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The Euler equations, namely a set of nonlinear partial differential equations (PDEs),
mathematically describing the dynamics of inviscid fluids are numerically integrated by
directly modeling the original continuous-domain physical system by means of a discrete
multidimensional passive (MD-passive) dynamic system, using principles of MD nonlinear
digital filtering. The resulting integration algorithm is highly robust, thus attenuating the
numerical noise during the execution of the steps of the discrete algorithm. The nonlinear
discrete equations approximating the inviscid fluid dynamic phenomena are explicitly
determined. Furthermore, the WDF circuit rehlization of the Euler equations is determined.
Finally, two alternative MD WDF set of nonlinear equations, integrating the Euler
equations are analytically determined.
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1 INTRODUCTION

The problem of deriving the analytic solution of
nonlinear (NL) partial differential equations
(PDEs) is a rather difficult task. The problem has
not as yet been solved for the majority of cases. For
this reason a variety of numerical methods solving
discretized versions of the NLPDEs (see e.g. [1-8]
and the references therein) have been developed.
The solution of such a numerical problem appears

to have many applications in fluid mechanics,
electromagnetics and thermodynamics. One impor-
tant set of NLPDEs is that of the Euler equations.
The Euler equations describe the dynamics of an
inviscid fluid, thus having a variety of applications
in fluid mechanics (industrial equipment, flight
systems, fan systems, etc.). The numerical solution
of this type of equations has attracted considerable
attention (see e.g. [1-8]). The first results regarding
the numerical integration of the Euler equatio.ns

* This work has partially been funded by the General Secretariat for Research and Technology, Greece.
Corresponding author. Mail address" 53 Aftokratoros Irakliou St., 15122 Maroussi, Athens, Greece.

E-mail: fkms@athena.domi.gr.

41



42 F.N. KOUMBOULIS et al.

via Wave Digital Filters (WDFs) have been
reported in [9,10]. In [9] the reference circuit is
derived and the general guidelines for the deriva-
tion of an MD discretization of the Euler equations
for a polytropic fluid are presented. In [10],
simulation results are presented for the special case
of the 3-D (two spatial variables and one time

variable) Euler equations.
The discretization of ODEs (Ordinary Differen-

tial Equations) via WDFs appears to be a well-
established technique since the beginning of 70s
(see [1 1] and the references therein). The advantage
of this technique is mainly based on the preserva-
tion of passivity when the continuous system is
transformed to the respective discrete approxima-
tion. This way the numerical errors in the iteration
of the steps of the discrete algorithm, simulating
the original system, appear to be attenuated [12].
This distinct advantage of the WDFs has also been
transferred to the case of deriving approximate
discretizations of PDEs [13-15]. The property of
preserving the passivity under discretization
appears to be rather important in the case where
the equations are NL or more important in the case
of NLPDEs. The nonlinearity of the original
system accentuates the numerical errors in the
iteration of the steps of the discrete algorithm,
thus yielding numerical instability. The approx-
imation of NLPDEs via passive WDFs appears to
be a difficult problem not always solvable. The
present paper is devoted towards this aim.

In particular, the problem of numerically inte-
grating a special case of NLPDEs, namely the
Euler equations, is considered. The contribution of
the present paper can be summarized into the
analytic determination of the nonlinear discrete set
ofequations approximating the Euler equations for
a polytropic fluid and the respective MD WDF
equations integrating the Euler equations. The
nonlinear discrete set of equations is proved to be
passive. Furthermore, the WDF circuit realization
of the Euler equations is determined. Finally, two
alternative MD WDF set of nonlinear equations,
integrating the Euler equations are analytically
determined.

THE EULER PARTIAL DIFFERENTIAL
EQUATIONS

Consider an inviscid compressible fluid. The
change in the momentum of the fluid flowing
through a control volume at any time instant, as
well as the dynamics expressing the conservation of
mass are governed by the following two partial
differential equations [1 6]:

Oq
o

Vp-- q 27q f
P

op
0-7 + 27 Pq O,

(2.1)

(2.2)

respectively. The vector t- [tl t2 t3 -]T is the
vector of the three spatial variables x, y, z and the
time (tl =x, t2 =y, t3--z). Based upon this
definition the well known nabla operator 27 is
expressed equivalently as follows:

27-- 10t2 73
The velocity vector is denoted by q= [ql q2 q3]T,
p is the density,f= [fl f2 f3]T is the external forces
applied to the fluid inside the control volume, p is
the pressure of the fluid in the control volume.

