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In this paper computational aspects of the mathematical modelling of dynamic system
evolution have been considered as a problem in information theory. The construction of
mathematical models is treated as a decision making process with limited available
information. The solution of the problem is associated with a computational model based on
heuristics of a Markov Chain in a discrete space-time of events. A stable approximation of
the chain has been derived and the limiting cases are discussed. An intrinsic interconnection
of constructive, sequential, and evolutionary approaches in related optimization problems
provides new challenges for future work.
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1 INTRODUCTION

Many mathematical problems in information
theory and optimal control related to dynamic
system studies can be formulated in the following
generic form. A decision maker (DM, i.e. problem
solver, modeler or observer) receives information
about a system from observations, measurements,
or computations in the form of a data stream that
can be formalized mathematically as a sequence

(xo, x,...). (1.1)

We assume that such a sequence has at least two

elements and that each element of the sequence

E-mail: melnik@usq.edu.au.

is labelled by its own time t. Hence, referring
to the element xt of the sequence, we assume

that the total amount of information about the
system that corresponds to the time interval

(0, t) of its behaviour has been received, or at least
can be received in principle. Under the above
assumptions we can introduce a set Tt of
permissible strategies for each time t. Then,
observing the sequence (x0,...,xt), the decision
maker can choose a strategy that is defined by the
inclusion

st UT. (1.2)
-=0
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Typically we reduce the problem of constructing a
map between elements xt and st defined by (1.1),
(1.2) to a simpler problem allowing the set of
permissible strategies for all times of consideration
to be fixed and to be given a priori. Namely, we
can idealize actions of the decision maker as
follows. We can assume that the DM can select a
strategy st at each time from a given set Uv. Of
course, the validity of such a simplification
ultimately depends on the Axiom of Choice
excluding the logically possible case of incompara-
bility of two arbitrary sets that correspond to two
different times and [51,32]. However, on the
other hand, such a simplification permits the
development of a set-theoretic approach to
dynamic system evolution, and simplifies the
mathematical formalizations of complex optimiza-
tion problems. In fact, we can introduce a loss
function l(.,.) as a function of two variables, states

xt and strategies st, which are both characterized
by the same time t. A desire to minimize time-
averaging characteristics of this function can be
formalized through the optimization problem

F(1) min, st E U. (1.3)

Here, the objective functional F may be, for
example, the Cesaro-type sum

l(xk, s-k ), (1.4)F(1) - k=0

where -kE(0, T) Vk(0,1,...,n) and T is as-
sumed to be given. The limiting problem in the
spirit of classic ergodic theorems arises when we

investigate the limit behaviour

lira F(1)
T-oo

with F(1) given by (1.4). Objective criteria may also
be formulated in an integral form. For example,
for the Boltz problem in optimal control theory we
have the form of the functional in (1.3)

F(1) g(xr) + fo(’r,x.,s.) d- xr K, (1.5)

where T (0, oo) is assumed to be given, and K is a

given target seta. We can also consider a class of
problems with infinite time horizon using dis-
counting cost procedures. All these examples
provide important partial cases of the general
problem (1.1), (1.3).
Of course, to complete the formulation of the

problem (1.1), (1.3) mathematically, we have to

specify in what sense the sequence {xt} in (1.1)
should be understood. One possible specification
can be provided by an assumption that xt may be
appropriately described by a given stationary
ergodic distribution. Then a typical assumption
imposed on functions st from U;r is Lebesgue-
measurability on the interval (0, t). Under the
above mentioned assumptions, associated theore-
tical issues are often addressed using the theory of
Markov processes [19]. Starting from the work of
Bellman [5,6], the theory has been extensively
developed, and a number of efficient algorithms
have been proposed. Discrete dynamic program-
ming ideas have been essentially generalized for the
continuous case during the past decades [18,19],
and many new results that appeared recently
indicate the continued research interest in these
topics [19,35]. It should be noted, however, that
many results in this area rely (explicitly or

implicitly) on the assumption that a measurable
function of strategies st Uv may be effectively
approximated using past states xt,, 0< tt< t. If
such an assumption is made, the attainability of
the minimum in (1.3) becomes the subject of a

corresponding smoothness assumption on the loss
function [42]. On the other hand, regularity of this
function is strongly dependent on complete infor-
mation about the past states, and eventually on

model data and parameters. Since the initial data
for the model can only be known approximately,
the whole stream of information available to the
decision maker at time can be interpreted, at best,
as an approximation of system dynamics. The
quality of such an approximation at time is
defined by the "informational completeness" of

The functions f0 and g are called running and terminal costs respectively. Iff0--0 we have Mayer’s problem whereas for g 0 the
problem is referred to as the Lagrange problem.
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the data stream

