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Pattern recognition by chaotic neural networks is studied using a hyperchaotic neural
network as model. Virtual basins of attraction are introduced around unstable periodic orbits
which are then used as patterns. Search for periodic orbits in dynamical systems is treated as
a process of pattern recognition. The role of synapses on patterns in chaotic networks is
discussed. It is shown that distorted states having only limited information of the patterns are

successfully recognized.
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L. INTRODUCTION

Recently, studies of chaos in neural networks
have drawn attention from workers in diverse fields
[1-4]. There are speculations that chaos plays an
important role in processes such as pattern recogni-
tion in neural networks. However, a definitive study
on the role of chaos in neural networks is still
missing. The aim of this note is to present a
plausible scheme by which chaotic networks can
be used in pattern recognition.

First, we recall the following basic features of
chaotic systems: (1) In a chaotic system many
chaotic attractors may coexist. The basins of these
attractors may be riddled. (2) A chaotic attractor is
topologically transitive, meaning that every point in
the state space can be reached from every other
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point through dynamical evolution. The frequency
at which a randomly initiated trajectory visits the
regions of an attractor depends on the dynamical
properties of all of the embedded unstable periodic
orbits. (3) Periodic orbits are dense in chaotic
systems. (4) Chaotic systems are sensitive to initial
conditions. This sensitivity implies that chaotic
systems lose memory rapidly.

Pattern recognition using chaotic neural net-
works with such features appears counter-intuitive
from the point of view of the usual pattern
recognition methods in neural networks. The usual
way of pattern recognition in neural networks
involves two main steps: (a) the network is taught
a certain number of patterns (this determines the
synapses) and (b) unknown states which contain
partial information of the learned patterns are
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recognized as the fixed points reached by running
the dynamics. In hard chaos, there are no stable
fixed points with attracting basins. Hence, dynam-
ics as such will not drive an arbitrary state to any
unstable fixed point as it does in the usual neural
network pattern recognition. The fact that chaotic
systems have a huge collection of periodic points,
each of which may be used as stored patterns,
makes chaotic neural networks worth studying.
However, one has to be careful. It is possible that
the dense periodic points of a chaotic system are
clustered in a small region creating practical dif-
ficulties to use them. The riddled basin boundaries
may also cause problems. We focus on the class
of systems in which there is a large number of
well distributed periodic orbits, specially those of
short periods. Pattern recognition in such chaotic
systems can be realized if we augment the dynamics
by a scheme that seeks the periodic points and
vanishes after the periodic points are found. The
procedure (see below), is meant to find the periodic
points but not to alter their number, location or
nature.

II. THE MODEL DYNAMICAL SYSTEM

For the purpose of demonstration, we consider the
“maximum hyperchaotic system” which has
recently been studied in Ref. [S]. This model consists
of N neurons whose states are described by S;(),
i=1,...,N. The N neurons are connected to one
another through the synapses J;,i, j=1,..., N.The
dynamics of the states is described by

S,‘(l‘i-l) :f<zN:J,/S/(f)>, i=1,...,N, (l)
J=1

with
£(z) = tanh(az)e ™, ()

where « and f# are constants. Depending on J;; and
the parameters «v and (3, the system presents chaotic

or nonchaotic behaviors. For example, when N =4,
a=13 and #=2, the system is hyperchaotic which
can be verified by checking the Lyapunov expo-
nents in the phase space. For the synapses
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all the four Lyapunov exponents of this 4-dimen-
sional system are positive [5]. The neural network is
thus “maximum hyperchaotic”.

This hyperchaotic system with N=4,a=3,3=2
has infinitely many unstable periodic points
embedded in a finite phase space. However, only
the ones with short periods are better suited for
pattern recognition. For pattern recognition, those
chaotic systems that support a large number of well
distributed periodic orbits of short periods should
be preferable. The model system of this work is not
claimed to be ideal for this purpose. We have chosen
this model to show that the process of pattern
recognition by a chaotic system is not affected by its
number of positive Lyapunov exponents. Since
there are no attracting periodic points, it is unlikely
that randomly chosen initial state variables will
exactly match those of a periodic point for the
dynamics to end in a persistent periodic behavior.
Thus for pattern recognition, we need to create
“virtual basins of attraction” of the periodic points
by augmenting the dynamics in a way that does not
change the number, location or nature of the
periodic points. This is easily done by an algorithm
that finds the periodic point that lies in the nearest
vicinity of a given initial point. All the states in this
virtual basin of attraction will be identified as the
pattern represented by this periodic point. If a
periodic point cannot be reached from an initial
state, then that state will be categorized as “I do not
know”. There are algorithms in the literature for
finding periodic points of dynamical system. For
the purpose of illustration, we use here the classic
Newton’s root finding method (NRFM) [6]. Using
NRFM with N=4, «=3, §=2, we have found
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TABLE I The fixed points
i SlFli] SZFM SSF[” Sf[i]
1 —0.5186 —0.1289 —0.5190  —0.1282
2 —0.1800 —0.6076 —0.3302  —0.6468E—1
3 —0.2428 —0.5491 —0.3536 —0.7057E-1
4 —0.5955 —0.1952 0.1227 0.4119E-1
5 0.2386 0.5679 —0.3522  —0.9470E—1
6 0.1551 0.4656E—1 —0.5736  —0.1758
7 —0.32983 —0.6865E—-1 —0.1763  —0.6110
8 0.0 0.0 0.0 0.0
9 0.4224 0.4342 -0.3641  —0.4786
10 0.4005 —0.1048 0.2215 0.5846
11 —0.3158 —0.8375E—1 0.4144 0.4367
12 —-0.4756 —-0.3918 0.2437 0.6919E—1
13 . —0.3575 —0.7517E—1 —0.2542  —0.5388.

