

)
U = 0, (2.1)

where U is the property being convected at a velocity �V with u, v, and w as its components
in x, y, and z directions, respectively. To illustrate the main benefits of LSFEM, consider
the application of a simple least-squares finite element method to the transient advection
equation. Before application of the finite element method in space, the time derivative of
(2.1) is discretized with a simple backward-Euler method:

Un+1 −Un

Δt
+ �v·∇Un+1 = 0. (2.2)

In the least-squares approach, the L2-norm of the differential equation is minimized with
respect to unknown coefficients over the solution domain Ω. Applying the L2-norm to (2.2)
and minimizing the functional with respect to Un+1 leads to the weak statement

∫

Ω

({N}
Δt

+
(
�v·∇
)
{N}

)({N}
Δt

+
(
�v·∇
)
{N}

)T
dΩ
{
Un+1}

=
∫

Ω

({N}
Δt

+
(
�v·∇
)
{N}

){N}T
Δt

{
Un}dΩ,

(2.3)

where the row vector {N} contains the basis functions Nj used to approximate the solution
over the domain as U(x, y, z) =

∑
jNj(x)Uj = {N}T{U}.
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The weak statement can be expanded and written in matrix form

(
[M]
Δt

+
(
[C] + [C]T

)
+ Δt�vT �v[K]

){
Un+1} =

(
[M]
Δt

){
Un}, (2.4)

where the individual matrix contributions are given by

[M] =
∫

Ω
{N}{N}TdΩ,

[C] =
∫

Ω
{N}

{(
�v·∇
)
N
}T
dΩ,

[K] =
∫

Ω
[∇N][∇N]TdΩ.

(2.5)

Equation (2.4) clearly shows that the resulting system of equations is symmetric, a quality
that is not achievable for Galerkin finite element methods or even finite difference or finite
volume methods. In addition, one can notice an upwind diffusion term that is implicit to the
least-squares approach. The upwind diffusion is often useful for smoothing nonmonotone
solutions that occur before and after any sharp gradients that appear in the flow direction.
We also wish to emphasize that there are no tunable parameters in the LSFEM approach,
such parameters often appear in stabilized Galerkin methods and are difficult to determine
in general.

3. The least-square finite element formulations

For the sake of simplicity, let us consider 1D scalar advection equation

∂U

∂t
+ a

∂U

∂x
= 0. (3.1)

The three least-square finite element formulations tried are as follows.

3.1. Crank-Nicolson LSFEM

In least-square finite element formulation, we minimize the square of the residual, R, given
by R = ∂Ũ/∂t + a(∂Ũ/∂x), where Ũ is the approximate solution. For sake of simplicity, we
will useU in place of Ũ. The LSFEM formulation based on minimization of square of residual
leads to

∂

∂Un+1

∫

Ω

(
∂U

∂t
+ a

∂U

∂x

)2

dx dt ≈ 0. (3.2)

Using forward difference for time derivative term and θ-method for approximating U in
convective term gives

∂

∂Un+1

∫

Ω

(
Un+1 −Un

Δt
+ a

d
(
θUn+1 + (1 − θ)Un

)

dx

)2

= 0. (3.3)
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Let the unknown U be defined as

U(x) =
∑
j

Nj(x)Uj, (3.4)

where Uj is the solution at the jth node and Nj is the interpolation function. Taking the
derivative with respect to Un+1, (3.3) leads to the Crank-Nicolson LSFE formulation

∑
i

∫

Ω

{
Ni(x) + aΔt θ

dNi(x)
dx

}{
Ni(x) + aΔt θ

dNi(x)
dx

}T
Un+1
i dx

=
∑
i

∫

Ω

{
Ni(x) + aΔt θ

dNi(x)
dx

}{
Ni(x) − aΔt (1 − θ)

dNi(x)
dx

}T
Un
i dx.