(so, xo;sl,Xl; .st,,xt,; .) (1.6)

when tt t. To complete the step corresponding
to time in this process, one can assume that the
strategy st may be chosen from the same set UT.
Then, the next stream element xt may be received
with a given accuracy, at least in principle, if we
also assume that element x0 in (1.1) may be given
with infinite precision. Of course, in the reality of
mathematical modelling the latter assumption can-
not be rigorouslyjustified [45]. However, ifstrategies
are chosen at each step to satisfy a certain sub-
goal, the described process provides the possibi-
lity of evaluating the quality of satisfaction of a
subgoal that corresponds to time t. If the process
is finite then we can refer to the last subgoal as a
top-level goal [33]. The latter can be satisfied by
satisfying subgoals at each step appealing to
multicriteria analysis of the underlying problem.
The main problems in such analysis stem from

the coupling of the sequence of subgoals to the
definition of the top-level goal in the form of a
functional of the loss function l(.,.). Mathemati-
cally speaking, we should be able to define a

mapping between fixed-time subgoal functions
and an averaged-time goal functional. Such a
definition is closely connected with the definition
of optimal strategies which we do not know apriori.
However, if it is known that st E Ur, then it is
reasonable to choose strategies based on knowl-
edge not only of time t, but also on states xt. If we
assume further that xt "accumulates" all past
information about the system, then the concept of
a Markov Chain comes by itself. Because of
uncertainty in knowledge base (1.1), such an
accumulation cannot be understood in a purely
deterministic way [8]. The origin of such uncer-

tainty is induced by the strategy So in the data
stream (1.6). However, mathematically such uncer-
tainty can be formalized if instead of constraints
(1.2) we consider "relaxed" constraints

st UT, (1.7)

assuming that the set Ur is given a priori for the
whole time-set of interest. Then, instead of the

data stream (1.6), we can consider an information-
ally reduced stream:

(x0, x,,);...), (1.8)

where all strategies satisfy the constraints (1.7). An
additional assumption of continuity of the se-
quence (1.1) in time allows a convenient mathe-
matical framework for justification of models
based on an approximation of (1.6) by (1.8). Such
a classical idealization of temporal evolution by
continuous trajectories of phase points, induced by
classical mechanics, can be applied only within
certain limited contexts, and involves serious
difficulties in many areas of mathematical model-
ling. The main problems are caused by the fact
that there are many dynamic systems for which
arbitrary close initial conditions can give rise to
qualitatively distinct (including exponentially di-

verging) types of trajectories [45]. Such strong
trajectory instability requires other approaches in
the description of dynamic system evolution.
Under a probabilistic approach, deterministic
invariance of phase points along trajectories is
replaced by the invariance of the density along
trajectories. Physically, such a "conservation of
extension in phase" (due to J. Gibbs [37])
eventually requires a construction of Gibbs dis-
tribution functions using a probabilistic descrip-
tion of states. Mathematically speaking, this
problem can be seen as a problem of a "closure"
of the reduced informational stream (1.8) with
respect to all possible states. Such a closure can be
performed if we assume Lebesgue integrability of
the function

-cologco, co > O,
r/(co)

0, co-0,
(1.9)

over the set of all possible states, where
co=f(t, xt) is the density function. From an
information theory perspective, this logical step,
which in the end requires answering the question
of system stability, is equivalent to a transforma-
tion from the classic Shannon entropy [53,49] to
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the Boltzmann-Gibbs entropy [37]. Under such a
transformation we formally identify a (thermo)-
dynamic system with a measure space [37]. If N is
fixed and the measure is defined as a Lebesgue
measure, then for any time-set (0, T) (including the
possibility of T-) the validity of the above
transformation requires an a priori assumption of
lower semi-continuity [55] of the recursive function

(1.10)

as a function of density, where a theoretical
possibility of n is permitted. If we assume
that such a function exists, then in principle, the
only possible uncertainty in the model (1.3), (1.8)
for any T is induced by the definition of x0 and
(f(x, T)). Such is indeed the case in optimal
control theory where the recursive function plays
the role of the value function. In fact, if we know
a priori that the top-level goal can be described
appropriately by a continuous function F(l), then
the associated optimal control problems can be
studied through a nonlinear backward evolution
PDE known as the Hamilton-Jacobi-Bellman
equation with Cauchy-type terminal conditions
([11,19] and references therin). If an algorithm for
the numerical solution of the latter problem exists,
it can in principle be represented in the form of the
informational stream

((x,S); (x_,,Sx_,);... (x,,Sx,);...), (1.11)

when 0 + and At > O. The main theoretical dif-
ficulty in the rigorous justification of algorithmic
rules constructed according to (1.11) is the
existence of the limit of s,, when 70+. If we
assume that such a limit exists, then we should be
able to evaluate the quantity

so lim Sxt (1.12)
t0+

on the basis of xT (which is assumed to be given)
and some logical rules. In reality, the recursive
function of density (1.10) at a fixed moment of
time may be given only approximately. Such an

approximation defines a degree n of the underlying
recursion (1.10), and in turn defines a basic

structure of a finite lattice on which the system
dynamic can be approximated [14].

Hence, in general, information on an approxima-
tion of the same dynamic system can be provided in
two possible ways:

using the sequence (1.1), and
using a subsequence of (1.11) that is

Due to intrinsic uncertainty in the definitions of

x0 and CxT, neither of these approximations con-
sidered separately from the other can guarantee the
adequacy of the approximation to the real system.
However, we can draw certain conclusions on

the system dynamics by analysing both of the
sequences simultaneously. The complexity of such
analysis is due to the necessity of a coupled
investigation of the same system in two different
scales. Mathematically, such scales are induced
by the two limiting types of system behaviour with
respect to the time-component: to and
At--+ 0+. They are connected by the definition of
the recursive degree for the system density, and
ultimately, on the definition of the top-level goal in

