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This work is interested in the study of the passage of a long gravity wave above an immersed
vertical barrier. The latter is placed at a right angle in the middle of the occupied fluid domain
which is limited vertically by both a free surface and an impermeable horizontal bottom. We want
to determine the field velocity and the local disturbances in the vicinity of the barrier. For this, we
use the generalized theory of shallow water and complex variables method. For illustration, we
consider a solitary wave as an emitted long wave.
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1. Introduction

The problem ofthe passage of gravity waves above an immersed obstacle was studied by
several authors (cf. [1–5]). Thus we mention some results already obtained in this field.
Dean’s work [2] is classified in the theory of the short waves; it concerns particularly
the determination of the coefficients of reflection and transmission of the waves passing a
completely immersed obstacle (e.g., a barrier). Gulli [4] has studied a same type of obstacle
but in the case of the long waves and hehas concluded, at the first order of approximation, that
there is not a reflected wave by the obstacle. The studies of Seabra-Santos et al. [5] concern the
deformation and the dephasing of the free surface in shallow water due to the solitary mutual
interactions or with an isolated obstacle. The theoretical and experimental contributions of
Barthélemy et al. [1] concern the phenomena resulting from the internal long waves. In [6],
the study of a passage of a long wave over vertical barrier, Germain’s shallow water theory
associated with the complex variable method has been used to determine the flow.

Our objective in the present paper is to apply the shallow water theory and complex
variable method in order to determine the local disturbances at the vicinity of the obstacle
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Figure 1: Local disturbances at vicinity of the barrier.

and simulate the velocity field. So, we would like to know particularly with accuracy the
kinematic of the flow at the vicinity of the obstacle while the passage of the long gravity
wave above the thin immersed vertical barrier. For illustration, we consider a solitary wave
generated at the upstream by a piston wave maker.

The plan of this paper is as follows. Section 2 contains two parts: the first part describes
the phenomenon, the second part gives general equations and mathematical model. Section 3
gives a determination of the system of equations and the technique of resolution. The last
section presents an application and a numerical simulation.

2. Position of the problem

2.1. Description of the phenomenon

We consider a fixed Oxy reference system, where the axis Oy is vertically ascendant and the
axis Ox coincides with the initial free surface. The position of the fluid particle at the moment
t, t > 0, is denoted by (x, y) and their coordinates at the initial position by (a, b), where a, b,
and t are the variables of Lagrange. Now we introduce new components X and Y as follows:

X(a, b, t) = x(a, b, t) − a,

Y (a, b, t) = y(a, b, t) − b.
(2.1)

The assumption of the shallow water theory (see [3]) introduces distortion space and
temporal variables, translating the difference in scale between the horizontal and vertical
sizes. This distortion will be characterized by the small parameter which is dependent on the
relative long wave amplitude. Thus

α = εa, β = b, τ = ε
√
gh · t, (2.2)

where
√
gh represents the critical celerity ofthe propagated long waves (h and g are depth of

fluid at rest and gravity, resp.).
The description of the phenomenon is as follows: we consider the domain D occupied

by fluid of an infinite horizontal band which is limited vertically by a free surface β = 0 and an
impermeable horizontal bottom β = −h. A vertical, thin, and impermeable barrier is placed in
the middle of the occupied fluid at right angle to the bottom. The top of the barrier is defined
by (α = 0; β = −l). A data long wave Xe(α− τ) emitted upstream passes above the obstacle by
creating local disturbances inits vicinity (see Figure 1).
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2.2. General equations and mathematical model

General equations and mathematical model are listed below:

(i) the kinematic condition expresses the incompressibility of fluid

∂Y

∂β
+ ε

[
∂X

∂α
+
∂X

∂α

∂Y

∂β
− ∂X

∂β

∂Y

∂α

]
= 0; (2.3)