(3.5)

For θ = 1/2, it becomes Crank-Nicolson LSFEM formulation as

∑
i

∫

Ω

{
Ni(x) +

aΔt
2

dNi(x)
dx

}{
Ni(x) +

aΔt
2

dNi(x)
dx

}T
Un+1
i dx

=
∑
i

∫

Ω

{
Ni(x) +

aΔt
2

dNi(x)
dx

}{
Ni(x) −

aΔt
2

dNi(x)
dx

}T
Un
i dx.

(3.6)

3.2. Space-time LSFEM

In space-time formulation, both time and space derivatives are discretized the finite element
way and the unknown U becomes function of both spatial and temporal variables, that is,

U(x, t) =
∑
j

Nj(x, t)Uj or U(x, y, t) =
∑
j

Nj(x, y, t)Uj, (3.7)

where Nj(x, t) is bilinear interpolation function for 1D and Nj(x, y, t) is the trilinear
interpolation function for 2D formulation. Equations (3.2) and (3.7) lead to simple space-time
least square finite element formulation

∑
i

∫

Ω

{
∂Ni(x, t)

∂t
+ a

∂Ni(x, t)
∂x

}{
∂Ni(x, t)

∂t
+ a

∂Ni(x, t)
∂x

}T
Un+1
i dx dt = 0. (3.8)

Linear elements of 1D domain transform to 2D bilinear elements and 2D quadrilateral
element transform to trilinear elements in the space-time formulation. For bilinear elements,
the bilinear shape functions are given in terms of natural coordinates by

N(ξ, τ) = {L1(ξ)L1(τ), L2(ξ)L1(τ), L2(ξ)L2(τ), L1(ξ)L2(τ)}T . (3.9a)
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Similarly, Trilinear shape functions for trilinear elements are given by

N(ξ, η, τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1(ξ)L1(η)L1(τ)

L2(ξ)L1(η)L1(τ)

L2(ξ)L2(η)L1(τ)

L1(ξ)L2(η)L1(τ)

L1(ξ)L1(η)L2(τ)

L2(ξ)L1(η)L2(τ)

L2(ξ)L2(η)L2(τ)

L1(ξ)L2(η)L2(τ)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.9b)

where L1(ξ) = (1/2)(1 − ξ), L2(ξ) = (1/2)(1 + ξ), L1(η) = (1/2)(1 − η), L2(η) = (1/2)(1 +
η), L1(τ) = (1/2)(1 − τ), and L2(τ) = (1/2)(1 + τ) are the linear shape functions and ξ =
x/Δx, η = y/Δy and τ = t/Δt the natural coordinates.

3.3. Bubble-enriched LSFEM

Since space-time formulation has finite element discretization for both time and space
derivative it has been selected for application of bubble modes in this work. In this approach,
bubble functions are used to enrich the function space of the finite element. We refer this new
approach as the bubble-enriched least-squares finite element method (BELSFEM). Bubbles
are the functions defined in the interiors of the finite elements that vanish on the element
boundaries. Baiocchi et al. [16] were the first to point out that the enrichment of the finite
element space by summation of polynomial bubble functions results in stabilized procedures
for convection-diffusion problems formally similar to SUPG and GLS. Brezzi et al. [17] and
Franca et al. [18] introduced more general framework for the discretization of problem
involving multiscale phenomena.

In bubble enrichment method, we add bubble functions to the set of nodal shape
functions of the linear elements in space and time direction and their tensor product gives the
set of bilinear shape functions. We include only the modes falling inside the bilinear element
(excluding the modes falling on the edges). Bubble functions take zero value on the element
boundaries. This property of bubble functions allows the use of classical static condensation
procedure to condense the bubble modes out and include their effect in the basic element
matrix.

