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This paper aims to make further contributions to the exploration of the symbolic dynamics
generated by the logistic map at Feigenbaum accumulation point. In particular we are
interested in the grammar of these sequences; completing earlier studies we study here
arbitrary partitions also. Our main aim is the investigation of the special grammars which
characterize the long-range correlations between letters. Considering these sequences as
standard examples of a complex system, we introduce and discuss a complexity function
derived from the conditional entropies. Further we discuss local predictabilities.
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1 INTRODUCTION

One of the best studied systems in nonlinear
dynamics is the logistic map at Feigenbaum
accumulation point, where multiperiodicity
changes into chaos [1-3]. Feigenbaum investigated
in detail the properties at this critical point of the
dynamics and in particular the scaling behaviour
[1]. In this article we would like to make fur-
ther contributions to the exploration of the proper-
ties of the symbolic dynamics generated by the
Feigenbaum map. We consider the Feigenbaum
sequences as prototypes of complex systems, which
are characterized by a hierarchy of structures and
correlations on all scales. In particular we are
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interested in the grammar of these sequences, which
appears to be a special but very powerful tool to
characterize these structures. Completing earlier
studies [4—7] we study here arbitrary partitions also.

As well known, the special grammar which
characterizes the accumulation point and in parti-
cular the long-range correlations between letters are
connected with the criticality of the dynamics. In
nonlinear dynamics and in statistical mechanics
criticality plays a special role. We know for example
that thermodynamical systems at critical values of
temperature and pressure have very special proper-
ties. In particular we know that critical conditions
imply the existence of long-range correlations with
respect to time and space having special scaling
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properties. As shown first by Haken and Schlégl,
nonequilibrium systems may behave in a quite
similar way, if the control parameters are near to
a bifurcation point. In particular we may expect
that there exist long-range correlations and scaling
properties. Several structures generated by evolu-
tionary processes and in particular human writings
seem to have similar properties [8].

As shown by Grassberger [3] and in our earlier
work [4—6] the logistic map operating at the
accumulation point shows infinite-range correla-
tions of a very special type. The purpose of this
paper is the investigation of these long-range
correlations using methods of entropy and gram-
mar analysis. Besides the principal interest in the
analysis of long correlations our main aim is related
here to the question of grammatical structures at
the critical point. We consider the long-range
correlations and hierarchical grammatical struc-
tures appearing in our particular example as proto-
typical for complex systems. Based on this view we
propose in the last part a new measure of complex-
ity which generalizes Grassberger’s measure com-
plexity and the classifications proposed by
Szepfaluzy [13].

2 FEIGENBAUM ACCUMULATION
POINT, A GRAMMATICAL APPROACH

The logistic map, defined by
Xny1 = f(Xn) = rXa(1 — X4), (1)

shows a lot of nonlinear phenomena, like period
doubling scenario, intermittency, crises and fully
developed chaos [2]. If one starts with the control
parameter r=1 and increases r then one can
observe a route from order to chaos: the period
doubling scenario. The transition to chaos occurs
at the critical value r.,=3.56994567..., called
Feigenbaum accumulation point. With decreasing
distance to the accumulation point the complexity
of the dynamics increases, proceeding from multi-
periodicity to chaos. In this way the route to chaos
in the logistic map may shed some light on the old

problem as to what complexity is, how it arises and
which measure can be applied to characterize it. The
microscopic probability density of the Feigenbaum
accumulation point has a Cantor structure [1].
Corresponding to the Cantor structure of the
microscopic density the generating partition at
Xmax =3[0, Xmax] = 0 and (Xmax,1]— 1 leads to
a selfsimilar symbol sequence, which we want to
call Feigenbaum sequence. Entropy analyses of
the Feigenbaum sequence have been done by
Grassberger [3] and ourselves [4,6,7].

A new approach in the investigation of the
Feigenbaum sequence is based on a symbol
sequence generator [6,7]. A symbol sequence gen-
erator is a set of deterministic and stochastic
grammatical rules to construct symbol sequences.

If one applies the replacement rules

1—-10
0—11 2)

to an infinitely long Feigenbaum sequence then one
gets the same symbol sequence. This rescaling
invariance is the defining property of selfsimilarity.
These replacement rules establish a link to gram-
matical rules in the context of formal languages [10].
We constructed a deterministic symbol sequence
generator producing the binary Feigenbaum
sequence on the basis of the replacement rules [6,7]:

ap = 1,
ar = 10, 3)

Apyl = 0p O 0y—1 © Ap—1.

Here a; denotes a symbol sequence of length 2°. The
symbol o means concatenation of two subse-
quences. The symbol sequence generator has the
following property.

LEMMA 1 The sequences a, and a,_ia,_, only
differ in the last symbol.

One can find the proof of this lemma in [6].