(1.3). Splitting up such a goal into subgoals
provides an efficient method for the analysis of
the system dynamics. In turn, such analysis gives a

way to derive a sequential approximation of the
system Hamiltonian, ensuring a stable model of
system dynamics.
The remaining part of the paper is organized

as follows. In Section 2 basic preliminaries are

recalled for the formulation of optimal control
problems as problems in information theory.
Section 3 is devoted to consideration of determi-
nistic and stochastic dynamic rules. Examples are

given to show that if such rules are specified, then
an informationally consistent formulation of con-
trol problems requires an analysis of system
stability. Section 4 deals with deterministic and
probabilistic algorithmic machines and analyses
problems involved in their application. Section 5
gives a link between the questions discussed in the
previous sections and discrete optimization prob-
lems using their common physical and informa-
tional basis. In Sections 6 and 7 mathematical
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models are constructed and computational models
derived to analyse dynamic system evolution using
the Markov Chain approximations. A stable ap-
proximation for the hyperbolic model is obtained
and the algorithm has been given. Computational
aspects of Discrete Markov Decision Processes
(DMDP) are discussed in Section 8. The main
conclusions are summarized in Section 9.

2 PRELIMINARIES

Let us define the state space of the system by E and
the Borel a-algebra inducedb by E as B(E). Then,
no matter what the time-partition in [0, t) is,
0 _< -1 < -2 < < -n < -, - (0, t), we assume that
VXB:

P(x XIXTI,... XTn) P(x X XTn) (2.1)

almost surelyc. That is, the data stream xt under the
strategy of the time partition has the Markovian
property. Of course, continuity of the data stream

xt in does not follow from the condition (2.1).
Furthermore, even if xt is a continuous function of
time, it does not, on any account, mean that
strategies form a continuous function of time as
well. In general, we have a multicriteria optimiza-
tion problem induced by the partition of time and
the analysis of the sequence (1.6). However, the
difficulty in evaluating the limit (1.12) prompts
several ways to further simplify the problem. One
of the direct ways is to assume a priori continuity
of the sequence (1.1) in time. Then we can
reformulate the multicriteria optimization problem
arising in analysis of (1.6) as an optimal control
problem (1.3) with respect to a continuous
function of time F(1) and some dynamic rules that
define the sequence (1.1).

Alternatively, we can analyse the sequence (1.6)
using DMDP. The theory of DMDP is well-
developed under the assumption of the possibility
of complete information in (1.6). During recent
years new challenging problems have stimulated

further development in the theory of DMDP
[34,25,17]. In brief, one of the most interesting
problems in this field is induced by the question of
data perturbations in the informational stream

(1.6). Indeed, when perturbations of a Markov
Chain change its ergodic structure, the stationary
distribution of the perturbed system may not be a
continuous function [52,1]. Hence it is reasonable
to assume that system dynamics depend on some

parameters of the Markov Chain and due to the
imprecision of available information we can study
system dynamics using in general Singularly
Perturbed Markov Chains (SPMC). In this frame-
work evolution of a system is coupled to its
Markov Chain parameters. An example of this
type DMDP was provided in [13] where non-

diffusion stochastic models were studied. We assume
that in general the parameters of the Markov
Chains are allowed to jump, and the jumping rates
may be dependent on the state function xt. The
corresponding systems described by x7 at time -are calledpiecewise-deterministic stochastic systems.
Such systems have been extensively studied during
recent time by theoretical physicists [29], and
indicate growing interest in hyperbolic dynamic
rules of nature [46,30].

Mathematically speaking, we define a finite-state
Markov Chain #7 with the state space .AA. The
chain is regarded as a parametric process for the
dynamics of the system which is described by a
state function x7 and a parameter #7. The param-
eter #7 may undertake a jump on the interval (0, t)
at times -1 <... < -n, and the jumping rate is a
function of time -, state of the system xT, the
"before-jump" value of the parameter #l and
the "after-jump" value of the parameter #2 of
the Markov chain. Hence we define a function of
jump rates as

def
] =]-,x,#1,#2). (2.2)

It allows us to regard the process (xT,#0 as a
Markov process with the state space 3 E (R) A4.

b The least a-algebra that contains all open subsets of E.
With respect to corresponding a-algebra [19].
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It should be emphasized that the system itself x
may not have Markovian behaviour. Thus, diffi-
culties arise in constructing a mapping that relates
the function (2.2) to states x of the system.
Ultimately, such difficulties stem from the pro-
blem of mathematical formalization of the concept
of perturbations, which are usually regarded as a
small and external-to-the-system source. Of
course, in the real world modelling, statistics of
the source is unknown a priori, which precludes
assumptions based on an e-additivity of perturba-
tions. In general, such assumptions may not be
adequate for the transition law of the Markov
Chain as well as for the Hamiltonian of the system
as a whole.

DYNAMIC RULES AND CONTROL
PROBLEMS

Eventually, due to the approximate character of
available information about the informational
stream (1.6), any mathematical model can provide
at best a description of a perturbed rather than an

unperturbed dynamic system. Hence, if the math-
ematical model of a dynamic system has been
constructed, in derivation of a computational
algorithm we should adapt the choice of strategies
st in our approximation of (1.6) to the character of
such perturbations. Another way of putting it is
that the model and the algorithm should be
informationally consistent, reproducing the infor-
mational stream (1.6), and giving an approxima-
tion with a reasonable degree of accuracy.