Bubble functions were taken from orthogonal set of Jacobi polynomials denoted by
P
α,β
p . Jacobi polynomials are a family of polynomial solutions to the singular Sturm-Liouville

problem. A significant feature of these polynomials is that they are orthogonal in the interval
[−1, 1] with respect to the function (1 − x)α(1 + x)β (α, β > −1). Bubble modes were generated
from P

α,β
p as

ψp(x) =
(

1 − ξ
2

)(
1 + ξ

2

)
P 1,1
p−1(ξ), 0 < p, (3.10)

where p is the order of the Jacobi polynomial. Jacobi polynomials with α = β = 1 were chosen
as they produce symmetric and diagonally strong matrices for second-order differential
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Figure 1: First few bubble modes generated using Jacobi polynomials (P 1,1
p−1(x), 0 < p).

Pseudo Code:
(1) Formulate and initialize STLSFEM
(2) Generate bubble fns using Jacobi polynomials
(3) Introduce bubble fns into original set of nodal shape function using tensor product,

element stiffness matrix size goes up from original m to p = m + bn. Where n is
number of dimensions.

(4) While (p ≥ m){/∗ to get the original size of element stiffness matrix back ∗/
Apply Static Condensation()
p = p − 1;

}
(6) Set the time limit and convect the solution using linear solver
(7) end

Algorithm 1

equations (Karniadakis and Sherwin [19]). First few of the Jacobi polynomials used are
shown in Figure 1. A pseudo code outlining the whole process is shown in Algorithm 1.

4. Test problems

Standard test problems taken in one and two dimensions are as follows.

4.1. One-dimensional problems

4.1.1. Convection of Gaussian hill

This one-dimensional problem was taken from Donea and Huerta [20]. A Gaussian
distribution profile was convected over 1D domain ]0,1[ with the initial condition

U(x, 0) =
5
7

exp
{
−
(
x − x0

l

)2}
, (4.1)
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where x0 = 2/15, l = 7
√

2/300, and the boundary condition as U(0, t) = U(1, t) = 0 and
convection velocity a = 1. The solution was convected by t = 0.6 over a uniform mesh of size
h = 1/150. The exact solution is given by

U(x, t) =
5
7

exp
{
−
(
x − x0 − at

l

)2}
. (4.2)

4.1.2. Propagation of a steep front

This 1D problem also taken from Donea and Huerta [20] considers the convection at unit
speed of a discontinuous initial data. The discontinuity occurs over one element and is
initially located at position x = 0.2 of the domain ]0,1[.

The discontinuity is given as

U(x, 0) =

{
1 if x < 0.2,
0 if x ≥ 0.2.

(4.3)

The solution was convected by t = 0.6 using a mesh of uniform size h = 1/50.

4.2. Two-dimensional problems

4.2.1. Convection of a concentration spike

A concentration spike, given by

U(x, y, 0) =

⎧
⎪⎨
⎪⎩

exp
{
−
[(x − 0.175)2 + (y − 0.175)2]

(0.00125)

}

0 if U(x, 0) ≤ 10−10,

(4.4)

was convected by t = 1.3 with a velocity given by u = 0.25 and v = 0.1166 at an angle of 25◦

to the x-axis. A 40 × 20 mesh in 0 ≤ x ≤ 1, 0 ≤ y ≤ 0.5 was used and this problem was picked
from Yu and Heinrich [21]. Profile was convected for Courant numbers of 0.73 (same as in
Yu and Heinrich [21]), 1.0, and 1.47.

4.2.2. Rotating cosine hill problem

This classical test problem for 2D convection schemes taken from Donea and Huerta [20]
considers the convection of a product cosine hill in a pure rotational velocity field. The initial
data is given by

U(x, y, 0) =

⎧
⎨
⎩

1
4
(1 + cos πX)(1 + cos πY ) if X2 + Y 2 ≤ 1,

0 otherwise,
(4.5)

where X = (x − x0)/σ and Y = (y − y0)/σ, and the boundary condition is U = 0 on Γin.
The initial positions of the center and the radius of the cosine hill are (x0, y0) = (1/6, 1/6)
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and σ = 0.2, respectively. The angular velocity is given by ω(x) = (−y , x). A uniform mesh
of 30 × 30 four-node elements over the unit square [−0.5, 0.5] × [−0.5, 0.5] was used in the
computations.