In this section three equivalent expressions of the
Euler equations (2.1 and 2) will be presented. These
equivalent expressions will facilitate the passive
discretization algorithm that will be derived. It is
mentioned that the steps required for the deriva-
tion of the equivalent forms have first been
presented in [9]. For presentation purposes the
three equivalent expressions will be partitioned
into three different subsections.

2.1 Generalized Time

It is convenient to start with the transformation of
the time variable to a new variable t4 having
dimension of a spatial variable [15]. This new
variable is defined by means of a function q4 equal
to the derivative q4 q4( dt4/d of the new
variable 4 The time variable 4 can be considered
as an arbitrary, for the time being, variable which
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will be specified later in order to facilitate the proof
of passivity. Similarly, the function q4 is for the
time being arbitrary. Hence, the vector t is trans-
formed to a new vector t-[tl t2 t3 t4]T. Using this
new vector and the notation

D [D1 D2 D3 D4 IT. 0
(k- 2,3)Dk ---Eqs. (2.1) and (2.2) can be rewritten equivalently as

follows:

4

Z pqkDkq + Vp --fp, (2.3)
k=l

Z Dk(pqk) + q4D4p O. (2.4)
k=l

2.2 Normalization

2.3 Hadamard Transformation

Due to conservation of energy, physical systems
are usually passive. The systems of PDEs describ-
ing a physical system does usually not reflect
passivity. The property of passivity is necessary
for the discretization of the PDEs and the deriva-
tion of their numerical solution. This holds true
since a passive multidimensional (MD) circuit yield
a causal MD wave digital filter (WDF) which is
robust and stable [15]. In particular, in order
to obtain a MD passive circuit the following
Hadamard transformation is applied

t’-H-lt, (2.8)

where t’-[t; t t t]T and where H is a suitable
orthogonal matrix defined by [9]

The goal of this transformation is to introduce new
arbitrary parameters in the Euler equations. These
parameters will be useful in proving passivity.
Consider the identity

x/-D( yx/--) xDy + 1/2YDx (2.5)

holding true for every real functions x, y with x
scalar (x _> 0) and y vector. The above identity is
usually called normalization identity. Define the
following normalized quantities

g) [41 42 43 IT__ U
q4 ’q’v’a - Po--P’

/- x/-p, J- [2, 2 ]w= 2fp,
P0 p0

where u0, P0 are positive constants and a a({) is
an arbitrary function of time. Using (2.5) Eqs. (2.3)
and (2.4) take on the form

4 a ( qkq4qq4
Oj a

: Uo J
+ Dj , j 1,2, 3, (2.6)

4 (qk (2.7)
k=l

-1 -1
-1 -1 (2.9)

This is a transformation of the coordinate system
(including time). Defining the operators

0D Ot (k 1, 2, 3, 4) (2.10)

and using the relations (2.9) and (2.10), the
following expression is derived

D’ HTD. (2.11)

From (2.11) and (2.9) the operators D/’ may be
expressed in terms, of new derivative operators as
follows:

l_(rCt tt l_.(ttt ttD1 2\-1 D4), D2 2,*-.-2 + Ds),
l(rtt t/D3 2\,3 D6),

04 lt" r# tt l_[ Wt ,
2,._..1 q- D4) 2,*--2 q- D5)
l__( l’}ll It
2,*--3 + D6)

(2.12)

(2.13)
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or inversely
!!D D4 nt- D1,
t!D4 D4 D1,

D D4 + D2,

D D4 D2,
D D4 + D3,

D D4 D3.
(2.14)

The above relations can be considered as a
definition of the operators D’i’ (i -1,2, 3, 4) in
terms of the operators Di (i 1,2, 3, 4). Using the
above transformations and after some extensive
manipulations Eqs. (2.6) and (2.7) may be rewritten
as follows"

7

i=1

10

Z b/4’i 0, (2.15b)
i=1

where the variables uj, for j- 1,2, 3 are related to
the normalized velocities as follows:

blj, X/iD;(v/LiOj), 1,2, 3, 4, 5 (2.16a)
D; D4 (2.16b)

blj,6 Dj! (glj + [), uj,7 D.+3 (Oj [) (2.16c)

and for j- 4, as follows

b/4, X,/D;(v/,//?), 1,2, 3, 4 (2.16d)

U4,i+4 Ui,6, b/4,i+7 --Ui,7, 1,2, 3. (2.16e)

