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The paper presents an approach to the simulation of friction interaction. The model does not
use any physical descriptions of the processes in the system, but it has simple physical
interpretation. It is based on one qualitative experimental result the value of first Lyapunov
exponent drops with normal load. It is shown that the logistic map could be considered as the
simplest model of continuous contact. The generalization of the model (which takes into
account the discreteness of the real contact) gives results very similar to the experimental
ones. It is in the form of a dynamic ensemble with variable structure (DEVS), which has some
interesting properties particularly bifurcation diagrams.
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INTRODUCTION

The usual way of simulation of friction interaction
is based on the methods ofmechanics ofcontinuous
media (Kragelsky et al., 1982; Leibovich, 1968).
Such a description of contact area includes

1. partial differential equations (e.g. in displace-
ments or stresses),

2. constitutive relationships (like state equation
Hooke’s law for elastic bodies),

3. local conditions of fracture, and
4. conditions of body’s interaction (boundary

conditions).

Thus for the body which occupies the domain f
we have: from 1, the equation of equilibrium
(Landau and Lifshitz, 1987)

piJi- rij,j in f

(p density of material, u displacement, cr0.
components of stress tensor); from 2, the state
equation and relationships between the displace-
ments (ui) and the strain tensor (c0.),

cr F(c, ,...),
Cij 1/2 bli,j + blj, -- blk,j blk,
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from 3,

G(aO’,...,)G*

(the local conditions of fracture and the state
equation may be written in some other forms); and
from 4, the set of boundary conditions on 0f.
The complete model should include also the

description of chemical, electrical processes and
heat transfer, but even in the simplest case the
models obtained are too complex to be correctly
analyzed. The nonlinearity in constitutive relation-
ships and the arising of new internal bounds make
difficult not only analytical but also numerical
analysis of the model.

Such a situation is not specific only for the
analysis of friction interaction similar difficulties
are usual for a nonlinear system far from equilib-
rium with many coexisting and interacting pro-
cesses.

In this paper we attempt to build a model of
friction interaction without any physical assump-
tion about the processes in contact area (the
physical interpretation is considered as an addi-
tional way to prove the model). Instead, some
qualitative experimental results are used as a base
for the selection of a mathematical object with the
similar behavior.

EXPERIMENTAL RESULTS

In the previous articles (Kuzmin and Feldstein,
1996; 1997) the dynamic characteristics of friction
interaction and some aspects oftribosystem simula-
tion were considered. In brief the main results of
these investigations are:

1. Friction force Ffr can be divided into two
components dynamic (Fdyn) and static (Fst):
Frr Fdyn + Fst. The characteristic time for the
former is 10-100 ms, and for the latter 10 s and
more.

2. First Lyapunov exponent A1 estimated from a

time series of Fdyn (Wolf et al., 1985) is mainly
positive; that is, in the friction interaction there
exist chaotic regimes.
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FIGURE The dependence AI(P) (from experiment).

3. The value of A1 characterizes the current state of
tribosystem (it includes the two bodies which are

in friction interaction and the media near the
contact lubricants, abrasives, fracture parti-
cles, etc.). This result can be obtained by
comparing the changes of 1 and Fst in opera-
tion. The curves A(t) and Fst(t) are very similar.

4. The value of drops monotonically in a wide

range of normal load P. Figure shows the
dependence A(P).

THE MODEL OF CONTINUOUS
CONTACT AND PHYSICAL
INTERPRETATION

Let us try to build the model of friction interaction

which has the dependence A(P) like the experi-
mental one.

Find first the mathematical object which has the
monotone dependence of A on the parameter.
Consider as an example the logistic map

Xi+l #Xi(1 Xi).

This map is well known in nonlinear dynamics.
Figure 2 shows AI(#). This dependence is very
irregular, but roughly we can take that its envelope
grows monotonically with #. (Experiment cannot
give infinite resolution by parameters, that is why
we do not take into account the fine structure of the
dependence.)
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FIGURE 2 The dependence AI(#) for logistic map.
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FIGURE 3 Scheme of near-surface layer.

THE CASE OF DISCRETE
CONTACT GENERALIZATION
OF THE MODEL

In some sense, to build the model it is enough to
postulate that # drops monotonically with the load
P and the variable x is proportional to friction
force, but for an understanding of the model
structure and its parameters it would be better to
offer a physical interpretation.

Suppose that

1. all processes of energy transformation take
place in near-surface layer A of contacting
body (see Fig. 3(a));

2. layer A has a maximal energy capacity E* (if
E> E* the layer is destroyed instantly and in
next time step the underlying layer A’ is
considered as A see Fig. 3(b));

3. the energy of layer A in the next time step is
proportional to the current friction coefficient
k and to the "free capacity" E*-Ei" Ei+I--
aki (E*-Ei). Then taking into account that E-
Ffrl- kPvt, where k is the friction coefficient,
P the normal load, v the sliding velocity, and
the physical time between two subsequent time
steps, we can obtain

Xi+l #Xi(1 Xi),

where X is proportional to ki, and # to 1/P.

