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Synchronization of chaotic maps is studied using the method of variable feedback. A
general method is presented for generating feedback functions for maps. These feedback
functions are found very efficient. Our study shows that when the driver and the
response systems are fed by common noise, the noise does not affect synchronization.
With different but weak noise added to the driver and response systems, approximate

synchronization persists.
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Recently, synchronization of chaos has drawn in-
creasing attention [1-4] from both foundational
and applied considerations. One of the methods
used for synchronization of chaos is known as
the method of variable feedback [5]. It is a robust
method but the feedback functions are not unique.
Worse, there is no all encompassing general
method available for finding working feedback
functions. Synchronization of chaos in the pres-
ence of noise bears considerable practical impor-
tance. The main purpose of this work is twofold.
First we present a general method that has
worked well in finding efficient feedback func-
tions in test cases of invertible and noninvertible
maps. Second we apply the feedback functions
to study synchronization of sample chaotic

attractors with and without noise. As for
synchronization of chaos with common noise,
Maritan and Banavar [7] observed that two initi-
ally different trajectories of a chaotic attractor
fed by common noise coalesce when calculations
are carried out with finite precision. Lech et al.
[8] and Pikovsky [9] have shown that if the calcu-
lations are done with higher precision the coales-
cence time 7 (for maps T=mno. of iterations)
increases exponentially and the procedure soon
becomes practically impossible to implement.
Clearly, the application of common noise for
synchronization of chaotic attractors has inherent
difficulties. In this work we will see that synchro-
nization of chaotic attractors in the presence of
common noise poses no additional difficulty [2].
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1 THE FEEDBACK FUNCTIONS

The method for generating feedback functions is
in order here. Suppose, we have to synchronize
the map

X1 () = fi(Xa)
with its replica

Yn+1 (l) =fl(Yn)

:ﬁ(Xn(l)aXn(z)’ s >Xn(L)) (1)

zfi(Yn(l)a Yn(z)a cees Yn(L))

)

where n and i are discrete time and space vari-
ables, L is the total number of space variables
and f; is a function of its arguments. The method
of variable feedback involves defining feedback
functions G;(X,,, Y,,) and iterating Egs. (1) and (3)
simultaneously [3,5]:

n+1( ) f(Y (1) Yn(z)a T Yn(L)) + Gi(XnaYn)'

3)

The starting state vectors Xo=[Xo(1), Xo(2),...,
Xo(D)]" and Yo=[Yo(D), Yo(2),...,Yo(L)]" are dif-
ferent. The superscript T means transpose of the
row vectors. Synchronization is said to have been
achieved if the state vectors satisfy the condition
X,»—Y,, as m— oo. After synchronization has
been achieved, the feedback functions G;(X,,Y,)
vanish for all i. The system described by Eq. (1)
is called the driver system while that described by
Eq. (3) is called the response system. Pyragas [5]
has used

Gi(xn,Yn) = _k[Yn(i) - Xn(i)] (4)

where k is a suitably chosen constant. Peng et al.
[6] have used

6% o) == Sl = 0] ()

where k; are suitably chosen constants. Equa-
tions (4) and (5) provide linear feedback func-
tions. However, the G;(X,,Y,) do not have to be
restricted to linear forms [3] for synchronizing
chaotic and hyperchaotic systems. We now derive
our main result. Define, using Eqgs. (1) and (2),
AY, 1) = Y1) — X, (D) = fil(Yn) — fi(X,).

There is a B for which the feedback functions
given by

Gi(Xn, Yy) = —BAY,1(i), i=1,2,...,L (6)
are found to synchronize the chaotic maps. Com-
paring Eqgs. (4)—(6), we notice that Eq. (6) con-
tains Y, (i) and X, (i) while Egs. (4) and (5)
involve Y,(i) and X,(i). This difference in Egs.
(4)—(6) gives us new feedback functions. First of
all, we notice that when =1, Egs. (1) and (3)
become identical and we have a trivial case —
Y=X in one time step. Away from this trivial
case, there is an infinite set of values of 3 in the
interval Bpin <8 <1 for which the above feed-
back function of Eq. (6) is found to synchronize
the two identical chaotic maps. With =1, non-
trivial feedback functions can be found by using
an approximation of AY, , 1(i). To the first order
approximation, we have

