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The statistical polymer method is based on the consideration of averaged structures of all
possible macromolecules of the same weight. One has derived equations allowing evaluation
of all additive parameters of macromolecules and their systems. The statistical polymer
method allows modeling of branched crosslinked macromolecules and their systems in
equilibrium or non-equilibrium. The fractal consideration of statistical polymer allows
modeling of all kinds of random fractal and other objects studied by fractal theory. The
statistical polymer method is applicable not only to polymers but also to composites, gels,
associates in polar liquids and other aggregates.
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INTRODUCTION

Theoretical description of branched crosslinked
polymers, gels and aggregates formed in random
processes was traditionally very problematic for
polymer science and related disciplines because of
difficulties of taking into account all possible
structures. Classic methods elaborated by Flory
for linear macromolecules [1] are not applicable, in
most cases, to branched, especially crosslinked
structures [2]. Moreover, if systems of branched
crosslinked polymers are in non-equilibrium, their
description is impossible without combination of
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special statistical methods [3,4] and non-linear
dynamics of chaos [5].
The problem of modeling of branched cross-

linked macromolecules and aggregates was solved
recently by the statistical polymer method [3,4].

STATISTICAL POLYMER METHOD

Let us consider the statistical polymer method in
the following order:

(1) modeling of separate macromolecules without
crosslinking;
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(2) modeling of equilibrium polymeric systems,
evaluation of thermodynamic functions, first
of all chemical potential;

(3) modeling of complex systems (crosslinking
and/or non-equilibrium state, etc.);

(4) possible applications.

MAIN NOTIONS, DEFINITIONS AND
EQUATIONS

Statistical Polymer

Statistical N-mer is defined as the averagedstructure
formed by all possible structures of N-mers and
exhibiting allpossible structures ofpolymers contain-

ing the same number of monomeric units. In the
light of this definition, polymeric systems are
considered as sets of assemblages possessing struc-
tures averaged on all polymers containing the same
numbers ofmonomeric units statistical polymers.
All interactions in polymeric systems are con-
sidered as result of interactions of statistical
polymers, and the evaluation of additive (extensive)
parameters like energy, entropy etc may be
carried out through statistical polymers instead of
branched crosslinked ones.
For large values of N, the number of possible

structures is, obviously, much more than the
number of monomeric units through the system,
and most of the possible structures cannot realize,
that could seem to be a drawback of the statistical
polymer method. However, if the relaxation time of
reactions is much shorter than the measurement
duration, one may assume the dynamic equilibrium
between various structures, that determines correct-
ness ofthe statistical polymer method even for large
enough N. Moreover, because of quantum effects
the traditional description of macromolecules (as
specified structures) is not exact, and this factor of
eventual error caused by quantum features of the
system allows application of the statistical polymer
method for very large macromolecules.
Now, let us consider characteristics of statistical

polymer which determine its ability to interact with
other statistical polymers and monomers.

Vacancy of the statistical polymer is defined
as the capacity of the statistical polymer to capture
a monomeric unit. The number of vacancies is
denoted as V(N). It is obvious that the capture of
an additional monomeric unit by statistical N-mer
leads to the formation of (N+ 1)-mer.
Extreme unit of the statistical polymer is defined

as the monomeric unit which has one only bond with
the main structure of the statistical polymer. Let
us denote the number of extreme units in statistical
N-mer as U(N). It is obvious that breaking of the
bond of the extreme unit with the main structure
of statistical N-mer leads to the formation of
(N- 1)-mer.

Processes of polymerization-destruction in a

polymeric system are described as combinations
of reactions of statistical polymers:

Pol(N) + M : Pol(N + 1), (1)
Pol(N1) + Pol(N2) : Pol(N1 + N2), (2)

where Pol(N) is the statistical polymer containing N
units; M is a monomer. Since reactions (2), in
their turn, can be written as combinations of reac-
tions (1), these can be considered as independent
reactions. Since the process of polymerization is
determined by vacancies, whereas destruction- by
extreme units, reactions (1) can be written in the
following form:

Vac(N) + M : Ex(N + 1), (3)

where Ex is the extreme unit. If no crosslink forms,
the values of V(N), U(N) are given by the following
recurrent equations [3]:

V(N + V(N) + m-1 2 + N. (m-1), (4)

U(N + 1)- U(N) + 1-mU(U)
V(N)

+ U(N) 1-
V(N) (5)

where m is the maximal number of possible
branches (functionality minus one).
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The kinetics of independent reactions like (1) is
given by

W+(N) -K+[N(m- 1)+ 2]CNC1,
W_ (N) K_ U(N) CN,

(6)

where W+, W_, and K+, K_ are the rates and the
rates constants of the direct and the inverse
reactions, respectively, and CN is the concentration

(mole fraction) of the N-mer. For equilibrium,

CN+IW+(N) W_(N + 1) = C1CN
K+[U(m- 1)+ 2] Kr (N). (7)K_U(N+ 1)

K+ Kl" exp ggT]’ (8)

K_ K2 exp ggT]’ (9)

Kr(N) K0" exp(- AR) V(N)
"U(N+ 1)’ (10)

where T- Temperature, Rg gas constant;

K1
K0- and AE-Eal-Ea2. (11)

For large values of N, one obtains

lim U(N) aN,
N--c

m-1
c- 2m----L- (for M- 1, rn > 1), (12)

K+ (2m- 1)Kr(n o) 25_ (13)

The statistical polymer method can be employed
also for the description ofmulticomponent systems,
the relevant equations are derived in [4].