3.1 Differential Equations and Inclusions

To include the possibility of perturbations into
models let us start from the definition of a mapping

f(t, xt, st) T(R) (R) Ur 7, (3.1)

where T is a given set of time. When xt is assumed
to oe continuous the dynamics of a deterministic

system can be appropriately described in almost-
everywhere sense by the differential equation

x --f(t, xt, st), xlt=0 xo, st E Ur, (3.2)

where x is an element of a given set X defined as
an e-neighbourhood of an idealized point x0. In
general, the mathematical model (3.1), (3.2) can

provide a description of a perturbed rather than
unperturbed dynamic system. This is the case even
if we formally exclude st from the right-hand part
of the model or introduce some optimizing criteria.
The next example is to demonstrate the possibility
of instability in the perturbed model under any
arbitrary small level of perturbations.

Example 3.1. Let us analyse unperturbed and
perturbed dynamics of a homogeneous linear
system:

(a) i Ax, (b) i Ax. (3.3)

Here we assume that the matrix A is given and
A,=A +A, whereas IlZXll _<lI/ll is the absolute
error for perturbations of the matrix elements. If
we assume that the initial conditions for the
model (3.3) may be given precisely, then the
problem of stability for the model is equivalent to
the investigation of the e-spectrum of the original
matrix A. The e-spectrum of a matrix is defined
as the union of all spectra of perturbed matrices
for a certain level of error [23]. In general, for any
arbitrary matrix A there exists a special connec-
tion between its spectrum and its resolvent under
e-perturbations. The problem consists of the fact
that without restrictions on e, an absence of
practical dichotomy can be anticipated. More
precisely, there might exist such e =e() that A
with [JAIl < e can have in the left-half plane the
number of eigenvalues different from the number
of points of the matrix A spectrum. If the matrix
A is defined as

-1, j-iVi- 1,2,... ,20,
A (ao.) 10, j- i+ Vi- 1,2,..., 19,

0, otherwise,
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and the matrix of perturbation is defined as

10-18,ZX
0,

i=20, j= 1,
otherwise,

then though the matrix A has one negative
eigenvalue -1 of multiplicity 20, the eigenvalues
of the perturbed matrix ( /]-6- 1) lie in the right-
hand plane, indicating instability in the perturbed
model. Of course, similar examples can be con-
structed for any e > 0 no matter how small it is
assumed.

We note that Example 3.1 deals with the
perturbation of the right-hand part of the model,
but not with the initial condition. The latter was
assumed to be fixed for both perturbed and
unperturbed models. The idea of "frozen" initial
conditions for a family of the perturbed right-hand
parts leads to the mathematical models in which
dynamic rules are defined by differential inclusions.
In fact, on the basis of the point-valued map f, we
can define a set-valued map [2,19]

.T(t, xt) def{f(t, Xt, St)},

where st is assumed to be defined by another
set-valued map. Of course, the set-valued map for
the definition of st is coupled to the definition of
the optimizing functional F(l) in (1.3). Hence,
when describing dynamic rules by the differential
inclusion

xt .T(t, x,) (3.4)

in an almost-everywhere sense, a family of per-
turbed mathematical models (1.3), (3.4) defines an
optimal control problem. In the models of this type
we have a natural contradiction. On the one hand,
the quality of this model has to be defined with
respect to the stability of the system dynamic. On
the other hand, such stability depends on the
definition of st, which is an unknown function in
the mathematical model. Hence, eventually the
quality of the model depends on the definitions of

the mapping (3.1) and initial conditions. In the end
such definitions depend on the problem of evaluat-
ing the limit (1.12). If the initial conditions of the
model are fixed, then an example of instability for
the mapping (3.1) may in principle be constructed
for any specified sequence st. This type of insta-
bility is usually referred to as computational
instability. Example 3.1 clearly shows that the-
oretical issues of stability should primarily be
addressed if "precise" initial conditions are as-
sumed. In optimal control theory we do not require
the sequence st to be specified explicitly, and
therefore, the problem of the model stability can
be formally circumvented by some appropriate
regularity assumptions on the mappings c and F.
The remaining theoretical problem is to prove that
if the mapping (3.1) is well-defined then so E Ur,
where So is defined by the limit (1.12), whereas x0
may not be given precisely. The complexity of this
problem led to the constructing mathematical
models of optimal control using recursive functions
of density (1.10). In theory such approaches require
analysis of a subsequence of (1.11) that consists of
the values of the recursive function ,

(3.5)

when t--+ 0+. Such analysis is typically performed
for At-- 0+, and essentially uses the assumptions
that x0 and xr in (1.1), (3.5) may be given either
precisely, or at least with equal probabilities.