5. Calculation of flow parameters

Important flow parameter, Courant number, is given as C = ‖u ‖(Δt/h), where u is the
convection velocity, Δt is the time step, and h is the characteristic length in the direction
of the convection. In one-dimensional problems, h is simply taken as h = Δx and ‖u‖ = a. In
the first problem of convection of Gaussian hill, Δx = 1/150 and in the second problem of
propagation of discontinuity Δx = 1/50 was taken. Different values of Courant number were
obtained by varying Δt values.

For the 2D test problems, the flow parameters were calculated as done in the source
papers. For the concentration spike test problem, h was calculated as

h =
1
‖u‖ (|u|Δx + |v|Δy), (5.1)

where u = ui + vj is the velocity vector and Courant number was given as

C =
( |u|
Δx

+
|v|
Δy

)
Δt. (5.2)

For the second test problem, since the flow field is rotational, the velocity is changing
throughout the cone; therefore, the Courant number based on the velocity at the peak of
the cone is given by ωrpeak, where ω is the angular velocity.

6. Results and discussion

The least-squares methods previously described were implemented in C++ on uniform
quadrilateral and hexahedral meshes. Integration was performed using Gaussian quadrature.
A sparse matrix data structure was used to conserve memory. Linear systems of equations
were solved efficiently using a Jacobi preconditioned conjugate gradient (PCG) method.
An absolute tolerance of 1.0E − 6 was used for all PCG iterations. Inaccurate results
of STLSFEM were considerably improved by introduction of bubble functions. Results
improved gradually with increase in number of bubble functions until a number beyond
which the effect seems to saturate. Results for the number of bubble functions giving best
performance have been discussed.

6.1. One-dimensional problems

6.1.1. Convection of Gaussian hill

Results of the Gaussian hill problem are presented in Figure 2 and Table 1. The initial profile
shown in dotted line was propagated till t = 0.6, for three Courant numbers of 0.5, 1.0, and
1.5. All the results have been compared with results from Crank-Nicolson LSFEM as baseline.
Results of the space-time LSFEM are far more dissipative and dispersive compared to the



10 Differential Equations and Nonlinear Mechanics

Table 1: Convection of Gaussian hill by t = 0.6.

CN-LSFEM ST-LSFEM BE-LSFEM
Courant no. Umin Umax Umin Umax Umin Umax %redn. in Umin %gain in Umax

0.5 −0.0055 0.6861 −0.0186 0.6784 − 0.0013† 0.6967† 76.9 1.55
1.0 −0.0490 0.6606 −0.1004 0.6196 ≈ 0 0.7140 ≈ 100 8.08
1.5 −0.1196 0.6210 −0.1536 0.5532 −0.1049 0.6401 12.2 3.1
†

with one bubble in both x and t.

−0.2

0

0.2

0.4

0.6

0.8

U

0 0.2 0.4 0.6 0.8 1

x

t = 0 t = 0.6

Exact
CNLS

STLS
BELSb1/1

(a)

−0.2

0

0.2

0.4

0.6

0.8

U

0 0.2 0.4 0.6 0.8 1

x

t = 0 t = 0.6

Exact
CNLS

STLS
BELSb8/10

(b)

−0.2

0

0.2

0.4

0.6

0.8

U

0 0.2 0.4 0.6 0.8 1

x

t = 0 t = 0.6

Exact
CNLS

STLS
BELSb8/10

(c)

Figure 2: Propagation of Gaussian hill by time t = 0.6 for Courant numbers, C = 0.5 (a), C = 1.0 (b) and
C = 1.5 (c) for continuous LSFEM.

Crank-Nicolson LSFEM for all the three Courant numbers. However, results show significant
improvement with BELSFEM.

For Courant number, C = 0.5, BELSFEM with one bubble in x and t direction gives
1.5% increase in maximum value and 77% decrease in dispersion error compared to Crank-
Nicolson LSFEM. More than one bubble in fact degraded the results.