The parameters Li and Lo,i are given by

Li Da UO,iq4

u2
-e, i-1,2,3,4,

L5 2(e- 1),

Lo,i 2 @ KI10, 3 + e
p -ff

where K1 and e arbitrary real constants with e >_ 1,
and where

U0,1 ql q2 q3 + q4,

U0,2---ql q- q2 q3 + q4,

u0,3---q q + q3 + q4,

U0,4 ql + q2 + q3 + q4,

b/O, [ dp
/0,i X/-dq4

,//--
p J

where for the derivation of the above relations it
has been assumed that the fluid is barotropic, i.e.
that the pressure is a unique function of the
density. Clearly this assumption covers the major-
ity of fluid mechanics phenomena. The variables

ui, j, being a nonlinear transformation of the fluid
velocities are the unknowns in the linear system of
equations (2.15).

GENERALIZED KIRCHHOFF CIRCUIT
REALIZATION

It can easily be observed that the transformed
form of the Euler equations, namely the four
equations in (2.15) describe a generalized Kirchhoff
circuit [9] involving four loops, appropriately
interconnected.
The generalized Kirchhoff circuit involving the

four loops is shown in Fig. 1. The symbols Li, D
(i- 1,2, 3, 4, 5) denote the operator applied to the
current 0j (J-1,2,3) to yield the voltage uj,i--

x/-iD/(x/-ffiiOj (see also (2.16a)). An analogous
definition holds for Loi, D[ (i-1,2,3,4 and 5),
Dri (i 1, 2, 3, 4, 5). For more details see rela-
tions (2.16c) and (2.16d). The circuit in Fig. is
passive if every element of the circuit is positive
i.e. if

L1,... ,L5 >_ 0, L01,... ,L04 >_ 0. (3.1)

To analyze the above conditions consider the case
of a polytropic fluid, i.e. a fluid with pressure
depending upon the density by a relation of the
form: p-Cp (where C,n are positive constants
real numbers with n > 1). Using the assumption
that the fluid is polytropic and after some algebraic
manipulations, the conditions in (3.1) can be
expressed in form of denormalized variables as in
the following Lemma [9].
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FIGURE Generalized Kirchhoff circuit.

LEMMA 3.1

satisfied
If the following inequalities are

3(n 1)Pmax < P0 < Pmi_____n (q4- /qmax),
2q4 2x/qmax aq4 e

(3.2)

where

Combining Lemma 3.1 and Lemma 3.2, the
following theorem is established.

THEOREM 3.1 There always exists a passive gen-
eralized Kirchhoff circuit realization of the Euler
equations.

4 DISCRETIZATION ALGORITHM

In order to transform the circuit of Fig. to an

equivalent reference WDF circuit the circuit must
first be discretized. To this end the trapezoidal rule
must be applied (see e.g. [16]) to the inductances

occurring in the circuit. With regard to the
trapezoidal rule it is important to point out that
it is one of the most accurate discretization rules.
Consider the case of an one dimension inductance

d
u-D(Li), D--, (4.1)

where is the original time variable, u is the voltage,
is the current while L (the inductance coefficient)

is a constant. According to the trapezoidal rule, the
discretization takes on the form

Pmax maxp(t), qmax max q(t), Pmax max p(t)

then the circuit of Fig. is passive.

LEMMA 3.2 The inequality in (3.2) is satisfied if
the generalized derivative of time q4 is chosen to be

3(n-1)Pmax
q4 _> X/qmax + 2pmin

(3.3)

while the arbitrary parameters a and Po can be
assigned to be

3(n- (3.4)1)PO
q4 Pmin Pmaxa

Proof To prove the above relations, substitute

(3.3) and (3.4) into (3.2), to yield inequalities
identically true.

2L
u({) + u(’- 0) -0 [i({) i(’- f0)], (4.2a)

where To E R is the sampling period. The operator
mapping the discrete to the discrete u is denoted
by RA(T0), i.e.

u({) RA(o)i({), R- 2Lifo. (4.2b)

Since the inductances appearing in Fig. 1, are
strongly nonlinearly dependent upon the four
generalized spatial variables t, t, t, t a more

generalized treatment has to be applied. Similarly,
to [11] consider the operator )-O(.)/Ot[+
O(.)/Ot + O(.)/Ot + O(.)/Ot differentiating the
argument quantity with respect to all elements of
the vector t’-[t[ t t t]. Furthermore, con-
sider the voltage, (t’) defined by the following
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generalized inductance description:

where i(t t) is a generalized current. Apply the
general trapezoidal rule to the relation (4.3) to yield

+

where T is a vector of shift of the sampling having
the form

Tt- IT1 T2 T3 T4]T oTo,

oz- [OZl 0z2 0z2 0z3 ]T, ozi 0.