Another example of a selfsimilar symbol se-
quence is the binary rabbit sequence. Investigations
of this sequence including the calculation of
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the conditional entropies had been done by
Gramss [11].

Selfsimilarity already occurs in the symbolic
dynamics of the period doubling scenario. There
are relations between our symbol sequence gen-
erator and a construction principle for the symbolic
dynamics of the period doubling scenario intro-
duced by Schroeder [12]. He constructed the symbol
sequences of the superstable periodic orbits in the
following way: One chose the partition: Xp,x =
1= C, [0,Xmax) » L and (Xpax, 11— R. A super-
stable orbit of the period 2 is the starting point ((4),
starting with k£ = 0). First one writes two periods of
the superstable orbit of the period 2*. If the number
of R left from the second C is uneven, then the
second C has to be changed to L. Otherwise the
second C has to be changed to R:

period 1: C
period 1 — period 2: CC — CR
period 2 — period 4: CRCR — CRLR
period 4 — period 8: CRLRCRLR
— CRLRRRLR (4)

This algorithm is connected with the microscopic
dynamics. We consider f(0.5,r) and f(0.5,r+ 9).
The attractor is the superstable periodic orbit of the
period 2* for the parameter r and the superstable
periodic orbit of the period 2! for the parameter
r+ 6. The gradient of the logistic map is negative in
the interval (xp.yx, 1]. If the microscopic iterates of
these points fall into R then a change of the sign in
their distance f7(0.5,r+6) —f%(0.5,7) occurs. An
uneven number of sign changes leads to a sign
change which means the second C is changed to L.
An even number of sign changes does not lead to a
sign change which means the second C is changed
to R.

Our symbol sequence generator is obviously
connected with the symbolic dynamics of the
superstable periodic orbits. If one reads the a; in
(3) in opposite direction then they correspond to the
symbol sequences of the superstable periodic orbits
in (4) until the last symbol (but the last symbol is not
fixed in (4)). If one maps the 2*th symbol of the

period 2°* ! onto the first symbol of the period 2*

then one can read the sequence of period 2! as a
continuation of the sequence of period 2* in
opposite direction. The sequences constructed in
(4) and read in opposite direction are identical to
the sequences constructed in (3).

This connection also allows the conclusion that
Xmax =15 18 the microscopic starting point, which
iterates exactly producing the symbol sequence
generated by (3) on the macroscopic level.

3 ARBITRARY PARTITIONS

In the previous section we only considered symbol
sequences resulting from the generating partition of
state space. In this section we investigate symbol
sequences resulting from arbitrary binary partitions
of state space.

For this purpose we need our symbol sequence
generator (3): On the basis of Lemma 1 one finds in
the original binary Feigenbaum sequence repeti-
tions of subsequences 4 of length 2 — 1, z>0 and
there is one changing symbol, denoted Sy, S,
S>,..., between two repetitions, Fig. 1. As a
consequence of selfsimilarity the symbols Sy, Sy,
S5, ... form the same selfsimilar sequence (besides a
permutation of the alphabet).

The symbols S; have the same history and the
same future. They correspond to a microscopic
trajectory in the vicinity of 0.5, either left of 0.5
(symbol 0) or right of 0.5 (symbol 1).

For all m >0 only one of the 2™ backward iterates
of order m of 0.5 is part of the attractor because all
symbols S; have the same history. If one considers
a long repetitive subsequence 4 and reads it back-
wards then one gets the information for which
backward iterate exists: The first symbol marks the
first backward iterate of 0.5: 1 — right, the second

——t
A Sy A S, A S, A
FIGURE 1 Composition of the Feigenbaum sequence.
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FIGURE 2 Feigenbaum accumulation point: histogram.

symbol marks the second backward iterate of
0.5: 0 — left, etc. It follows that the rules, which
determine whether a point lies left or right of 0.5,
also apply to the first, second, etc., backward
iterates of 0.5. If one chooses a binary partition at
a backward iterate of 0.5, which is part of the
attractor, then the symbol sequence generator will
be the same (the initial values may be changed) and
the resulting symbol sequences are selfsimilar.
Due to the Cantor structure of the attractor the
support of the invariant measure consists of a
fractal set of points. Looking at this set with a
finite resolution one can detect a set of intervals
which hint at the hidden selfsimilar structure
(Fig. 2). The backward iterates of 0.5 never can
match the edges of the tiny intervals since consider-
ing a small section around a backward iterate one
will always see the microscopic trajectory on both
sides of the backward iterate. Consequently the

forward iterates of 0.5 match the edges of the tiny
intervals. All backward iterates of 0.5 are placed
between two forward iterates.

The partition at a forward iterate or at a point
which is not part of the attractor leads to a periodic
sequence. Considering a small section around the
splitting point one will see the microscopic trajec-
tory only on one (forward iterate) or on no (point is
not part of the attractor) side of the splitting point.
The symbols S; are identical. The symbol sequence
is periodic. One finds selfsimilarity on a finite
number of scales only.