L ofi(Xa(1 X (2), -
Z: n(])

This approximation for the AY, (i) gives the
new feedback functions as

RAINTNG

Gi(Xna Yn) = _ﬁ

L .
~ Zafl(Xn(l)’gnAgj();) .. an(L)) AYn(j). (8)

J=1

Comparing Egs. (4), (5) and (8), we notice that
the coefficients of AY,(m), where AY,(m)=
Y,(m) — X,(m), in Eq. (8) are functions of Y, and
X,, while they are constants in Eqs. (4) and (5).
These new feedback functions are the main re-
sults of this note. When Eq. (8) is used in Eq. (3)
and the dynamics proceeds with g=1, it may
happen that at some time step p the G:(X,, Y,)
yield the response state vector Y, outside the basin
of attraction. If it happens so, there are at least
two ways to avoid this situation: (1) do not use
the feedback at this time step and let iterations
continue till the feedback term gives a point in
the basin of attraction; or (2) set 5 to a value in
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the interval 0 <8 <1 so that Y, is in the basin of
attraction. The step next to p is started with
B=1 and the procedure is repeated. The above
feedback functions of Eq. (8) are linear in AY,
and are generalizations of the schemes of Pyragas
[5] and Peng et al. [6]. These generalized feedback
functions widen the areas of application of the
feedback approach. It is interesting to note that
feedback functions obtained by the general form
of Eq. (8) synchronize identical chaotic maps.
Higher orders in AY, may be tried. However,
the above simple but general procedure have
worked very well in all of our test cases. We now
illustrate applications of these new feedback
functions with the help of sample chaotic maps.

2 SYNCHRONIZATION OF SAMPLE
CHAOTIC ATTRACTORS

Using feedback functions obtained from the
scheme of Eq. (8) in Eq. (3), we consider syn-
chronization of three discrete time chaotic maps.

A. The logistic map

Xyt = 4X,(1 — Xy), (9)
Y1 = 4Y,(1 = Y,) + B4(Y, — X,)(2X, — 1).
(10)
B. The Ikeda map
Xo1(1) = 14 2 Xy (1) cos(7x) — Xu(2) sin(7y)],
(11)

Xn11(2) = c2[Xu(1) sin(7y) + X, (2) cos(ry)],  (12)

Yo (1) = 14 e[ Y,(1) cos(my)

— Y,u(2)sin(7y)] + G, (13)
Yui1(2) = c2[Yu(1) sin(7y) + Yu(2) cos(ry)] + G,
(14)
= —pea(cos(tx) — gi11)(Ya(1) — Xu(1))

(
= (5in(7) + g112) (Ya(2) = X(2))], (15)
(

J
= —fe2[(sin(7y) + g211) (Yu(1) — Xu(1))
+ (cos(mx) + g202)(Ya(2) — Xu(2))], (16)

_ 2% () (e — )’ 2X,(2)(e1 — 7)°

b l2 :_—_—9
c3 C3
(17)
T, C “
=€ — s
¥ 1+ X,(1)* + X,(2)? (18)
3
Ty = 1 —

L+ Y,(1)° + Ya(2)*
g1 = X,(1) sin(7y) + Xn(2) cos(7x),
= X,(1) cos(ry) — X,(2) sin(7y),
=04, =09, = 6. (20)

C. The Henon map

X1 (1) =212 = X,(1)* = 03X,(2), (21)

Xn+1(2) = Xn(l)a (22)
Y1 (1) =212 = Y,(1)* = 0.3Y,(2)
+ ﬂ[zXn(l)(Yn(l) - Xn(l)

+0.3(Ya(2) — Xa(2))], (23)

Yur1(2) = Ya(1) + BIX(1) — Yu(D)].  (24)