T0>0;
(4.5)

The above sampling vector can be interpreted as
follows: To is the basic sampling period (scalar and
constant), Tt=[T1 T2 T3 T4]T is the vector of
sampling period for each transformed space and
time coordinate. The coefficients OZ are the weight
coefficients for every sampling period respectively.
It is clear that as OZ 0 the discretization becomes
perfectly accurate. It is important to note that, in
many cases, since all elements of t’- [t t t t]T
are in spatial dimensions the weighting coefficients
can be considered to be equal

Oi-- O ri-- o To-

The trapezoidal rule can be expressed in terms of
an operator, let A(T’){f.}, as follows

zx(v’) {f(t’);(t’) }, (t’) 2L(t’)
T" (4.6)

In order to discretize the inductances in the
circuit of Fig. 1, i.e. the inductances

blj,i--LiD;(Oj} (i-- 1,2,3,4,5) (j-- 1,2,3),
btj,6 O;t { ]j -1-[9) j 1,2, 3),

IIuj’,7 Dj+3(qj-D} (J- 1,2,3),

u4,i- LoiD;{} (i- 1,2,3,4),

the general trapezoidal rule is applied in accor-
dance to (4.6) to yield

uj,i(t’) A( T[){ri(t’)glj(t’) },

ri(t’) 2Li(t’) (4.7a)

(i--1,2,3,4,5) (j=1,2,3),

ui,6(t’) --oo2 A(Tj’){glj(t’) +(t’)} (j--1,2,3),

(4.7b)
ui,7(t’)- A(T)’23){0j(t’ -/?(t’)} (j-- 1,2,3),

(4.7c)
U4,i(t’)-- /k(r;){roi(t’)},

roi(t’) 2Loi(t’)
(i 1,2, 3, 4), (4.7d)

where the above shifting vectors (multidimensional
shifts) are defined by the relations

T -[0T 00]
r -[00r 0] T -[000T ]

2

T[’-[T; 0 0 T;]T, T;’-[0 T; 0 T;]T,
T;’-[0 0 T; T;]T,

(4.8)

(4.9a)

(4.9b)

Based upon the discretization expressions in (4.7)
the discretized circuit, corresponding to the passive
circuit of Fig. 1, is derived to be the reference
circuit in Fig. 2 that follows. Based upon the
reference circuit of Fig. 2, the following set of
discrete equations is derived for the numerical
integration of the Euler equations.

7

-blj,i(l t) --?’(/’), j--1,2,3, (4.10a)
i=1

10

Z u4,i(t’) O, (4.10b)
i=1

where the discrete voltages are defined in (4.7).
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q, -1/1

A (T4) {04(t)

FIGURE 2 Reference circuit.

Circuit

0

Adaptor N(1)

Circuit

1

Adaptor N(2)

Circuit

2

Adaptor N(3)

Circuit

3

FIGURE 3 WDF arrangement.

THEOREM 4.1 The set of nonlinear discrete equa-
tions approximating the Euler equations & the
multidimensional (MD) system of equations in (2.7)
and (2.10).

Remark 4.1 The MD system of equations in
(2.7) and (2.10) is in generalized state space
solvable form. Thus it can recursively be solved
around an area of the generalized time t’.

5 WDF REALIZATION

In this section the analytic and circuit forms of the
WDF realization of the reference circuit in Fig. 2,
or equivalently of the MD system of equations in
(2.7) and (2.10), will be derived. The analytic form
of the WDF realization is the formulation of the
numerical algorithm integrating the Euler equa-
tions. In order to derive a robust algorithm it is
suitable to adopt power waves instead of the
voltage waves usually preferred in wave digital
filtering [11]. Thus for a port of voltage u, current
and nonconstant port resistance R >_ 0, the forward
a and the backward wave b are defined as follows:

u + Ri u- Ri
a-

2x/-’
b-

2v/. (5.1)

