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1. Introduction

The objective of solving a stochastic differential equation is to obtain the p.d.f. and the
different moments of the solution process. This can be achieved through many methods
and techniques, for example the stochastic averaging [1–3], stochastic linearization [4–6],
Adomian’s decomposition method [7, 8], and stochastic finite element method [9–12].

In this paper, SFEM is applied on stochastic heat and wave equations. The stochastic
coefficients are decomposed by Karhunen-Loeve (K-L) expansion. The obtained set of
ordinary differential equations is solved using the θ-dependent family. Then the solution
process at every time step is projected on two-dimension first-order polynomial chaos.
The mean of the solution process is obtained under different values of the point variance
of stochastic coefficient.

2. The Karhunen-Loeve decomposition

The use of K-L expansion with orthogonal deterministic basis functions and uncorrelated
random coefficients gained interest because of its biorthogonal property, that is, both the
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deterministic basis functions and the corresponding random coefficients are orthogonal.
Let ω(x) denote the mean value of ω(x,θ) and C(x1,x2) its covariance function which is
bounded and positive definite. It has spectral decomposition as [13]

C
(
x1,x2

)=
∞∑

n=1

λn fn
(
x1
)
fn
(
x2
)
, (2.1)

where λn and fn(x) are the eigenvalues and the eigenvectors of the covariance kernel,
respectively. They are the solutions of the homogeneous Fredholm integral equation of
second kind given by

∫

D
C
(
x1,x2

)
fn
(
x1
)
dx1 = λn fn

(
x2
)
. (2.2)

Clearly, ω(x,φ) can be written as

ω(x,φ)= ω(x) +α(x,φ), (2.3)

where α(x,φ) is a process with zero mean and covariance function C(x1,x2). Finally, the
K-L decomposition of the field α(x,φ) is given by

α(x,φ)=
∞∑

n=1

ζn(φ)
√
λn fn(x), (2.4)

where ζn(φ) is a set of uncorrelated random variables. For example, consider a homoge-
neous Gaussian process with exponential covariance

C
(
x1,x2

)= σ2e−|x1−x2|, x ∈ [0,1]. (2.5)

The eigenfunctions of this covariance kernel are

fi(x)= ωiCos
(
ωix
)

+ Sin
(
ωix
)

√(
ω2/2

)(
1 + Sin(2ω)/2ω

)
+ (1/2)

(
1− Sin(2ω)/2ω

)
+ Sin2(ω)

, (2.6)

where ωi is the solution of nonlinear equation

2ωCos(ω) +
(
1−ω2)Sin(ω)= 0. (2.7)

Then the eigenvalues can be evaluated from the relation

ω2
i =

2− λi
λi

σ2. (2.8)

3. The polynomial chaos

The polynomial chaos is a particular basis of the random variables space based on Her-
mite polynomial of independent standard random variables ζ1, ζ2, . . . ,ζ∞. Classically, the



M. M. Saleh et al. 3

one-dimension Hermite polynomial is defined by

hn(x)= (−1)n
dn
(
e−(1/2)x2)

dxn
e(1/2)x2

. (3.1)

The multivariable Hermite polynomial can be defined as tensor product of Hermite poly-
nomial. Consider the multi-index

α= {α1, . . . ,αm
}

αi ≥ 0, i= 1, . . . ,m. (3.2)

The multivariable Hermite polynomial associated with this sequence is

Hα =
M∏

i=1

hαi
(
ζi
)
. (3.3)

Finally, any random variable k(φ) with finite variance can be expressed as [13]

k(φ)=
∞∑

i=0

aiHi(ζ), (3.4)

where ai are deterministic constants and Hi are enumeration of the Hα. The expansion is
convergent in the mean square sense. In the application of polynomial chaos, the dimen-
sion is selected according to the number of random variables in K-L expansion [14].