The coefficients of the Ikeda and Henon maps
are taken from [10]. Starting with different ran-
dom state vectors Xo7# Yy, we have iterated the
three maps. Table I shows the efficiency of the
feedback functions in synchronizing these sample
cases. The logistic, Ikeda and Henon maps
synchronize with their replica after 4, 8§ and 5
iterations respectively. This fast rate of conver-
gence to perfect synchronization of chaotic trajec-
tories can be quite useful. It has, for example, an
advantage over methods with slow rate of con-
vergence in studying synchronization in the pres-
ence of noise. Employing an efficient method to
synchronize dynamical chaos, one is in a better
situation to deal with the noise. Our numerical
results show that the synchronization times are not
affected when common noise is added to the driver
and response systems. This means that synchroni-
zation is always achieved in the presence of
common noise with the same efficiency as in the
absence of noise. If the driver or the response



system is subjected to noise or if both the driver
and the response systems are fed by different noise
terms, then we have three different scenarios: (1) if
the noise is added sporadically at a time interval
larger than the synchronization time then the
systems are desynchronized and synchronized at
the frequency of addition of noise; (2) if weak
noise terms are added at every iteration, then
approximate synchronization is maintained; (3) if
strong noise is added at every time step, no
synchronization is possible. These three scenarios
are illustrated in Figs. 1-3 for the Henon map.
Similar results are obtained with the other two
maps of our study. In these figures, desynchroni-
zation is measured by deviation from 0 of the
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function A(n) where

A0 =/ 32F (500 - X0

For feeding noise, four different random numbers
Wn,, i=1,2,3,4 with each 7; lying in the interval
(—1,2) were added to X,(1), X,(2), Y,(1) and
Y.(2). Here W denotes the strength of the noise.
Only those 7n’s were used for which the noise terms
(Wn;) did not drive the state vectors outside the
basins of attraction. For Figs. 1, 2 and 3, we used
W=1, W=0.1 and W=1 with the noise added at
the time intervals 10, 1 and 1 respectively. As
expected, Fig. 1 shows periodic desynchronization

TABLE I Synchronization of the Logistic map (Egs. (9) and (10)), Ikeda map (Egs. (11)—(20)) and Henon map (Egs. (21)—(25))
in the absence of noise. The initial states are chosen from a random number generator. The table shows that synchronization
occurs after n=4, 8 and 5 iterations in these maps respectively. Although the synchronized numbers quoted in the table are
shown to agree to nine decimal places, they agreed to all figures in our double precision calculations. Some initial conditions
required less and some required more than the quoted number of iterations to synchronize but in all the test cases synchroniza-

tion were achieved within about 10 iterations

X, Y, Logistic map Tkeda map Henon map
n=0 n=4 n=0 n=3§ n=0 n=>5
X,(1) 0.89362 0.678047409 0.81680 1.230491899 1.04600 —0.608373053
Y,(1) 0.29947 0.678047409 0.00565 1.230491899  —0.36625 —0.608373053
X.(2) 0.15381 —1.152648407 1.23846 1.618741161
Y.(2) 0.13486 —1.152648407 1.16939 1.618741161
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FIGURE 1 Synchronization of the Henon map in the pre- n

sence of noise with W=1. The noise in the form of random
numbers are added to X,(1), X,.(2), Y,(1) and Y,(2) at a fre-
quency of 10 discrete time steps. The desynchronization peaks
are seen at a regular time interval of 10 steps.

FIGURE 2 Synchronization of the Henon map in the pre-
sence of noise with W=0.1. The noise is added to X,(1),
X,(2), Y,(1) and Y,(2) at every discrete time step.
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FIGURE 3 Same as Fig. 2 with W=1.

and synchronization at the frequency of 10. Fig. 2
shows approximate synchronization in the presence
of relatively weak noise. This behavior simulates
some experimental situation and it has become
possible here with our fast and accurate method for
synchronization of dynamical chaos. By controlling
W, we can achieve different degrees of synchroniza-
tion. It is striking that the two chaotic systems stay
close to each other in the presence of noise even after
big random desynchronization bursts. It may be
hard to see this behavior when a synchronization
method with slow rate of synchronization is used.
Figure 3 shows that with strong noise added at every
time step, no synchronization is possible. It may be
possible, under certain conditions, to find feedback
functions with faster synchronization rate. The
merit of the scheme presented here is that it is

general and it does not require any guessing about
the nature of the feedback functions. On the basis of
our numerical results of the three cases, we
conjecture that our findings are true in general.
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