4 ENTROPY, COMPLEXITY AND
PREDICTABILITY

Now we will apply Shannon’s entropy concept to
the analysis of the sequences discussed above. Let us
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start with several definitions [7-9]: We assume that
Ci,...,Cy (5)

is the alphabet of the sequence which consists of A
different letters. A definite subsequence (a block) of
length » is denoted by

Ay,..., A, where 4; € {Cy,...,Cy\}
foralli=1,2,...,n. (6)
Further we assume that
P (A4, ..., An) (7)
is the probability of the subsequence 4, . .., 4, and
that
p(Anr | A1, An) (8)

is the probability to find after the block 4;,..., 4,
the letter 4,,, ;. With these notations we define:

1. The entropy of a block of length #:

H, = — Z p(”)(Al,...
AiyyAn

, Ay)logp® (41,. .., Ay).

©)

2. The conditional entropy as the mean uncertainty
of the letter which follows a block of length #:

hn =y — Hn, (10)
ho := H\. (11)
3. The entropy of the source (after Shannon,
Khinchin und McMillan)
h:= lim H(n) = lim A,. (12)
n—00 n—00

For Bernoulli-processes we have
h0=h1=h2='-'=h=10g)\. (13)
For first order Markov-processes we get

h0>h1:h2="'2h. (14)

For processes with the period p we find

H,=const foralln>p (15)

and
h,=0 foralln>p. (16)

For quasiperiodic processes holds

-1

hy ~n for n — oo. (17)

Evidently the sequences generated by the logistic
map at the Feigenbaum point, which correspond to
a limit of multiperiodicity, belong to this class. As
shown in our earlier work [4—6] the entropies of
these sequences behave asymptotically as

H, = (logn) + log1.5; (18)
4
hy = e (19)

The same asymptotics have the rabbit sequences
[11]. In some sense quasiperiodic processes are the
most complex structures among the processes
discussed above. Lai and Grebogi [14] characterize
a complex structure by the properties:

the system consists of many components,

the components can be either regular or irregular,
the components exist on different length and/or
time scales,

the system exhibits a hierarchy of structures.

We have discussed above several characteristics
of the hierarchy of structures shown by the
Feigenbaum sequences. We believe that the
Feigenbaum sequence may be considered as
the prototype of a complex structure. At least for
linear structures the conditional entropy and the
way this function is decaying is a powerful measure
for the hierarchy of structures contained in the
system. Some time ago Grassberger [3] introduced
the so-called effective measure complexity (EMC),

EMC = Y (h,—h). (20)

0,...,00
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The EMC is zero for Bernoulli-sequences and has
afinite value for Markov-processes and for periodic
processes. However for our particular example the
EMC is divergent. Therefore we propose to con-
sider in this case the function

&n :hn —h (21)

and call g, the “function of measure complexity”
(FMC). The FMC allows the classification of
sequences with infinite EMC. The FMC expresses
the character of the memory of the process and the
way the correlations are decaying. In this connec-
tion we remember that already Szepfalusy [13]
introduced in 1989 several classes of sequence
structures corresponding to the way of decay of
the FMC. Following his ideas we introduce the
following classes:

e sequences with divergent EMC and an FMC
which decays at n — oo according to the power
law

on 2 (22)
with a < 1;

e sequences with divergent EMC corresponding to
the limit & =1 of the class one;

e sequences with power law decay and o > 1;

e periodic sequences, corresponding to the case
that the limit is reached in a finite number of steps
gn=h, =0 for n > ny,, where np,,, = finite;

e sequences with Markov character corresponding
to a g, which reaches the limit after a finite
number of steps or by an exponential decay of g,,.
In this case the limit 4 is assumed to be finite;

e sequences with Bernoulli character with A=1
and g, =0 for all n.

We propose here to consider all sequences
belonging to the first two classes as complex linear
structures by definition. The third class is clearly
distinct from the first two classes, eventually we
may denote it as semi-complex. The complex
structures in the sense defined above are character-
ized by one index . In this sense the Feigenbaum

sequences as well as the rabbit sequences belong to
the complexity class a=1.

A still more refined classification is possible by
a scaling formula proposed by Ebeling and
Nicolis [4],

H, = nh+ gn*(logn)" +e (23)
with
0<u<1l or p=1, u <O0. (24)

This leads to the following asymptotics of the
FMC:

2 - (mo(logn)" + pu(logny ™). (25)

- nl—ko

In the special case 1 =0 and po=1—a we come
back to the previous classification by one index.
The Feigenbaum sequence corresponds to py=0
and pu;=1.