For C = 1.0, 8 bubbles in x and 10 in time completely remove the dispersion error and
increase the peak by around 8% leading to complete recovery of the exact solution.
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Figure 3: Propagation of a steep front by time t = 0.6 for Courant numbers, C = 0.75 (a), C = 1.0 (b), and
C = 2.0 (c) for continuous LSFEM.

For C = 1.5, BELSFEM with 8 and 10 bubbles in x and t, respectively, causes 12.2%
reduction in dispersion error and about 3% increase in the peak value.

6.1.2. Propagation of a steep front

Discontinuity was propagated by t = 0.6 and the results presented in Figure 3 and Table 2
were computed for Courant numbers of 0.75, 1.0, and 2.0. Few parameters were considered
for comparative quantification of the results. Slope, m, of the solution at the discontinuity
which indicates the amount of dissipation in the solution was measured across the two nodes
that capture the discontinuity in exact solution. Since the discontinuity spanned one element
(h = 1/50), the exact solution had a slope, m = −50. Also considered were the values of Umax

and Umin causing the overshoot and undershoot representatives of the dispersive error. All
the comparative results were based on the results from Crank-Nicolson LSFEM.
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Table 2: Propagation of discontinuity by t = 0.6.

CN-LSFEM ST-LSFEM BE-LSFEM

Courant
no.

slope
m

Umin Umax
Slope
m

Umin Umax
Slope
m

Umin Umax
%gain
in m

%redn.
in

Umin

%redn.
in
Umax

0.75 −12.66 −0.0005 1.1341 −9.789 0 1.1740 −14.64 −0.179 1.0001 15.6 −356.6 11.8
1.0 −10.33 none 1.1684 −7.965 0.0001 1.193 −48.31 0 1.0109 367.7 — 13.5
2.0 −5.947 none 1.2934 −4.907 0.0054 1.2232 −5.611 0.0025 1.245 −5.65 — 3.8

Space-time LSFEM is more dissipative than CNLSFEM for all the three Courant
numbers as can be seen in Figure 3. However, it is more dispersive than Crank-Nicolson
LSFEM for C = 0.75 and 1.0 and less dispersive for C = 2.

AtC = 0.75, BELSFEM with 8 bubbles in x and 10 bubbles in time causes 15.6% increase
in the slope (meaning reduced dissipative error) but a large increase in dispersive error in the
form of a deep undershoot. Although results are much better with one bubble each in x and
t directions with 40% increase in the slope and much smaller undershoot, as can be seen in
Figure 3.

At C = 1.0, the 8/10 bubble combination shows a significant improvement in the
results as slope m reaches very close to the exact value of −50 (see Table 2) and the dispersion
error completely disappears and the solution looks almost like the exact solution (see
Figure 3).

At C = 2.0, BELSFEM fails to better the slope of Crank-Nicolson LSFEM, although it is
less dispersive.

6.2. Two-dimensional problems

6.2.1. Convection of a concentration spike

The concentration spike was convected linearly by t ≈ 1.3 at a unit velocity given by u = 0.25
and v = 0.1177 and making an angle of 25◦ with the x-direction for Courant numbers of
0.73, 1.0, and 1.47. Results are presented in Figures 4, 5, and Table 3. Figure 4 presents the
variation of maximum and minimum concentrations with time and Figure 5 shows typical
plot of concentration profile before and after being convected. For all the Courant numbers,
tested Space-time LSFEM is far more dissipative and dispersive compared to Crank-Nicolson
LSFEM (see Figures 4, 5, and Table 3). However, there is a marked improvement in the results
with bubbles. In addition, the maximum number of PCG iterations per time step required
to achieve tolerance remained consistent as the number of bubble functions was increased
as shown in Table 3. This clearly indicates the ability of the BELSFEM to increase accuracy
without dramatically increasing computational effort.