First let us consider a deterministic optimal
control problem where xt plays the role of the
value function. For the Boltza problem (1.3), (1.5),
(3.1),(3.4) we can introduce the performance
measure

J(t, xt, st) fo(7-,x.,s-) dT- + g(x(T)). (3.6)

If we define the value function as

V(t,x) de._f inf J(t, xt, st), (3.7)
st UT

then using appropriate regularity assumptions
and dynamic programming principle [19,20], the
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original optimal control problem can be studied
through the Hamilton-Jacobi-Bellman (HJB)
equation

l)’(t, xt) + H(t, xt, DxV(t, xt)) O, V(T,.) g(.),
(3.8)

where the Hamiltonian H is defined as

H(t, xt, (5) de__f sup {-(5 f(t, xt, st) fo(t, xt, st) }.
st UT

(3.9)

The rigour in mathematical justifications of the
models (1.3), (1.5), (3.1), (3.4) and (3.6)-(3.9) is
grounded in the following logical rule. Provided

x0 is given precisely, the forward-evolution model
(1.3), (1.5), (3.1), (3.5) can be studied through the
backward-evolution model (3.6)-(3.9) for any
given function g from a specified topological
space. The definition of topology for such a space
requires the definition of a set in which physical
states of the system can be embedded. Mathema-
tically, the problem is usually considered with
respect to Euclidean spaces (either finite dimen-
sional [19] or infinite dimensional [28]). It allows
us to use the logical rule in the reverse order:
provided g is specified in a topological space, the
backward-evolution model can, in principle, re-
cover the forward evolution of the system for any
given initial condition x0.
We note that the definitions of x0 and g are cou-

pled to the definition of the system Hamiltonian
by the specification of a topological space. An
assumption that the topological space satisfies the
Hausdorff separability axiom allows us to com-

plete the chain of logical arguments in the
mathematical justification of the original optimal
control problem. The only problem remaining with
such reasoning is that of system stability. This
question is associated with the question of stability
of measures defined with respect to the system’s
state-space, which is typically a priori assumed to
be Hausdorff. Formally, this assumption corre-
sponds to the choice of such a function in (1.10)
for which n --, oc. Therefore, eventually the quality
of the backward-evolution model (3.6)-(3.9)

depends on the definition of a set X from which
we "puncture" a point x0 when e 0+. In the end,
the question is reducible to the existence of an

optimal strategy So for such an operation, and
evaluation of the limit (1.12). Since such a strategy
is known neither with a deterministic certainty nor
with the probability 1, it is reasonable to estimate
the quality of the backward-evolution models with
respect to a set X, where e may be small, but
always assumed to be positive. Then the model
(3.6)-(3.9) cannot be considered other than a

perturbed mathematical model. Since e > 0, the
instability of the system can be anticipated, unless
the strategies from the set UT are chosen consis-
tently with the states of the system from the set N.
Such consistency is defined by the definition of the
system Hamiltonian in a chosen topological space,
which is eventually defined by the mapping (3.1). In
this sense the Hamiltonian can be regarded as a

higher degree recursion of this mapping. Since the
functionf(t, xt, st) may be discontinuous in general,
so may the Hamiltonian function, unless it can be
represented as an infinite degree recursion off. The
assumption of positiveness for e precludes such a

situation, which seems to correspond to all phys-
ically conceivable situations. However, it implies a

hyperbolicity in the underlying mathematical
model [46,30]. The hyperbolic nature of mathema-
tical models in optimal control theory stems from
the splitting of the informational string (1.6) into
two: (1.1) and (3.5). A simultaneous consideration
of these strings implies their approximation by the
perturbed informational strings

(x,x, ,xt,, .), (3.10)

((r’(r-x,’""(t)" (3.11)

After the approximation, neither of the two
equalities

lim lim x, lim lim xt,, (3.12)
e--0+ t-T t/Te-0

lim lim ( lim lim ( (3.13)
eO t-O xt t--,O e-O+ xt

can be guaranteed in general. The lack of equalities
in (3.12), (3.13) is caused by possible singularities
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in transformations from So to x and from ST to. Nevertheless, for any arbitrary e>0, the
informational string (1.6) can be eventually
approximated as

e’x "S1 X1; x" "x[" (3 14)SO’Xo o’ l’ ’St"Xf’

when --+ t, V E (0, oo). Hence, the quality of
approximating (1.6) by (3.14) is defined by the
sequential character of approximation for the
function if, which in optimal control theory plays
the role of the value function that depends on an

approximation of the system Hamiltonian (or
Lagrangian).

3.2 Stochastic Rules

Let us consider a dynamic system described in
terms of the stochastic differential equation

dx f(’r, x-, s-) d’r 4- cr(-, x-, s-) dw(’r),
x(0) x0,

where f and r in (3.15) denote drift and diffusion
terms respectively, and w is a Wiener process. As a

functional F in (1.3) we choose

F(l) Etx fo(’r,x-,s-) d’r + g(x(T)) (3.16)

Then the problem is to find

infF(/), (3.17)
Ur

where F(1) is defined by (3.16) under the dynamic
rules (3.15), and (3.17) provides a typical example
of a stochastic optimal control problem. The use of
the Bellman’s principle

Ilt+At
V(t,x) -infEtx fo (’r, x-, s-) O’r

UT ,J

+ v(t +  xt, x(t +  xt)) (3.18)

can formally reduce the problem to the dynamic
programming equation

min[A,V(t,x) +fo(t, xt, st)] O,
St UT

V(T,.) g(.). (3.19)

The definition of the value function in (3.18) is
analogous to that in (3.7) when we consider the
conditional expectation of the performance mea-
sure (3.6). Note also that in the Eq. (3.19) the linear
operator of backward evolution A is well-defined
only if the limit

A V(t, x) lim
xt-o+ h

E,xV(t +  Xt, V(t,x,)

(3.20)

exists for each x E and Ic [0,T], except of
t-- T itself. In the end, the existence of the limit