The reference circuit in Fig. 2 can be analyzed into
four loops where only the forth loop is connected
to the other three. Based upon this observation and

the theory ofWDF [11], the reference circuit can be
realized by four WDF circuits where the fourth is
connected to the rest three by appropriate adap-
tors. Let Circuit (i 0, 1,2, 3) be the WDF circuit
corresponding to the ith loop of the reference
circuit. Let N(i) (i 1,2, 3) connecting the Circuit
to the Circuit 0. Hence, the structure of the WDF

realization is that presented in Fig. 3. Realizing the
Connection (Adaptor N(i)) and the Circuit i,
according to the WDF theory [11], the WDF circuit
in Fig. 4 is derived.
The arrangement of Fig. 3 contains 4 series

adaptors (0, 1,2, 3) according to the 4 mail loops in
Fig. 2, and additional adaptors marked Nt(i) and
N"(i) (i= 1,2,3). The required multiplier coeffi-
cients in these adaptors can be determined if the
corresponding port resistance are determined.
According to Fig. 2, and the results presented in
[9] the port resistances can be computed to be

2 4
Ri,k Zk, Ri,6 T

k- 1,2,3,4,5, i- 1,2,3
(5.2a)

4
Lo,k, R’4+i T’
1,2,3, k-1,2,3,4

6

Ri,o Ri,k,
k-1

i- 1,2,3.

(5.2b)

(5.2c)
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According to (4.10), (4.7) and Fig. 4 the forward
waves, appearing in the adaptors (0, 1,2,3), are
expressed in terms of the backward waves at
previous "time" instants as follows:

ai,1 (/1, t2, t3, t) hi, (t[ T;, t2, t3, t),
0, 1,2,3,

ai,2 (t, t2, t3, t) bi,2 (t, 2 T), t3, t4)
i= O, 1,2,3,

ai, n, n, n
i-- 0, 1,2, 3,

ai,4 (t 2, 3, t) Di,4 (t, t2, t3, 4 To)
i- O, 1,2,3,

ai,5(tl,t2, t3, t4
bi,5(t Z6, 2 Z6, Zo, 4 To),

i- 1,2,3.

(5.3a)

(5.3b)

(5.3c)

(5.3d)

(5.3e)

The equations defining the adaptors Nt(i) and
N"(/) (i-- 1, 2, 3) are

ao,4+i(t t) t) (t t)a0,4+i(t 4- ai,6

ai,6 t) ,) t)--ao,4+i(t 4- ai,6
(5.4a)

with

IIai,6(t bi,6(tt- r3+i),

ao,4+i( T;hO,4+
(5.4b)

where

bit,6(tt)_ -- (bo,4+i(t t) 4- bi,6(tt)),

b;,4+i(t t) -l(bo4+i(tt -bi6(tt))

(5.4c)

The equations of the three 7-port series adaptors
in the Circuits 1, 2 and 3 are

bi,k ai,k ")/i,ki,O, 1,2, 3, k 0,..., 6,

(5.5a)

ao,
-1(

ao,2
-1(

ao,
-1()----

ao,4
-1(

Connection to Circuit (i-l)

R 0,4+i

Circuit (0)

ao,4+

R.t4
1__N"(i) I
Adaptor N(O

i=1,2,3

Connection to Circuit (i+ 1)

b i,6

Ri,6

ai,6

a.

Ri.[

Circuit

where

FIGURE 4 Analytic WDF arrangement.

6 2Ri,:
li,o ai,k, ")/i,k 6

k=0 Ri,k
k-0

i-1,2,3, k-0,...,6. (5.5b)

The equations of the 7-port series adaptor in the
Circuit 0 are

b0,k- a0,k- 70,fi0,0, b0,7 b0, + fi0,0
k=l

k 1,..., 6, (S.6a)

7 2R0,0,0 Z a0,k, 70, 7
k=l 2 R0,k

k=l

k- 1,...,6.

(5.6b)
We are now in position to establish the following

theorem.

THEOREM 5.1 The WDF circuit realizing the
Euler equations is the circuit in Figs. 3 and 4. The
set ofdiscrete MD equations numerically integrating
the Euler equations is the set of Eqs. in (5.3)-(5.6).

It is convenient to express the set of MD
equations numerically integrating the Euler
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equations in terms of discretized currents and
voltages of the reference circuit in Fig. 2. To this
end we present the general formula expressing the
voltage u and the current in terms of the forward
and backward waves a and b as well as the
resistance port R, i.e. the formula

u (a + b)x/, a- b
(5.7)

Clearly, relation (5.7) is the inverse of the relation

(5.1). Expressing for each port, the port voltage in
terms of the corresponding incident wave, the
corresponding port resistance, and the loop
current, and recalling that the sum of the loop
voltages is zero, the following equations are
derived

k=0 k=0

2a,6 v/Ra,6 R,6i),6, A 1,2, 3, (5.8a)
4 4

2Z a0,Rxf, -/5Z R0,
k=l k=l

7

[2a0,R0, R0,i0,], (5.8b)
k=5

where

ix,6 (ax,6 bA,6)/v/RA,6,
iO,k aO,k bo,k / v/Ro,k A 1,2, 3, k- 5,6,7.