4. Stochastic heat equation

The unsteady stochastic heat equation for a spatially varying medium, in the absence of
convection, is [15]

c
∂U

∂t
− ∂

∂x

(
A
∂U

∂x

)
+DU = f (x, t), 0≤ x ≤ L (4.1)

subjected to the following boundary and initial conditions

U(0, t)= u0, A
∂U

∂x

∣
∣
∣
∣
x=L

= p(t), (4.2)

U(x,0)= g(x). (4.3)

The variational form of (4.1) over a typical element is

∫ xB

xA

(
c
∂U

∂t
V +A

∂U

∂x

∂V

∂x
+DUV

)
dx−Q(e)

1 V
(
xA
)−Q(e)

2 V
(
xB
)=

∫ xB

xA
f (x, t)V dx,

(4.4)

where

−A∂U
∂x

∣
∣
∣
∣
x=xA

=Q(e)
1 , A

∂U

∂x

∣
∣
∣
∣
x=xB

=Q(e)
2 . (4.5)
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Let the approximation of solution over the element be given by

Ue(x, t)=
2∑

i=1

Ui(t)ψi(x), (4.6)

where {ψi} are linear interpolating functions. Substituting by (4.6) into (4.4) and by V =
ψj(x), we get

2∑

i=1

U̇i(t)
∫ xB

xA
cψi(x)ψj(x)dx+

2∑

i=1

Ui(t)
∫ xB

xA

(
Aψ′i (x)ψ′j(x) +Dψi(x)ψj(x)

)
dx

=
∫ xB

xA
f (x, t)ψj(x)dx+Q(e)

j .

(4.7)

Let

C(e)
i j =

∫ xB

xA
cψi(x)ψj(x)dx, (4.8)

K (e)
i j =

∫ xB

xA

(
Aψ′i (x)ψ′j(x) +Dψi(x)ψj(x)

)
dx, (4.9)

F(e)
i =

∫ xB

xA
f (x, t)ψi(x)dx+Q(e)

i . (4.10)

Assembling of the elements matrices, we obtain

CU̇ +KU = F. (4.11)

4.1. Case 1. Stochastic heat capacity coefficient. Let the heat capacity coefficient be sto-
chastic process; the two-dimension K-L expansion for that process is

c = c(x) + ζ1

√
λ1 f1(x) + ζ2

√
λ2 f2(x). (4.12)

Equation (4.8) will be divided into the following parts:

Cij
(e)
(0) =

∫ xB

xA
cψi(x)ψj(x)dx,

Cij
(e)
(1) =

∫ xB

xA

√
λ1 f1(x)ψi(x)ψj(x)dx,

Cij
(e)
(2) =

∫ xB

xA

√
λ2 f2(x)ψi(x)ψj(x)dx.

(4.13)

Hence, (4.11) will be in the form

(
C0 + ζ1C1 + ζ2C2

)
U̇ +KU = F. (4.14)

The previous equation is time-dependent system of ordinary differential equations which
can be approximated to obtain a system of algebraic equations. Using the θ family of
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approximation which approximates a weighted average of time derivative of a dependent
variable at two consecutive time steps [16], that is,

θ{U̇}n+1 + (1− θ){U̇}n = {U}n+1−{U}n
Δt

, 0≤ θ ≤ 1, (4.15)

where {·}n refers to the value of the enclosed vector quantity at time t = tn and Δt =
tn+1− tn is the time step. From (4.15), we can obtain a number of well-known difference
schemes by choosing different values of θ like

θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 forward Euler scheme,

1
2

Crank-Niclson scheme,

2
3

Galerkin method,

1 backward Euler scheme.

(4.16)

Applying the time approximation (4.15) on (4.14) and rearranging the terms to write
{U}n+1 in terms of {U}n, we get

(
C0 + ζ1C1 + ζ2C2 + θKΔt

){U}n+1

= (C0 + ζ1C1 + ζ2C2− (1− θ)KΔt
){U}n +Δt

(
θ{F}n+1 + (1− θ){F}n

)
.

(4.17)

Projecting the solution at every time step on two-dimension first-order chaos polynomial,
we get

{U}n+1 =
{
a0
}
n+1H0 +

{
a1
}
n+1H1 +

{
a2
}
n+1H2,

{U}n =
{
a0
}
nH0 +

{
a1
}
nH1 +

{
a2
}
nH2.