Thus there is respectively simple physical inter-
pretation of the model which has a behavior
qualitatively similar to that observed in a number
of experiments.

The model presented above is valid in the case of
continuous contact, whereas real contacts are
always discrete they consist of multiple contact
spots. The integral area of contact grows with the
normal load.
To generalize the model ofcontinuous contact let

us consider an ensemble of N logistic maps. Each
map describes the part of nominal contact area.
Such a part is in the contact with the probability q
and out of it with the probability q. Thus on the
ith step the dynamics of kth element is

f(xik) #x(1 x/k) with probability q,
x/-I

{x with probability l-q,

and the measured variable is

N

Yi--Zxik.
k=l

Let us take for simplicity q P. In the previous
section we obtained that # is proportional to lIP.
To avoid leakage ofx into infinity, let us re-define
the form off(x) in the following way"

K (#/P)(1- x/k), X2 < x < X1,

Xi+ aeX’-xi, xi
k >_ X,

aexi-x2, xi
k <_ X2,

where

X,,2- - #/P,
2
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and the parameter a in our calculations is equal
to 0.1 (see Fig. 4).

Figure 5 shows the dependence of A (calculated
from the full state vector (x, x2,..., Xu)T) on P. It is
more similar to the dependence observed in experi-
ments (there are no sharp peaks and there are
similar non-monotonicities in the region of low and
high loads).
Thus the generalization of the simple model gives

results which are closer to the experimental ones.
The mathematical object proposed in generali-

zation of the model is reasonable to be named
"dynamic ensemble with variable structure"
(DEVS).
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FIGURE 4 Modified logistic map.

BIFURCATION DIAGRAMS OF DEVS

Let us consider DEVS which consists of N logistic
maps

xi+k { #x/(1 x) with probability q,

x/ with probability q

(# does not depend on q).
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FIGURE 5 The dependence A1(P) (from generalized model).
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FIGURE 6 Bifurcation diagrams for N= 10: (a) q=0.05,
(b) q 0.50, (c) q 1.00.
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Figures 6 and 7 show the bifurcation diagrams of
DEVS for various values of q and N respectively.
With the growth of q the diagrams become more
diffuse. After the first bifurcation there are N/
steady states. For one logistic map after the first
bifurcation, the "middle" branch of the diagram

becomes unstable. If N--2 there is stable "middle"
branch. Thus if our description of the system is
incorrect (say we do not know exactly the number
of elements) it is possible to obtain "false" stable
branches of the bifurcation diagrams.

Figure 8 shows the mechanical interpretation of
this effect. Suppose we consider the elastic beam
under the axial load. Figure 8(a) presents the
bifurcation diagram and the possible beam config-
urations. The case of the system of two elastic
beams is shown in Fig. 8(b) (the middle line of the
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FIGURE 7 Bifurcation diagrams for q=0.50: (a) N--10,
(b) U--30, (c) U--50.

FIGURE 8 Illustration of possible effect in DEVS for
N--2.
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beams is observable). It is clear that the straight
line corresponds not only to the straight (unstable)
configuration of the beams, but also to the beams
curved in various directions.

CONCLUSION

The paper presents an approach to the simulation
offriction interaction. The model obtained does not
use any physical descriptions of the processes in the
system, but it has a simple physical interpretation.
The generalization of the model gives results very
similar to the experimental ones. It is in the form
of a dynamic ensemble with variable structure,
which has some interesting properties particu-
larly bifurcation diagrams.

Acknowledgement

The work was partially supported by Russian
Foundation of Basic Research- grant Nos. 97-
01-00396, 96-01-01161.

References

Kragelsky, I.V., Dobychin, M.N. and Kombalov, V.S. (1982).
Friction and Wear Calculation Methods. Pergamon Press,
Oxford.

Kuzmin, N.N. and Feldstein, I.V. (1996). One approach to
tribosystem simulation, Friction and Wear, 3.

Kuzmin, N.N. and Feldstein, I.V. (1997). Chaotic dynamics of
friction interaction, Friction and Wear, 6.

Landau, L.D. and Lifshitz, E.M. (1987). Theory of Elasticity.
Nauka, Moscow, (in Russian).

Leibovich, H., ed. (1968). Fracture. An Advanced Treatise.
Academic Press, New York and London.

Wolf, A., Swift, J., Swinney, H. and Vastano, J. (1985).
Determining Lyapunov exponents from a time series. Physica
16D (3) 285-317.