(3.20) is subject to the definition of V(0, x0). As in
the deterministic case, such a definition depends on
the definition of a set X, and thus eventually
requires the definition of So. To put it differently,
for a justification of the limit in (3.20) we need
existence of two limits induced by (1.10) and (3.11),
namely

lim f(f(t, xt)) and lim , Vt [0, T].
n--,’.c e--O+

The latter may be assumed a priori rather than
justified rigorously. However, even under such an
assumption the procedure of transformation from
the model (3.15)-(3.17) to the model (3.19),
(3.20) remains an essentially sequential heuristic
procedure.
The heuristic nature of the model (3.19), (3.20)

can be circumvented by using the diffusion
approximation method for the original optimal
control problem (3.15)-(3.17). As a result, we
arrive at the form of HJB equation:

l)" + H(t, xt, DxV, D2x V) --0, v(v,.) -g(.),
(3.21)
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where the Hamiltonian H is defined as

H(t, xt, 5, l-I) de__f sup
St UT

tr[Tr(t, xt 5)II] -fo(t, xt, 5)}.
2

(3.22)

Here 7r--crcr t, and II is a symmetric nonnegative
definite matrix (for details, see [19]). Note that a

reduction of the problem (3.15)-(3.17) to a partial
differential equation by the rescaling of a Markov
Chain is accompanied by a loss of information
about the dynamic system itself. Indeed, the
original dynamics xt intrinsic to the model may
or may not be Markovian in general. Though the
Markovian property has to be preserved for the
process (st, xt), it may be violated after the rescaling
procedure, which requires a conservation of the
Markovian structure from xt.

3.3 General Rationale for the Optimization
of Singular Perturbed Dynamics

For all described dynamic rules, regularities of
mappings that define the Hamiltonian of the
system and the value function are coupled by a

specific mathematical model, and eventually
depend on the topology of the space (in which
investigation of the model is being conducted) and
the initial conditions of the model. In principle,
a priori regularity assumptions on the Hamiltonian
allow the recovery of information about the
regularity of the sought-for solution. Results of
this type provide a rigorous mathematical justifica-
tion of the models for which the form of the
Hamiltonian is specified. During the past years the
theory has been extensively developed in this
direction for deterministic and stochastic optimal
control problems (see [11,47,28,19] and references
therein).

Since the Hamiltonian of the system can be given
only approximately, whereas regularity for the
sought-for solution is not a priori knowledge being
the subject of our assumptions, it seems to be

reasonable to couple the model and algorithm for
its solution using an approximation of the informa-
tional string (1.6). Mathematically speaking, we do
not assume a priori "smoothness" of the "transi-
tion" between st, and xt for an approximation of
the informational stream (1.6), even if c 0 + It
implies a consideration of singular stochastic
problems in which the function x is allowed to be
discontinuous (the first problems of this type were
studied in [3,4]). In general, since a "transition"
between st and x (TE(0, )) may be discontin-
uous, we cannot use the principle ofsmooth fit (see
[54] and references therein) to claim continuity of
the recursive function of density t when tT
(possibly T). If our objective is a possibilistic
attainability of the following limits

lim x xt, lim fft- x,, (3.23)
e-0 e--+0+

then regularities of the limiting functions xt and x,
become subject to our a priori assumptions, which
in turn bring the possibility of singularities in such
dynamic processes as "strategy-state" (st, xt) and
"strategy-state-density" ((st, xt); x,). It reduces the
problem of analysis of the sequences (1.1) and (3.5)
to the analysis of the perturbed informational
strings (3.10), (3.11), which formally allows us to
include the parameter of perturbation e into the
model. We can assume, for example, that the
dynamics of the system can be effectively described
by "fast" and "slow" components [59]:

,e =f, (z,, y,, t, ,) zo,

z,, t, y(o, yo.
(3.24)

If we choose a functional F in (1.3) as

/0
T

F(1) def Je g(yr, zr) + fo(r, y.;, z s.) dr,

(3.25)

then the problem (1.3), (3.24), (3.25) is an optimal
control problem for the singular perturbed
dynamics. In general, neither Yt nor zt are required
to have the Markovian property. The role of the
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string (st, xt) in this case plays that of the sequence
(st, (yt, zt)), in the sense that the sequence (yt, zt) is
dependent on Markov Chain parameters, and thus
the whole process (st,(yt, zt)) can be seen as a
Markov Chain approximation. We can also inter-
pret the sequence (yt, zt) when e0+ as the
definition of a recursive function of density
with increasing degree of recurrence as n-*

Then the model (1.3),(3.24),(3.25) will be well-
defined if we define a set X of initial conditions
with a specified level of error. Hence, as above, the
definition of the pair (y0, z0) is eventually depen-
dent on the definition of So in the informational
string (1.6). It implies an approximation of the
informational string (1.6) induced by singular
dynamic rules using sequential decision schemes.