(4.18)

Substituting by (4.18) into (4.17) and making inner product with (Hi), i= 0,1,2

⎡

⎢
⎣

C0 + θKΔt C1 C2

C1 C0 + θKΔt 0
C2 0 C0 + θKΔt

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n+1{

a1
}
n+1{

a2
}
n+1

⎤

⎥
⎦

= Δt

⎡

⎢
⎣

θ{F}n+1 + (1− θ){F}n
{0}
{0}

⎤

⎥
⎦

+

⎡

⎢
⎣

C0− (1− θ)KΔt C1 C2

C1 C0− (1− θ)KΔt 0
C2 0 C0− (1− θ)KΔt

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n{

a1
}
n{

a2
}
n

⎤

⎥
⎦ .

(4.19)
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Equation (4.19) is used to obtain polynomial chaos coefficients of the solution process
over all nodes of the domain at every time step. To complete the applicability of this form,
we project the initial condition (4.3) on polynomial chaos basis to get the coefficients
{ai}0 at t = 0. Hence [17],

{
a0
}

0 =
{
g
(
xj
)}

, j = 1,2,3, . . . ,N + 1,

{
a1
}

0 =
{
a2
}

0 = {0}.
(4.20)

The coefficients {a1}0 and {a2}0 are assumed to be zero because of deterministic initial
condition. Therefore, (4.19) can be used to obtain the polynomial chaos coefficients of the
solution {ai}1 at time t = t1. Finally, the polynomial chaos coefficients at time t = tn+1 can
be obtained in terms of the known coefficients at time t = tn. At this stage, the polynomial
chaos coefficients of the solution are known for each node at every time step. Finally, the
mean and variance of the solution process can be obtained from the relations

E
{
U(x,θ)

}= {a0
}

(mean),

Var
{
U(x,θ)

}= {a2
1

}
+
{
a2

2

}
(variance).

(4.21)

4.2. Case 2. Stochastic heat conductivity coefficient. Let the heat conductivity coeffi-
cient be stochastic process with two-dimension K-L expansion in the form

A=A(x) + ζ1

√
λ1 f1(x) + ζ2

√
λ2 f2(x). (4.22)

Equation (4.9) will be divided into the following parts:

Kij
(e)
(0) =

∫ xB

xA

(
A(x)ψ′i (x)ψ′j(x) +Dψi(x)ψj(x)

)
dx,

Kij
(e)
(1) =

∫ xB

xA

(√
λ1 f1(x)ψ′i (x)ψ′j(x)

)
dx,

Kij
(e)
(2) =

∫ xB

xA

(√
λ2 f2(x)ψ′i (x)ψ′j(x)

)
dx.

(4.23)

Then (4.11) becomes

CU̇ +
(
K0 + ζ1K1 + ζ2K2

)
U = F. (4.24)
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Applying the time approximation (4.15) on (4.24), we obtain

(
C+ θΔt

(
K0 + ζ1K1 + ζ2K2

)){U}n+1 =
(
C− (1− θ)Δt

(
K0 + ζ1K1 + ζ2K2

)){U}n
+Δt

(
θ{F}n+1 + (1− θ){F}n

)
.

(4.25)

Substituting by (4.18) into (4.25), we get

⎡

⎢
⎣

C+ θK0Δt θK1Δt θK2Δt
θK1Δt C+ θK0Δt 0
θK2Δt 0 C+ θK0Δt

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n+1{

a1
}
n+1{

a2
}
n+1

⎤

⎥
⎦

= Δt

⎡

⎢
⎣

θ{F}n+1 + (1− θ){F}n
{0}
{0}

⎤

⎥
⎦

+

⎡

⎢
⎣

C− (1− θ)K0Δt −(1− θ)K1Δt −(1− θ)K2Δt
−(1− θ)K1Δt C− (1− θ)K0Δt 0
−(1− θ)K2Δt 0 C− (1− θ)K0Δt

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n{

a1
}
n{

a2
}
n

⎤

⎥
⎦ .