At C = 0.73 (the same C used by Yu and Heinrich [21] in convecting the same
profile with Petrov-Galerkin formulation), BELSFEM with 6 bubbles each in spatial and time
directions results in 23.6% increase in Umax and 13.4% decrease in Umin compared to Crank-
Nicolson LSFEM.

Results further improved for C = 1.0 as 42.3% increase in Umax and 20% decrease in
Umin accrued (see Figures 4, 5, and Table 3). And finally for C = 1.47, about 22% increase in
Umax and 10.4% decrease in Umin were recorded.
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Figure 4: Variation of maximum and minimum concentrations with time for advection of concentration
spike : comparison of results over the time of advection.
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Figure 5: Convective transport of the concentration spike (initial condition shown by the left cone) with
flow at 25◦ to x-axis for C = 1.0.
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Table 3: Advection of concentration spike by t = 1.3.

CN-LSFEM ST-LSFEM BE-LSFEM Improvements Range of PCG
iterations∗Courant

no. Umin Umax Umin Umax Umin Umax
%redn.
in Umin

%gain
in Umax

0.73 −0.0695 0.6119 −0.0865 0.5692 −0.0531 0.6941 23.6 13.4 6-7
1.0 −0.0843 0.5663 −0.1079 0.5143 −0.0486 0.6780 42.3 19.73 5-6
1.47 −0.1391 0.5164 −0.1250 0.4462 −0.1084 0.5704 22.1 10.4 6-7

Table 4: Advection of cosine hill in rotation.

CN-LSFEM ST-LSFEM BE-LSFEM Improvements Range of PCG
iterations∗

Δt Courant
no.‡ Umin Umax Umin Umax Umin Umax

%redn.
in Umin

%gain
in Umax

2π/120 0.2618 −0.0265 0.9691 −0.0405 0.958 −0.0189 0.9769 28.8 0.81 7-8
2π/60 0.5236 −0.0615 0.9165 −0.1138 0.8872 −0.0270 0.9713 56.1 5.98 8-8
2π/30 1.047 −0.2009 0.8369 −0.2192 0.7398 −0.2129 0.8418 −5.97 0.6 15-16
‡Courant number based on velocity of the peak.
∗Range of PCG iterations/time step: number of iterations with one bubble—the number with six bubbles.
% Reduction and % gain calculated on Crank-Nicolson LSFEM results as baseline.

6.2.2. Rotating cosine hill problem

Results for rotating cosine hill problem are shown in Figures 6, 7 and Table 4. The variation of
maximum and minimum values of concentration over one rotation for �t = 2π/120, 2π/60,
and 2π/30 is shown in Figure 6. A typical profile after one rotation is shown for the
three formulations in Figure 7. Again, Crank-Nicolson LSFEM serves as the baseline for
comparison.

For �t = 2π/120, BELSFEM with 6 bubbles each in spatial and time directions shows
about 29% reduction in dispersive error and about 1% increase in the peak value. This
improvement in the peak value is significant considering the fact that the baseline value from
Crank-Nicolson LSFEM itself was high at 0.9691 (see Table 4).

For �t = 2π/60, there is more improvement in the results as the dispersion error
declines by 56% and the peak value goes up by around 6%. Typical profiles after one rotation
for this case are shown in Figure 7.

For �t = 2π/30 (which corresponds to C ≈ 1, based on velocity at the peak of the
profile), however, there is only 0.6% improvement in peak value and the dispersive error is
worse than CNLSFEM, as can be seen in Figure 6.

6.3. Effect of mesh size and number of bubbles

Two-dimensional benchmarks problems were run on different sizes of mesh and also on basic
meshes with different number of bubble functions in order to investigate the effect of mesh
size and number of bubble functions on the performance of BELSFEM. Mesh size parameter,
h, was varied from 0.01 to 0.1 (where h = side-length/number of elements per side). In all the
cases, h in x and y directions was the same.