4 ALGORITHMIC MACHINES

Probabilistic Finite-State Finite-Action Machines
Under Singular Perturbation

First, let us consider a probabilistic finite-action
machine that analyses a Discrete Markov Decision
process. Mathematically, the analysis can be
formalized as a set of four-tuple

defM x x; u; ---(x,);

defpp,, (x’--xt, l(xt 5,)), x’ EX, t’ > (41)

where p, is the perturbed probability of thett

transition from the state xt to the next state x’,
is an immediate reward, H is a finite set of actions,
X is a finite set of states, and T is a set of all times
for which states from X are realizable. In general,
the disturbance law of the transition probabilities
in (4.1) is not known a priori. We may assume,
however, that

p(x’l(xt,,)) p(x’e[(xt,t)) 1. (4.2)
x’EX t’ E T

We also observe that every strategy st induces
a perturbed P rather than an unperturbed transi-
tion matrix. Hence, assuming the flow of time

ad-infinitum, we can define the Cesaro-type limit
matrix

P(a) de--f lim [p + p
t-c

k=l
% (4.3)

where 0 _< 7-1 < 7-2"’’ 7-n < with the possibility of
n oo. A strategy a in (4.3) denotes a sequence
that consists of elements st. Of course, using the
reward function "y(., .), we can construct classes of
optimization problems in a way similar to what we
have done with respect to the loss function in
Section 1. For example, we can consider the limit
Markov control problem

Je(2, st)--+ max, st E Ur, (4.4)

where

(4.5)

and H, a UT. We note that the definition of
the matrix P( in (4.3) and the quantity E(’y0, 2) in
the problem (4.4), (4.5) eventually depends on our
definition of the first pair (So, Xo) in the informa-
tional stream (1.6), which may be given only
approximately. Hence, it is reasonable to assume
that the transition law matrix P has Markovian
structure under specified n if the exact equality in
(4.2) holds. To put it differently, for any finite n the
structure of P depends on the topological struc-
ture of sets X and T, thus when X and T are

specified such dependency remains in force even if
n-+oc. In the general case, it precludes the
definition of the matrix P as a fixed finite
dimensional matrix with the probability [16].
As a result, stability analysis of the associated
optimization models requires consideration of a

family of matrices P under a specified level of
error. Recall that a similar situation holds when
dynamic rules are given. Then, we need the whole
set X under a specified level of error to perform
analysis of stability. Without such a "relaxation" of
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probabilistic requirements on the initial conditions
of the model, for any arbitrary small e >0 an

example of practical instability can always be
constructed.

Deterministic Finite-State Finite-Memory
Machines

Now let us consider another type of algorithmic
machine. Deterministic finite-state machines in the
case of finite memory are defined as the triple [42]

[) (Y]m, f2, fl), (4.6)

where Y]m is a finite set of machine states, andf is a
mapping s (R) ]m Y]m which defines the machine-
next-state function. The set Hs is a finite set of
system states. More precisely, we assume that H
can be formalized as a sequence (1.1) as a result of
observations, computations, measurements etc.
This sequence "feeds" the machine (4.6). The
mapping f2 :Hm -+ Uv defines the output function
with a set of strategies Uv. Hence, starting from the
state 30 c Hm, the machine (4.6) produces strategies
(s,s2,...) while going through a sequence of its
states (,2, ...) according to the recursive rules

t f(xt-,t-), st --fz(t). (4.7)

Excluding the current state of the machine t from
(4.7), we find a function of strategies as a second
degree recursion of the sequence (xt-, t-)

st f2(fl(Xt-l,t-1)). (4.8)

Hence, having knowledge of the previous state of
the machine and a corresponding letter of the
alphabet H, we can define the current strategy
using the recursive function (4.8). This model does
not require any formal association with a statistical
model, and does not even assume the existence of
the latter [42]. The informational data stream
produced by such machine is

((x0, 0), s, (xl, ),...). (4.9)

From (4.9) we conclude that the starting informa-
tion to compute the first strategy is a pair (x0,0).

We also observe that the main drawback of such a
deterministic model is the requirement to fix the
strategy immediately when the state of the machine
D is given. Loosely speaking, some relaxation time
between the transition t- t should be incor-
porated into the model to allow strategy correc-
tion. Indeed, such time is implemented into
probabilistic finite-state finite-action machines by
probabilities of the transition from one state of the
system to another under certain actions of a
controller or DM. However, if we know a priori
that

P(t- -- tlxt-1, (st, xt)) 1, (4.10)

or time for such a transition is defined by a given
time-interval, then the sequential decision scheme
based on deterministic finite-state finite-memory
machines is quite natural. If such information is
not available a priori, then probabilistic finite-state
finite-action machines appear to be useful in the
analysis of system dynamics.

In the next sections we develop a technique to
find a reasonable compromise between the two
approaches described above.

THE PERTURBATION PARAMETER
AS A FUZZY BORDER BETWEEN
DETERMINISTIC AND PROBABILISTIC
DESCRIPTIONS OF SYSTEM
DYNAMICS

Major complexity in the mathematical modelling
of dynamic systems arise from the a priori
unknown character of the disturbance law. On
one hand, the implicit assumption of deterministic
models on the existence of an associated optimal
algorithm (like an assumption (4.10)) can be hardly
justified in modelling complex processes and
phenomena. On the other hand, the main difficulty
in effective applications of probabilistic models
arises from the question of how common is the
ergodicity of the Hamiltonian flow on the energy
surface [24]. As was pointed out, perturbations can
qualitatively change the ergodic structure of the
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underlying dynamic system. The examples of
Markov Chains with discontinuities in the sta-
tionary distribution of the perturbed system can be
found, for example, in [52,1]. Furthermore, for any
decomposition of such a chain into a finite number
of independent ergodic subclasses (under the
assumption e 0 +) examples of system instability
can be constructed for arbitrary small e.