(4.26)

We can get the polynomial chaos coefficient of the solution process at every time step as
in the previous case.

5. Stochastic wave equation

Consider the following stochastic wave equation that governs the axial motions in a rod
with the mass density ρ, elastic modulus E, and unit cross-sectional area a = 1, namely
[18],

c
∂2U

∂t2
− ∂

∂x

(
A
∂U

∂x

)
+DU = f (x, t), 0≤ x ≤ L, 0≤ t, (5.1)

where c = ρa and A= Ea, subjected to boundary conditions

U(0, t)=U(L, t)= 0, (5.2)

and initial conditions

U(x,0)= g(x) (initial displacement) (5.3)

∂U

∂t
(x,0)= v(x) (initial velocity). (5.4)

The variational form of (5.1) over a typical element is

∫ xB

xA

(
c
∂2U

∂t2
V +A

∂U

∂x

∂V

∂x
+DUV

)
dx =

∫ xB

xA
f (x, t)V dx−Q2V

(
xB
)−Q1V

(
xA
)
. (5.5)



8 Differential Equations and Nonlinear Mechanics

Substituting by (4.6) into (5.5), we obtain

2∑

i=1

Üi

∫ xB

xA
cψiψjdx+

2∑

i=1

Ui

∫ xB

xA

(
Aψ′i ψ

′
j+Dψiψj

)
dx =

∫ xB

xA
f (x, t)ψjdx+Q(e)

j . (5.6)

Let

C(e)
i j =

∫ xB

xA
cψi(x)ψj(x)dx, (5.7)

K (e)
i j =

∫ xB

xA

(
Aψ′i (x)ψ′j(x) +Dψi(x)ψj(x)

)
dx, (5.8)

F(e)
i =

∫ xB

xA
f (x, t)ψi(x)dx+Q(e)

i . (5.9)

By assembling the elements matrices, we get

CÜ +KU = F. (5.10)

5.1. Case 1. Stochastic mass density. Let the mass density coefficient be a stochastic
process with two-dimension K-L expansion in the form

c = c(x) + ζ1

√
λ1 f1(x) + ζ2

√
λ2 f2(x). (5.11)

Equation (5.7) will be divided into the following parts:

Cij
(e)
(0) =

∫ xB

xA
cψi(x)ψj(x)dx,

Cij
(e)
(1) =

∫ xB

xA

√
λ1 f1(x)ψi(x)ψj(x)dx,

Cij
(e)
(2) =

∫ xB

xA

√
λ2 f2(x)ψi(x)ψj(x)dx.

(5.12)

Then (5.10) becomes

(
C0 + ζ1C1 + ζ2C2

)
Ü +KU = F. (5.13)
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Applying Euler method for time approximation of the second derivative on (5.13) and
rearranging the terms, we obtain

(
C0 + ζ1C1 + ζ2C2

){U}n+2 =
(
2
(
C0 + ζ1C1 + ζ2C2

)− (Δt)2K
){U}n+1

− (C0 + ζ1C1 + ζ2C2
){U}n + (Δt)2{F}n+1.

(5.14)

Projecting the solution on two-dimension first-order chaos polynomial as in (4.18) and
making inner product with Hi, we get

⎡

⎢
⎣

C0 C1 C2

C1 C0 0
C2 0 C0

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n+2{

a1
}
n+2{

a2
}
n+2

⎤

⎥
⎦=

⎡

⎢
⎣

2C0−(Δt)2K 2C1 2C2

2C1 2C0−(Δt)2K 0
2C2 0 2C0−(Δt)2K

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n+1{

a1
}
n+1{

a2
}
n+1

⎤

⎥
⎦

−
⎡

⎢
⎣

C0 C1 C2

C1 C0 0
C2 0 C0

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n{

a1
}
n{

a2
}
n

⎤

⎥
⎦− (Δt)2

⎡

⎢
⎣

{F}n+1

{0}
{0}

⎤

⎥
⎦ .