CROSSLINK FORMATION

Let us consider crosslink as the bond between two
monomeric units inside the same macromolecule.
Hence, crosslink can form only between monomeric
units possessing vacancies. Each vacancy can

participate in the formation of crosslink with
monomeric units which possess vacancies. Hence,
the sum number of possibilities of ring formation is

1V(N)[N- 1-B0(N)], (14)

where B0(N) is the number of monomeric units
which have no vacancies. The value of B0(N) can be
estimated from

Bo(N + l) Bo(N) + B1 (N)/V(N) (15)

taking into account that for monomeric units with s

vacancies (1 <_ s <_ (m 1)):

B(N+ 1) Bs(N) + (s + 1). B(s+l)(N)/V(N)
s. Bs(N)/V(N);

Bm(N)- U(N).
(16)
(17)

The rate of reaction of crosslink formation is

mc+ Kc+Cr. (18)

The rate of reaction of crosslink destruction is

Wc- -Kc-Gr, (19)

where Gr(N) is the number of crosslinks, whereas

Kc+ and Kc_ are the constants of crosslink forma-
tion and destruction, respectively.

In equilibrium:

Wc+ Wc_ == Kc+ Cr Kc- Gr, (20)

Kc+ Gr 2GrKcr Kc-- C-- V(N)[N- Bo(N) 1]" (21)

The crosslink formation reduces the number of
vacancies and extreme units:

V’(N) (m 1)N + 2 2Gr, (22)

U(c+I) (N) U(C) (N) mU(C) (N)Gr(N)/ V(N). (23)

or

U(l U H 1-
VO 2(kk=l

(24)
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where index "0" means the non-crosslinked state,
1- the number of crosslinks.
The ring formation reduces both the number of

vacancies and that of extreme units, therefore one

may assume that the weak ring formation does not
significantly influence the weight distribution of
polymers.

The chemical potential of statistical N-mer is
given by

#(N) -eoVr(N) TINS(1) + NAS(1)
N 2V(n- 1) 1-Jr- Rg In

(m + 1)Urn(n)n--1

(31)

THERMODYNAMIC FUNCTIONS OF
NON-CROSSLINKED STATISTICAL
POLYMERS. NON-EQUILIBRIUM

From Eq. (10) one obtains

where CN is the concentration of N-mer; S(1)-the
entropy of monomer.
Now, let us consider a non-equilibrium chemical

process in a polymeric system described in linear
approximation:

ASo

RgT
AH_ AEa
RgT

nt- lnK0 ggT + In Vr(N)

In Uz(N+ 1). (25)

However, the heat effect of a reaction of polymer-
ization

AH AEa 2e0, (26)

where o is the energy of a vacancy (all vacancies are
assumed to be equivalent!). From Eqs. (25) and (26)
one obtains

where indexes "1" and "2" correspond to the initial
and final states, respectively. The Gibbs’ energy in
these states is given by

AG1 (#n + RgTlnCln)Cn, (33)
n=l

AG2 Z(#2, + RgT ln C2,)C2,. (34)
n=l

The moving force of the process (32) is

AS(N) Rg[lnK0 + Vr(N) -In Ur(N + 1)].
(27)

However

AG-- (#o + RgTlnC)Cn
n=l

n=l n=l

(35)

AS(1) Rg[lnK0 + In V(1) -In U(2)]. (28)

Taking into account that
U(2) 2 [3], one obtains

V(1) rn + 1, and

where f. #,,C,,.
Description of non-linear situations can be

carried out in the same style, using methods of
dynamic of chaos [5].