The set of equations in (5.8) can be expressed
equivalently as follows:

4 4

2Za0,RX/,-/?ZR0,
k=l k=l

[2a;,4+v/Ro,4+- Ro,4+1(0-/0)
=1

+2a,6 R-v/,6 RA,6(0A -nt-/0)].

A- 1,2,3.

(5.9a)

(5.9b)

The set of equations in (5.9a and b) is equivalent to
the set of equations in (5.5) and (5.6), respectively.
The equations in (5.9) have the advantage that at
any instant they have to be solved with respect to
the original unknowns /5 and 0 of the Euler
equation (2.15).

In what follows and after substituting the port
resistances by their values, the set of equations in
(5.5), (5.6) and (5.9) can be rewritten as follows:

2/T[al,1 al,2 al,3 al,4 al,5]

Daq4
ql q2 q3 nt- q4

Daq4--ql + q2 q3 + q4.

x --ql--q2+q3+q4.aq4 u
aq4

ql + q2 + q3 + q4.

4q-4haq] 2(e+l)q4T "(a4q] 1/2

+ 2a,0 uoTo
2e

8 a’ ,r nt- al,6 0.
T 0,5 2 2 q

(5.10a)

/5-.

(Daq4 --ql -t- q2 q3 + q4) 1/2

( --ql--q2+q3+q4) 1/2
aq4 u
(Daq4 ql + q2 + q3 + q4) 1/2

[2(e- 1)] 1/2
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2(e + 1)1
/2\(a4qv T+ 2a2,0

u"2
2e

8 [a’ v/-r+ V
T o,6 2 a2’6 2

) 1/2
Daq4

ql q2 q3 + q4.

aq4
--ql + q2 q3 -+- q4.

Daq4
--ql q2 q- q3 q- q4,

aq4
ql q- q2 q- q3 q- q4,

[2(-)]/2
4q3 I4aq

-q4T6v/_d [ 2(c + 1)

(/3a4
,--5-7

q42 )1/2+ 2a3,o \ Uo To
2e

[a’ k//’r; -q- a3,6
8

T 0,7 2 2

(5.lOb)

(5.10c)

q + q2 + q3

q4v
=0, (5.10d)

ai,l(t’)-bi,l(t’- T), i-0,1,2,3, (5.10e)
ai,2(t’) bi,2(t’- r), i-- O, 1,2,3, (5.100
ai,3(t’) bi,3(t’ T), i- O, 1,2,3, (5.lOg)
ai,4(t’) bi,4(t’ T), i- O, 1,2,3, (5.1Oh)
ai,5(t’)- bi,5(t’- T), i- 1,2,3. (5.10i)

ao,4+i(t’) (bo 4+i @ bi6)(t, Zt+i)

nt-l (bo4+i, -bi6)(t-, Z[t),

ao,6(t’) (bo4+i-]-- bi6)(t,_ rt+i)

(bo 4+i bi 6)(t’ T[’)

(5.oj)

(5.1Ok)

Clearly, all variables in (5.10a-d) are functions of
the generalized time except the constants T, a

and e, which has to be specified for the faster
convergence of the algorithm.

Based upon the above system of equations the
following theorem is established.

THEOREM 5.2 The MD WDF integration of the
Euler equations is the set of nonlinear MD equa-
tions in (5.10) and (5.7).

2 [ao,1 ao,2 ao,3 ao,4]

From the computational point of view, the
problem of solving the Euler equations has been
reduced to that of solving a nonlinear algebraic
system of equations.

6 CONCLUSIONS

In this paper the problem of numerically integrat-
ing the Euler equations has been studied. A
numerically stable and numerically robust discre-
tization has been derived, via appropriate passive
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WDF realizations. The analytic expression of the
nonlinear discrete equations, approximating the
Euler equations, is determined. The nonlinear MD
WDF equations numerically integrating the Euler
equations are analytically determined. The present
results appear to contribute to the numerical
solution of many fluid dynamic problems as well
as in controlling distributed parameter flight
systems. Work is under progress for the expression
of physical properties of the Euler equations in
terms of the respective MD WDF equations.
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