(ii) the dynamic condition for an irrotational movement

∂2X

∂β∂τ
+ ε

[
∂X

∂α

∂2X

∂β∂τ
− ∂X

∂β

∂2X

∂α∂τ
+
∂Y

∂α

∂2Y

∂β∂τ
−
(

1 +
∂Y

∂β

)
∂2Y

∂α∂τ

]
= 0; (2.4)

(iii) the impermeability boundary conditions

∂Y

∂α
+ εh

∂2X

∂τ2
+ ε2h

[
∂X

∂α

∂2X

∂τ2
+
∂Y

∂α

∂2Y

∂τ2

]
= 0 at the free surface (β = 0),

Y (α, β, τ) = 0, at the bottom (β = −h),

X(α, β, τ) = 0, on the obstacle;

(2.5)

(iv) the initial conditions

X(α, β,−∞) = 0, Y (α, β,−∞) = 0 (at rest). (2.6)

The resolution of (2.3)–(2.6) requires that the solutions take into account the interaction
fluid-obstacle. According to the shallow water theory (see Germain [3]), the solution will
be calculated under the entire series in ε:

X(α, β, τ) =
∞∑
n=1

εn
[
Xn,0(α, β, τ) +

∞∑
m=1

Xn,m(α, β, τ) exp
(
− mλα

ε

)]
,

Y (α, β, τ) =
∞∑
n=1

εn
[
Yn,0(α, β, τ) +

∞∑
m=1

Yn,m(α, β, τ) exp
(
− mλα

ε

)]
,

(2.7)

where λ is a determining constant.
The double sum (m/= 0) in the formula (2.7) characterizes the local disturbances whose

amplitude decreases exponentially with the distance. The technique of resolution consists to
inject these series in the general equations and to write that they are satisfied with the order
(n,m) desired. For example, at the first order of approximation (i.e., n = 1), the components
Xn,m and Yn,m for m = 0 are given as

X1,0(α, β, τ) = X1,0(α, τ),

Y1,0(α, β, τ) = 0,
(2.8)
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and for any m/= 0,

X1,m(α, β, τ) = A1,m(τ) cosmλβ,

Y1,m(α, β, τ) = A1,m(τ) sinmλβ.
(2.9)

3. Local disturbances (case the obstacle is a barrier)

3.1. System of equations

At the first order of approximation (n = 1), we will calculate the coefficient of the local
disturbances. for this, we process as follows. We divide the domain D into two parts D− =
{−h ≤ β ≤ 0; α < 0} and D+ = {−h ≤ β ≤ 0; α > 0} (see Figure 2). On each domain D− or
D+, according to the point of view of Lagrange, the horizontal and vertical components of the
displacement of particle (X−

1 , Y−
1 ) and (X+

1 , Y+
1 ), respectively, can be written as follows:

D−

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

X−
1 (α, β, τ) = Xe(α − τ) +

∞∑
m=1

A−
1,m(τ) cosmλ−β · exp

(
− mλ−α

ε

)
,

Y−
1 (α, β, τ) =

∞∑
m=1

A−
1,m(τ) sinmλ−β · exp

(
− mλ−α

ε

)
,

(3.1)

D+

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

X+
1 (α, β, τ) = Xe(α − τ) +

∞∑
m=1

A+
1,m(τ) cosmλ+β · exp

(
− mλ+α

ε

)
,

Y+
1 (α, β, τ) =

∞∑
m=1

A+
1,m(τ) sinmλ+β · exp

(
− mλ+α

ε

)
.

(3.2)

A−
1,m and A+

1,m are unknown functions depending on the variable τ , characterizing the
amplitude of local disturbances in the domains D− and D+, respectively, and λ− and λ+ are
given coefficients (we take here λ+ = −λ− = λ = π/h). We note that the approximation
equations of the phenomenon have been written at the first order of approximation (1, m).