(5.15)

The coefficients of polynomial chaos {ai}0 are defined by (4.20). Applying Euler method
at t = 0 on initial velocity (5.4), we get

{U}n+1−{U}n
Δt

= v(x), (5.16)

then
{
a0
}

1 = Δt
{
v
(
xj
)}

+
{
a0
}

0, j = 1,2, . . . ,N + 1,

{
a1
}

1 =
{
a2
}

1 = {0}.
(5.17)

Therefore, (5.15) can be used to obtain the polynomial chaos coefficients of the solution
at t = t2. Finally, the polynomial chaos coefficients of the solution at time t = tn+2 are
obtained in terms of the known coefficients at times t = tn+1 and t = tn.

5.2. Case 2. Stochastic elastic modulus. Let the elastic modulus coefficient be a stochas-
tic process with two-dimension K-L expansion in the form

A=A(x) + ζ1

√
λ1 f1(x) + ζ2

√
λ2 f2(x). (5.18)

Equation (5.8) will be divided into the following parts:

Kij
(e)
(0) =

∫ xB

xA
cψi(x)ψj(x)dx,

Kij
(e)
(1) =

∫ xB

xA

√
λ1 f1(x)ψi(x)ψj(x)dx,

Kij
(e)
(2) =

∫ xB

xA

√
λ2 f2(x)ψi(x)ψj(x)dx.

(5.19)
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Then (5.10) becomes

CÜ +
(
K0 + ζ1K1 + ζ2K2

)
U = F. (5.20)

Applying Euler method and rearranging the terms, we get

C{U}n+2 =
(
2C− (Δt)2(K0 + ζ1K1 + ζ2K2

)){U}n+1−C{U}n + (Δt)2{F}n+1. (5.21)

Projecting the solution on two-dimension first-order chaos polynomial and making inner
product with Hi, we get

⎡

⎢
⎣

C 0 0
0 C 0
0 0 C

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n+2{

a1
}
n+2{

a2
}
n+2

⎤

⎥
⎦=

⎡

⎢
⎣

2C− (Δt)2K0 −(Δt)2K1 (Δt)2K2

(Δt)2K1 2C− (Δt)2K0 0
(Δt)2K2 0 2C− (Δt)2K0

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n+1{

a1
}
n+1{

a2
}
n+1

⎤

⎥
⎦

−
⎡

⎢
⎣

C 0 0
0 C 0
0 0 C

⎤

⎥
⎦

⎡

⎢
⎣

{
a0
}
n{

a1
}
n{

a2
}
n

⎤

⎥
⎦− (Δt)2

⎡

⎢
⎣

{F}n+1

{0}
{0}

⎤

⎥
⎦ .

(5.22)

We can get the chaos polynomial coefficients of the solution at every time step as in the
previous case.

6. Numerical examples

In this section, we will apply the fixed forms on the following examples with studying the
effect of stochastic parameters on the solution moments. The approach of the mean of
stochastic solution to the exact deterministic one is studied numerically.

Example 6.1.

c
∂U

∂t
− ∂

∂x

(
A
∂U

∂x

)
+U = (1− 3t)exp(2x), 0≤ x ≤ 1, (6.1)

subjected to boundary and initial conditions

U(0, t)= t, ∂U

∂x
(1, t)= 2t exp(2)

U(x,0)= 0.

(6.2)

Let the stochastic process be with mean one and exponential covariance in which λi and
fi are described by (2.6)–(2.8). Figures 6.1 and 6.2 show the mean and standard deviation
of the solution process at very small point variance σ2 = .000001 of the stochastic process
c and A.
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Figure 6.1. The solution moments at stochastic heat conductivity A.
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Figure 6.2. The solution moments at stochastic heat capacity c.