25 fixed points of Eq. (1) (roots of S;,—
FOoN JySi(1)) =0,i=1,....4). These fixed
points are denoted by the vectors Y;=
(SlFm, Sf[i], Sf[i], Sf[’]) where SiF[i], j=1,2,3,4are
the four fixed-point values of the state variables for
the ith fixed point. Table I contains 13 of these fixed
points correct to four significant figures. All the
fixed points were generated by a double precision
routine. Twelve other fixed points are found by
changing the signs of these 12 fixed points (except
Yg). These fixed points are used below for pattern
recognition. We have also found a large number of
periodic points of higher periods but they are not
discussed in this work.

1II. PATTERN RECOGNITION

The phase space, in the presence of NRFM, is
visualized as disjoint regions of fixed points with
virtual basins of attraction. When the dynamics is
run in this space with an arbitrary initial state, one
of the three things happens: (a) the state evolves into
a known fixed point and the pattern is recognized;
(b) no fixed point is reached (this is the “I do not
know” behavior of the network); (c) a new fixed
point different from the known ones is found. This
new fixed point is added to the memory. In this way
all the fixed points that are accessible by the
algorithm can be found if the initial list of fixed

points is not complete. One may say that the phase
space has been partitioned into regions of dynamic
persistence (fixed points with virtual basins).

We now discuss the pattern recognition by
considering the fixed points as the patterns them-
selves. Our task is to retrieve the fixed points. The
initial state, e.g. near Y, (denoted by y,=

(J%?J’%ay%ayézl))a is defined by
Y, = Yo +e(R)r, (4)

where, e(R) is a unit vector whose direction varies
according to a random number R and r is a real
number. The second term in (4) thus gives the
distortion of the fixed point Y, in the form of a 4-
dimensional hypersphere with radius r. Figure 1
illustrates statistically the retrieval rates for the
fixed points at various radii. The numbers on the
concentric circles are the ratio (percent) of number
of successful recognitions to the total probes for
recognizing the fixed points. First, the retrievability
depends on the noise (radius r) determining how far
y»is from Y,. Then, it depends on the patterns. For
example, the retrievability for r=0.2 is as high as
0.99% in Fig. 1(a), while it is only 81% in Fig. 1(c).
This is a reflection of the location of the fixed points
and their virtual basins generated by the NRFM. It
may be reminded that the synaptic connection
matrix of our model is asymmetric. We would like
to stress that it is the root finding method (in this
paper NRFM) that determines the fixed points and
retrieves a fixed point from a state which has only
partial information on it. Without using this
approach, the fixed points cannot be found,
although we know that they exist.

The scheme presented above for pattern recogni-
tion in chaotic systems is different from that used in
nonchaotic models. In the usual nonchaotic models
patterns are stored in synapses (e.g. [7-9]) such that
the dynamics alone drives an initial state having
partial knowledge of a pattern to a fixed point
(pattern). For chaotic networks, we need an
additional algorithm such as the NRFM to drive
a state to a fixed point (pattern). Thus, with the help
of schemes such as the NRFM, chaotic systems can
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FIGURE 1 The retrieval of the fixed point (a) Yi; (b) Ya; (¢) Ys; (d) Yio. The radii of the circles from inner to outer are 0.1,
0.2, 0.3 and 0.4.

be used for pattern recognition. Compared to non-
chaotic systems, the role of synapses on patterns is
less direct. At this stage, we can only say that the
synapses (along with other parameters) influence
the number and locations of the distinct fixed points
which we have considered as patterns. Search for
fixed points (periodic orbits) in dynamical systems
is treated in this work as a process of pattern re-
cognition. One advantage of using chaotic systems

for pattern recognition is that the storage capacity
can be increased enormously. With suitable higher
dimensional chaotic systems pattern recognition
using chaotic systems may be very useful for
practical purposes. In this paper, we have catego-
rized the fixed points of our model system as
patterns. The question of mapping a given geo-
metric shape into the fixed points remains to be
addressed.
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