Both the continuity conditions of the flow at the border of the two domains and the
impermeability condition of the barrier imply that

X−
1 (0, β, τ) = X+

1 (0, β, τ), α = 0, − h ≤ β ≤ 0, (3.3a)

Y−
1 (0, β, τ) = Y+

1 (0, β, τ), α = 0, − l ≤ β ≤ 0, (3.3b)

X+
1 (0, β, τ) = 0, α = 0, − h ≤ β ≤ −l. (3.3c)
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The condition (3.3a) applied to (3.1) and (3.2) gives the equality

A−
1,m(τ) = A+

1,m(τ) = A1,m(τ). (3.4)

The latter expresses the symmetry of the local disturbances at the vicinity of the barrier.
The continuity conditions (3.3a) and (3.3b) of the flow on the segment [α = 0; − l ≤

β ≤ 0] give the following equations:

∞∑
m=1

A1,m(τ) sinm
πβ

h
= 0, α = 0, − l ≤ β ≤ 0, (3.5)

Xe(−τ) +
∞∑

m=1

A1,m(τ) cosm
πβ

h
= 0, α = 0, − l ≤ β ≤ 0. (3.6)

By considering the linearity of (3.6), if Xe(−τ)/= 0, we have

1 +
∞∑

m=1

a1,m cosm
πβ

h
= 0, (3.7)

where a1,m =
A1,m(τ)
Xe(−τ) is a constant. (3.8)

The problem leads us to solve the following system:

1 +
∞∑

m=1

a1,m cosm
πβ

h
= 0, α = 0, − h ≤ β ≤ −l,

∞∑
m=1

a1,m sinm
πβ

h
= 0, α = 0, − l ≤ β ≤ 0.

(3.9)

Thus the coefficients a1,m are obtained starting from these two time-independent equations.

3.2. Technique of resolution

In the domain D+, we consider two relations (3.2) of the components X+
1 and Y+

1 and (3.8).
We can then construct an analytic complex variable function z = (α/ε − iβ) such that

f+
(
α

ε
− iβ

)
= 1 +

∞∑
m=1

a1,m exp
(
−m

π

h

(
α

ε
− iβ

))
. (3.10)

This function bounded in the domain D+ except at the singular points satisfies the
impermeability condition at the free surface β = 0 and the bottom β = −h. Therefore,

Y+(α, β) = Im f+
(
α

ε
− iβ

)
= 0, on the boundaries β = 0, β = −h, (3.11)
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Figure 3: Transformation of the plane (z) on the half plane (ζ).

and the impermeability condition of the barrier leads to

X+(α, β) = Re f+
(
α

ε
− iβ

)
= 0, on the segment (α = 0; − h ≤ β ≤ −l). (3.12)

In the same way, we build in D− a second analyticalcomplex variable function z = α/ε − iβ as
follows:

f−
(
α

ε
− iβ

)
= 1 +

∞∑
m=1

a1,m exp
(
m
π

h

(
α

ε
− iβ

))
. (3.13)

The continuity conditions at the border of the two domains and by the analytical extension
allow the following equality:

f+
(
α

ε
− iβ

)
= f−

(
α

ε
− iβ

)
= f

(
α

ε
− iβ

)
. (3.14)

The determination of local disturbances a1,m leads to find a function f , analytical in the
domain {−∞ < α < +∞; − h ≤ β ≤ 0} without the segment {α = 0; − h ≤ β ≤ −l}. This
function is bounded in this domain except at the singularity point. Furthermore, it verifies
the following restrictions:

Im f

(
α

ε
− iβ

)
= 0, on the boundaries β = 0, β = −h,

Re f
(
α

ε
− iβ

)
= 0, on [α = 0; − h ≤ β ≤ −l],

f

(
α

ε
− iβ

)
equal to unity at infinity.

(3.15)

According to [6], we can obtain a conform transformation of this domain on the superior half-
plane (see Figure 3) and seek an analytic function satisfying the conditions on the boundaries
in the later. We find, in particular, the value of δ = (cos(πl/2h))−1 (see [6]).