From Figures 6.1 and 6.2, the type of stochastic coefficient affects only the standard
deviation of the solution process. Figures 6.3 and 6.4 illustrate the effect of variation of
σ2 on the solution parameters.
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Figure 6.3. The effect of σ2 on the solution moments at stochastic heat conductivity A. (a) Effect of
σ2 on the mean of solution at t = 1second. (b) Effect of σ2 on SD of the solution at t = 1second.
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Figure 6.4. The effect of σ2 on the solution moments at stochastic heat capacity c. (a) Effect of σ2 on
the mean of solution at t = 1second. (b) Effect of σ2 on SD of the solution at t = 1second.

From Figures 6.3 and 6.4, the variation of σ2 is more effective on standard deviation
than the mean of the solution process.

The exact deterministic solution of this example at c = A= 1 is

U = t exp(2x). (6.3)

Table 6.1 illustrates the approach of the mean of stochastic solution to this exact deter-
ministic one.
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Table 6.1

x-domain

Mean of the solution process
at different values of σ2

Exact
deterministic
solutionσ2 = .005 σ2 = .001 σ2 = .0005

0.1 1.2234 1.2217 1.2215 1.221403

0.2 1.4927 1.4919 1.4918 1.491825

0.3 1.8227 1.8220 1.8219 1.822188

0.4 2.2259 2.2253 2.2253 2.225541

0.5 2.7188 2.7180 2.7180 2.718282

0.6 3.3209 3.3200 3.3198 3.320117

0.7 4.0576 4.0553 4.0550 4.055199

0.8 4.9579 4.9536 4.9531 4.953032

0.9 6.0581 6.0509 6.0500 6.049647

1.0 7.4019 7.3912 7.3899 7.389056

The mean of the stochastic solution approaches the exact deterministic solution as the
point variance of stochastic coefficient decreases.

Example 6.2.

∂2U

∂t2
− ∂

∂x

(
A
∂U

∂x

)
− 4U = 0, 0≤ x ≤ π

2
, 0≤ t, (6.4)

subjected to boundary conditions

U(0, t)=U
(
π

2
, t
)
= 0, (6.5)

and initial conditions

U(x,0)= 0,

∂U

∂t
(x,0)= sin(2x).

(6.6)

Let A be stochastic process with mean one and exponential covariance, in which λi and
fi are described by (2.6)–(2.8). Figure 6.5 shows the mean and standard deviation of the
solution process at very small point variance σ2 = .000001 of the stochastic process A.
Figure 6.6 illustrates the effect of variation of σ2 on the solution parameters.
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Figure 6.5
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Figure 6.6

From Figure 6.6, the variation of σ2 is more effective on standard deviation than the
mean of the solution process.

The exact deterministic solution of this example at A= 1 is

U = tSin(2x). (6.7)

Table 6.2 illustrates the approach of the mean of stochastic solution to this exact deter-
ministic one.
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Table 6.2

x-domain

Mean of the solution process
at different values of σ2

Exact
deterministic
solutionσ2 = .01 σ2 = .005 σ2 = .0005

π/20 0.3088 0.3088 0.3089 0.309017

2π/20 0.5876 0.5876 0.5876 0.587785

3π/20 0.8092 0.8091 0.8089 0.809017

4π/20 0.9517 0.9512 0.9509 0.951056

5π/20 1.0008 1.0003 0.9998 1.000000

The mean of the stochastic solution approaches the exact deterministic solution as the
point variance of stochastic coefficient decreases.

7. Conclusion

The stochastic finite element method based on K-L decomposition and projection of
the solution on chaos polynomials is an effective and easy method for solving the sto-
chastic one-dimension time-dependent partial differential equation. Two fixed forms are
obtained for chaos polynomial coefficients of the solution in the case of stochastic heat
equation with stochastic heat capacity (4.19) or stochastic heat conductivity (4.26) coef-
ficients. Another two fixed forms are obtained for chaos polynomials coefficients of the
solution in the case of stochastic wave equation with stochastic mass density (5.15) or
stochastic elastic modulus (5.22) coefficients. The stochastic parameter σ2 has a great ef-
fect on the standard deviation of the solution process but has a very small effect on the
mean of solution process. The mean of the stochastic solution approaches the exact de-
terministic solution as the point variance of stochastic coefficient decreases.
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