Typical comparative plots of Umax and Umin from the three least-square methods for
different mesh sizes are shown in Figure 8. For this part of study, four bubbles each in space
and time were used. The maximum and minimum values for the cosine hill are recorded
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Figure 6: Variation of maximum and minimum concentrations with time for advection of cosine hill in
rotation : comparison of results over one rotation.
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Figure 7: Convection of a cosine hill in a pure rotational velocity field with �t = 2π/60 : comparison of
results after a complete revolution.

after one full rotation and those for linear convection of concentration spike have been taken
after being convected by t = 1.3. The bubbles seem to be most effective for moderately
coarse meshes as can be observed from the figure where large gain over both CNLSFEM
and STLSFEM can be seen in this region. However, for very coarse and very fine meshes the
benefits of bubbles seem to diminish.
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Figure 8: Effect of mesh size h on the performance of BELFEM and LSFEM.
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Figure 9: Effect of number of bubbles on the performance of BELFEM. (∗pure LS method-results (not
functions of n)).
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Figure 9 shows the effect of number of bubbles on the performance of BELSFEM.
Typical variation of Umax and Umin for the two problems is displayed. Results improve
sharply with the number of bubble functions initially but the improvements diminish with
further increase in the number and beyond 3-4 bubbles the effect saturates. It, therefore, can
be stated that generally good improvements in the results can be achieved with 4–6 bubbles.

These results show the clear benefit of bubble functions for linear transport problems,
which are purely hyperbolic in nature. Extensions of this work to mixed problems, such
as Navier-Stokes equations, are of great practical interest and a topic of further research.
In addition, there likely exist optimal bubble functions that will achieve highly accurately
solutions with a small number of functions. The form of these functions is also a topic of
further research.

7. Conclusions

A study of Crank-Nicolson least square finite element method, space-time least square finite
element method, was done and the effect of the bubble modes applied to linear space-
time elements was investigated. Orthogonal Jocobi polynomials were chosen as the bubble
functions. Convection of a Gaussian hill and propagation of a discontinuity in one-dimension
and linear convection of a concentration spike and convection of a cosine hill in rotation in
x-y plane were the standard test problems considered.

Emphasis of the current study was to prove the effectiveness of bubble modes
towards generating improved solution for the linear convection equation without resorting to
expensive higher order elements and severe mesh refinement which undermines the utility of
a scheme. Additional computational work was required on element level due to introduction
of bubble modes and keeping more or less same amount of computation on global level
overall. This was to great extent achieved due to the fact that bubble modes are easily
condensed out using the classic static condensation procedure.

It was observed that bubbles greatly improve the accuracy of the least-squares method
compared to the otherwise dissipative and dispersive space-time least square finite element
formulation. The results thus achieved were compared with the results from Crank-Nicolson
least square formulation. It was observed that the addition of bubble modes increasingly
improves the performance of STLSFEM till about 8 bubble modes when the effect seems to
saturate. It was recorded that for convection of Gaussian hill the peak value of the profile
improves in the range of 1.5%–8% for the CFL numbers of 0.5, 1.0, and 1.5. Decline of the
order of 12%–100% in the dispersion error was seen. In case of C = 1.0, the dissipation
and dispersion errors were almost completely removed. Similar trends were observed in
the problem of propagation of discontinuity, where considerable steepening of profile was
observed along with decrease in the dispersive error almost for all the cases. Here too exact
solution was almost completely recovered for C = 1.

More interesting results were obtained in two dimensional test cases. In case of linear
convection of concentration spike, an increase in peak profile value in the range of 10%–20%
and a decrease in dispersive error in the range 22%–43% were recorded for the three Courant
numbers tested. In the second test problem of rotation of cosine hill, also an increase in peak
value of the order of 1%–6% and a decrease in dispersion error in the range 20%–56% were
recorded although in case of �t = 2π/60; a 5% increase in dispersive error occurred.

Overall, the bubble enriched least-squares finite element method (BELSFEM) seems
to be very promising though further work is required to determine the optimal form of the
bubble functions.
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