By using the formula of Schwarz-Christofel [6], the conform transformation is written
as

z = − h

π
ln

(√
ζ2 − 1 − tan(πl/2h)√
ζ2 − 1 + tan(πl/2h)

)
, (3.16)
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and its inverse transformation is

ζ =

√
1 + tan2 πl

2h
coth2 πz

2h
. (3.17)

The function H(ζ) = f(z) is holomorphic in the superior half-plane and also bounded except
at the point A′

3. On the real axis, this function verifies the following conditions:

Im[H(ζ)] = 0, on the segment [A′
6,A

′
1]; [A

′
1,A

′
2],

Re[H(ζ)] = 0, on the segment [A′
2,A

′
3]; [A

′
3,A

′
4],

Im[H(ζ)] = 0, on the segment [A′
4,A

′
5]; [A

′
5,A

′
6].

(3.18)

By applying the formula of Signorini [6], we find the function

H(ζ) =
1

sin(πl/2h)

(√
ζ2 − 1
ζ

)
, (3.19)

and returning to the z-plane using (3.17), we finally find

f

(
α

ε
− iβ

)
=

⎧
⎨
⎩sin

πl

2h
·

√
1 +
[

tanh(π/2h)(α/ε − iβ)
tan(πl/2h)

]2
⎫
⎬
⎭

−1

. (3.20)

This function describes the full flow in particular the field of the disturbances in the vicinity
of the barrier. The coefficients a1,m can be calculated easily. In fact on the vertical α = 0, the
function (3.20) is

f(iβ) =
√

2
cos(πβ/2h)√

cos(πβ/h) − cos(πl/h)
. (3.21)

Furthermore the relations (3.10) to (3.14) permit the function

f(iβ) = 1 +
∞∑

m=1

a1,m

(
cosm

πβ

h
+ i sinm

πβ

h

)
, (3.22)

where the coefficients a1,m are obtained by using the Fourier series expansion on the interval
[−h, 0].

It follows that

a1,m =
2
h

∫−h

0
f(iβ) cosm

πβ

h
dβ. (3.23)
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Thus

a1,m = Pm

(
cos

πl

h

)
+ Pm−1

(
cos

πl

h

)
, (3.24)

where Pm and Pm−1 are the Legendre polynomials of degree m and m − 1, respectively, in the
third integral representation.

The Pm formula is given below:

Pm

(
cos

πl

h

)
= 2

1.3.5 · · · (2m − 1)
2.4.6 · · · 2m

{
cosm

πl

h
+

1 ·m
1 · (2m − 1)

cos(m − 2)
πl

h

+
1.3 ·m(m − 1)

1.2 · (2m − 1)(2m − 3)
cos(m − 4)

πl

h
+ · · ·

}
.

(3.25)

Using (3.1), (3.2), (3.4), (3.8), and (3.14), the horizontal and vertical components of the
displacement of the flow, in all domain D, can be written as follows:

X1(α, β, τ) = Xe(α − τ) +Xe(−τ)
∞∑

m=1

a1,m cosm
πβ

h
exp
(
− mπ |α|

εh

)
,

Y1(α, β, τ) = Xe(−τ)
∞∑

m=1

a1,m sinm
πβ

h
exp
(
− mπ |α|

εh

)
,

(3.26)

where X1 and Y1 are, respectively, the horizontal and vertical components of the displacement
of the particle.

Remark 3.1. According to (3.1), (3.2), and (3.26), one notices that displacements X1(α, β, τ)
and Y1(α, β, τ) are the independent contributions of the parts “wave” and “local distur-
bances” of the flow. On the first order of approximation, the part “wave” of the flow imposes a
uniform distribution of displacements and speeds on a vertical. The part “disturbances local”
permits to take into account the presence of the obstacle.

4. Application

For illustration, we consider as an example a solitary wave (see [5])Xe(α−τ) which is emitted
at the upstream at time τ = 0 and arrives exactly above the barrier at time τ = τ0:

Xe(α − τ) = εh

{
1 − tanh

[
3

4h
(
α −
(
τ − τ0

))]}
. (4.1)

Now, we calculate the velocity field and the local disturbances of the flow. We observe that
the horizontal displacement is independent of the variable β in accordance with the theory of
long gravity waves.