AS(1) 2
In K0 +ln (29)Rg m+ 1’

AS (N) AS(1) -+- Rg In
2 Vr (N)

(m + 1)U(N+ 1)"
(30)

COMBINATION OF THE STATISTICAL
POLYMER AND FRACTAL METHODS

Let us consider statistical N-mer (N- oc) as the
fractal with dimensionality Dr. Such approach can
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be compared to the accepted practice of the
construction of fractal clusters by the Monte-Carlo
method of random addition of new units; only
difference the statistical polymer is automatically
random and contains all possible structures of
randomly constructed clusters (of course, if they
contain the same number N of units). We may
assume that the statistical N-mer can be considered
as the averaged structure obtained after the infinite
number of operations of constructions of N-meric
clusters.
We note some obvious advantages of the

statistical polymer approach in comparison with
the Monte-Carlo method of the construction of
cluster: (1) Monte-Carlo method is not strictly
random, that causes several errors which are
reduced and disappear only for -meric clusters;
(2) the application of the Monte-Carlo method to
the 3-dimensional systems is too difficult, whereas
the statistical polymer method is applicable in all
situations, that offers much more freedom to the
researcher; (3) the Monte-Carlo method furnishes
numerical results, whereas the statistical polymer
method allows the obtainment of analytical ones (at
least, for all additive parameters ofmacromolecules
and polymeric systems); (4) for the obtainment of
the same result, the Monte-Carlo method requires
much more calculations.

Since we consider statistical N-mers (at very
large N) as random fractal-like objects, we need
to define the characteristic dimension (size) of the
fractal statistical polymer. Let us define the char-
acteristic size of fractal statistical N-mer (at very
large N) as follows:

N

Z(N) doZ Wk(U),
k-1

(36)
if Rk(N) > 1,

W(N)-
R(N) for R(N) < 1.

where do is the characteristic size ofmonomeric unit

(do v/3, Vo is the volume of monomer unit), and
the parameter R(N) (presence) characterizes the
distribution of monomeric units inside the statis-
tical polymer [3]. Since the validity of the fractal

approach is assumed, the volume and the surface
area of such N-mer are given by

Vf- V(N) [Z(N)]zf,
Ar- A(N) [Z(N)]Dr-l,

(37)

where Dr is the fractal dimensionality.
On the other hand, the same parameters are

easily estimated from the total number of mono-
meric units:

Vp V(N) Nvo,

Ap A(N) Nao osN(vo):/3,
(39)
(40)

where a0 is the surface area per monomeric unit, and

cs a normalization coefficient.
According to assumptions made above, Eqs.

(36)-(38) should be correct at very large N, while
for low and moderate values of N, they should not.
This means that the total divergence between the
values obtained from Eqs. (37)-(40) is large at small
N and reduces at infinite N, that is characterized by
the following functional ref. [4]:

v- v(Ul, N2)-4(N2- Ul + 1)
N2 [.Vf(N) Vp(U)] 2

x Z Vr(N) J (41)
U=Ul LVp (u)

A-’A(NI,N:) =4(N2- Ul + 1)
N [Af(N) Ap(N)] 2

x Z At(N) ] (42)
N=N1 lAp (N)

Functional (41) was applied to the computer
treatment of Eqs. (36), (37), (39) at various m, with
minimization of the functional (41); the varied
parameter of optimization was Dr.
The general correlation between values of V(N)

estimated from Eqs. (36), (39) at rn 3, N1 500,
N2 2000, is presented in Fig. 1.
We see that the relative divergence between

curves Vf( and Vp( is very large at small N,
but decreases at large N. The relative square
dispersion is (,)min =0.052 (relative error about



208 F.A. ROMM AND O.L. FIGOVSKY

Dimension of Macromolecule: Statistical Polymer (-) and Fractal Approach(o)
70

6O

50
2

40

.- 30

20

0

Number of Monomeric Units 104

FIGURE

0.24) and is caused mostly by the initial parts of
both curves, that is enough good for the correlation
with single optimization parameter.

In this case, the fractal dimensionality Df-- 2.32.
In the general case, of course, the fractal

dimensionality depends on m:

lim Dr 1, lim Dr 3.
m--l

materials science, because many of widespread
materials exhibit macromolecule-like fragments.
However, in such cases one should take into
account that there are two kinds of interactions:
inside macromolecule-like fragments ("strong"
interactions) and between them ("weak" interac-

tions). "Weak" interactions determine first of all
mechanical stability, permeability and sometimes

adhesion properties of the material.

CONCLUSIONS

The statistical polymer method is based on the
consideration of averaged structures of all possible
macromolecules of the same weight. One has
derived equations allowing evaluation of all addi-
tive parameters of macromolecules and their

systems. The statistical polymer method allows
modeling of branched crosslinked macromolecules
and their systems in equilibrium or non-equi-
librium. The fractal consideration of statistical

polymer allows modeling of all kinds of random
fractal and other objects studied by fractal theory.
The statistical polymer method is applicable not

only to polymers but also composites, gels, asso-

ciates in polar liquids and other aggregates.

APPLICABILITY OF THE STATISTICAL
POLYMER METHOD

The statistical polymer method allows modeling of
not only polymers but also gels, several composites,
associates in polar liquids, etc.
The combined fractal-statistical polymermethod

is applicable to all objects described by fractal
theory, first of all random fractals.
The statistical polymer method can be very

effective for the solution of numerous problems of
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