In all cases where g # 0 holds, we find long-range
order in the sequence [9]. We consider long-range
order as a necessary property of complexity. In this
way we may define, generalizing the investigated
properties of the Feigenbaum sequence: A linear
symbol sequence is called “complex sequence” if, in
the limit of large n, the FMC g,=h, —h decays
according to a power law with « < 1. In this case the
sequence is characterized by an infinite hierarchy
of structures. A finer classification is possible by
means of the “index of complexity” « or by the two
“indices of complexity” o= 1 — @ and u; according
to the scaling given above [4].

Let us consider now the question of predictability
of complex sequences. Due to the existence of a
hierarchy of correlations the predictability of
complex sequences and in particular the local
predictability may be rather high [9]. We define
the average predictability as the difference between
the maximal uncertainty and the average uncer-
tainty: In log()\)-units the average predictability of
the state following a trajectory (history) of length »
may be expressed by

rh=1—h,, (26)
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This is a number between 0 and 1, where 0
corresponds to Bernoulli processes and 1 e.g. to
periodic or stable deterministic processes. Formally
we may express the predictability as an average

tn=(ra(d1---Ay)) =1 = (hu(Ay - - 4p)).

This leads us to the definition of a local
uncertainty of the predictions of the state following
after the particular subtrajectory 4;- - - 4, of length
n by the expression

Ay Ay) =1 _ZP(A"“ |4 ---A4,)
X log p(Ays1 | Ay - A,) 7"

The second term expresses the conditional
uncertainty of the next state (1 step into the future)
following behind the measured trajectory 4;---A4,
(A; € alphabet). The predictability r,(A4;---4,) is a
quantity which is local and fluctuates if we go along
the string, since the local “history” A;- - - 4, changes
from position to position. For practical applica-
tions, one is very much interested in such local
predictabilities. The reason is that one needs in
practical applications always concrete predictions
based on observations of some concrete history of
finite length n. In other words one is more interested
in concrete predictions than in somehow abstract
“average predictabilities”. The Feigenbaum se-
quence is a very good example how one can predict
the local continuation of the string if some pre-
history is known. One can make good predictions if,
locally, one of the known grammatical rules apply.
Just one example of a predictability with certainty 1:
If we observe a letter “0” in the string, we are 100%
sure that the next letter will be a “1”, the
predictability is one r1(“0”) = 1. The continuation
of a “0” by a “1” is certain since the grammatical
rules do not allow to find the subsequence “00”. If
we observe a “1” in the string we are rather
uncertain, whether the next letter will be a “1” or
a “0”, however we can reach more and more
certainty of the prediction by looking at the
prehistory of the observed “1”. By comparing
the local prehistory with the known grammatical
rules we are able to make sometimes very good

predictions. In this way the Feigenbaum sequence
may serve as an excellent example showing how the
study of grammatical rules may serve to solve the
problem of local predictions.

In earlier work we considered entropies and local
predictabilities in texts and in biosequences on a
more empirical basis [8,9] and by developing
theoretical models [15]. We have found some evi-
dence that for texts we have a <1 and 1/(1 —a)=
integer. On the basis of several examples we could
show that the predictability in texts and in
biosequences fluctuates indeed rather strongly and
may locally be very good. For example, after a
comma or a point in a text must come a space and
we are sure about this up to possible printing errors.
This of course is due to grammatical rules which the
letters in a text have to observe. Much less is known
about the grammatical rules in biosequences [16].
We note that the local structures in strings may also
be considered from the point of view of correlated
fluctuations [17—19]. Another closely related fluc-
tuation quantity is the transinformation [20]. For
DNA-strings extensive calculations of the trans-
information are available [20].

5 CONCLUSIONS

We have given in this work a more detailed analysis
of the structure of the sequences generated by the
logistic map at the accumulation point. In some
sense these sequences are a prototype of complex
linear structures. Coming from parameters below
the Feigenbaum point, the sequences show multi-
periodicity and with decreasing distance to the
accumulation point, more and more complicated
structures arise. The structures at the accumulation
point itself are hierachical and may be characterized
by grammatical rules in the way shown in Sections 2
and 3 of this work. Another way to express the
hierarchy of structures is by the way how the
conditional entropies decay. Infinite hierarchies of
structures correspond to power law tails in the
decay of the conditional entropies with n— oo.
Based on the characteristic exponents of the



194 W. EBELING AND K. RATEITSCHAK

entropy decay, the “degree of complexity” of a
given infinite sequence may be characterized by one
index o<1 or by a set of indices. Finally we have
shown that complex sequences allow sometimes
rather good local predictions of the continuation of
the string, if locally grammatical rules may be
applied. In this way we have shown that complexity
and predictability do not exclude each other.
Complex structures may be predicted if the hier-
archical order structures may be detected. Thus as
a rule good predictions of complex structures
require extended research on grammatical rules or
local histories.
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