L. Abdelhamid and G. Allaoua 9

The derivative of the expression (3.26) with respect to t gives the horizontal and
vertical components, respectively, u1 and v1 of the velocity field

u1 =
3
4
ε2
√
gh

{
1 − tanh2

[
3

4h
(
α −
(
τ − τ0

))]}

+
3
4
ε2
√
gh ×

{
1 − tanh2

[
3

4h
(
τ − τ0

)]} ∞∑
m=1

a1,m cosm
πβ

h
exp
(
− mπ |α|

εh

)
,

v1 =
3
4
ε2
√
gh

{
1 − tanh2

[
3

4h
(
τ − τ0

)]} ∞∑
m=1

a1,m sinm
πβ

h
exp
(
− mπ |α|

εh

)
.

(4.2)

We observe that the horizontal (vertical) components of the velocity is symmetric, that is,
u1(α, β) = u1(−α, β) (resp., antisymmetric, i.e., v1(α, β) = −v1(−α, β)).

From (4.2), we deduce the horizontal and vertical components, respectively, u∗
1 and v∗

1
of the field local disturbances

u∗
1 =

3
4
ε2
√
gh

{
1 − tanh2

[
3

4h
(
τ − τ0

)]} ∞∑
m=1

a1,m cosm
πβ

h
exp
(
− mπ |α|

εh

)
,

v∗
1 =

3
4
ε2
√
gh

{
1 − tanh2

[
3

4h
(
τ − τ0

)]} ∞∑
m=1

a1,m sinm
πβ

h
exp
(
− mπ |α|

εh

)
.

(4.3)

The components u∗
1 and v∗

1 can be written as

u∗
1 = c(τ) ·u∗∗

1 (α, β),

v∗
1 = c(τ) ·v∗∗

1 (α, β),
(4.4)

where

c(τ) =
3
4
ε2
√
gh

{
1 − tanh2

[
3

4h
(
τ − τ0

)]}
,

u∗∗
1 (α, β) =

∞∑
m=1

a1,m cosm
πβ

h
exp
(
− mπ |α|

εh

)
,

v∗∗
1 (α, β) =

∞∑
m=1

a1,m sinm
πβ

h
exp
(
− mπ |α|

εh

)
.

(4.5)

Equations (4.4) show that the coefficient c(τ) intervenes only as a parameter of scale of the
local disturbances (i.e., the kinematic of the flow remains unchanged qualitatively whatever
the position of the wave relatively to the barrier). Naturally the intensity of the local
disturbances is maximum at the moment t = t0.
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Figure 4: The field velocity h = 20 cm, l = 10 cm, and ε = 0.6.
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Figure 5: The local disturbances h = 20 cm, l = 10 cm, and ε = 0.6.

4.1. Numerical simulation

The numerical simulation is realized on the Apollo station by using the subprogram of the
Legendre polynomials. The data used are h = 20 cm, l = 10 cm, and ε = 0.6. The maximum
velocity of incident flow is approximately 38 cm/s. We note that the series (3.26) converge
slowly, for this, we have used 5 103 terms. The criterionof convergence is the impermeability
condition of thebarrier (i.e., the norm of the horizontal component remains within a specified
tolerance 10−4).

The graphical representation of the field of velocity and the local disturbances are
given, respectively.

The shallow water theory at the first order of approximation permits to determine
in a simple way the velocity field and the local disturbances when the interaction of a
solitary wave occurs with an isolated obstacle. The numerical simulation illustrates the flow
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at the vicinity of the barrier and shows, in particular, the zone of the influence of the local
disturbances.

In a future work, we intend to study the problem by using the shallow water theory
at the second order of approximation in order to consider, further, the effects of the reflected
wave on the kinematic flow barrier.
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