5.1 Degree of Recurrence in Mathematical
Models for Evolution

An idealization of "unperturbed" mathematical
models obtained in the limit of vanishing perturba-
tions e- 0 + can often help to better understand
real-world phenomena and processes. However, it
should be realized that such an idealization has
limited applicability, and depends on quite restric-
tive mathematical assumptions related to

homogeneity of the environment of the system,
and
uniformity of density which characterizes the
system or its parts.

Since for any model of a dynamic system with
specified dynamic rules the parameter of perturba-
tion may be small but always positive, rescaling
procedures for the associated (with the optimiza-
tion model) Markov Chain may not provide an
adequate approximation to the system dynamic.
Such procedures may eventually ignore the neigh-
borhood structure of the chain. If such a rescaling
(for example the diffusion approximation) has been
performed, then the original problem can be
reformulated as an inverse problem with respect
to a recursive function of density (1.10). The
complexity of the solution of the inverse problem
is determined by the degree of recurrence n and the
topology of the space where investigation is being
conducted. Moreover, if the topology is a priori
specified then the regularity assumptions on the
function fn allow us to recover the information on
the regularity of the function , at least in principle
for any arbitrarily big n, following certain logical
rules. In the models like (3.8),(3.9) and (3.21),

(3.22), fn plays the role of the Hamiltonian func-
tion. Such models can be regarded as discrete
optimization problems if we interpret the function

f as one that defines the top-level goal, whereas all
functions j, i= n-1,..., are supposed to define
certain subgoals. The definition of the density
function provides constraints for such a problem
of multicriteria optimization. From the physical
point of view such problems require finding the
minimum of the Hamiltonian of the system on the
energy surface, and can be formulated as follows:
given a finite (typically large) number n of
subsystems of a big system, minimize an approx-
imation to the system Hamiltonian on an approx-
imating set of its energy surface.
Now recall the definition of system entropy in

statistical physics as a quantity that is uncertain to
an additive constant and is dependent on the choice
of units, defined by the Liouville measure [36]

(7 Jf log{(27rh)sf dp dq. (5.1)

Here s is the degree of system freedom, p and q are
momentum and position variables. If we assume
that the whole system entropy can be defined
through the entropies of its subsystems as

icri, then for any probability distribution p--
(Pl,PZ,...,Pn) its associated information can be
defined as the Shannon entropy [53,49]:

rs(p) Pi logpi. (5.2)
i=1

The constant n in (5.2) can be approximated with
respect to the required accuracy e and is ultimately
coupled to the definition of s in (5.1). In the limit of
"vanishing perturbations" e -+ 0 + and "maximum
knowledge" n-oc, the Shannon entropy can
be generalized to the continuous case of the
Boltzmann-Gibbs entropy. The latter transforma-
tion requires a justification of system stability.
From the physical perspective mathematical ide-
alization of two simultaneous limits n- oc and
e40 + requires an estimation of the degree of
system freedom in the definition (5.1). In this sense
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such an idealization is problem specific, and
always requires analysis of the measure stability.

5.2 Discrete Optimization and Evolution
of Thermodynamic Systems

Any specific algorithm for the solution of the
problem of modelling dynamic system evolution
is affected by the form of the function fn (as a
Hamiltonian approximation on the energy surface)
and by the neighbourhood structure of the system
evolution. In this sense an algorithm is always
coupled to the problem specific information. In
discrete optimization such algorithms can be
conditionally divided into three main categories
[10,50]:

constructive algorithms (CAs) that require con-
struction of decreasing and embedded in each
other subsets of a given finite set of states ,
sequential algorithms (SAs) that attempt to
construct a path through , and
evolutionary algorithms (EAs) that manipulate
sets of solutions in 52.

Let us assume that, for any given state xt from 52
that characterizes the whole system, there is a
neighbouring set of states Nx, where transitions
from xt are allowed. Then CAs usually apply a
"greedy" policy when starting from x0 E 52, they
choose at stage n an xn +1 such that

E(Xn+l) min{$(t): Nx,}, (5.3)

where ,5’ is an energy functional. Mathematically
speaking, we expect that given and an accuracy
e > 0, we can find a solution, at least in principle,
when n-+ oo. However, it is well-known that as a
result of such policy CAs may relatively easily be
trapped in a local minimum of $. If is assumed to
be continuous and E is a "reach" enough set, then
in general the degree of recursion in (1.1 0) tends to
infinity and we theoretically face infinitely many
optimization problems (5.3). By now it is clear that
without an appropriate analysis of the structure
Nx,, success of such algorithms cannot be guaran-

teed. As we pointed out earlier, such analysis has to
be conducted with respect to given e.

The main advantage of SAs is based on the fact
that they do not exclude the theoretical possibility
of occasional acceptance of new states that may
increase the energy functional [43]. We also assume
that an "initial" solution x0 52 may be given (for
example, obtained by a CA). Moving to a

neighbouring solution x’ 52, the structure of the
neighbourhood of the solution should be carefully
analysed to avoid the difficulty of CAs. The basic
idea for such an analysis came from statistical
physics. The growing complexity of the solution of
deterministic equations of motion for a system of
many subsystems (such as particles) has led to the
idea of ensemble averaging instead of classic-
mechanical averaging in time. As the number of
subsystems increases dramatically, the Monte-
Carlo and particle-type simulations [27] eventually
remain the only algorithmic procedures that can be
applied in theoretical generality. However, such
procedures may encounter serious difficulties in
non-equilibrium thermodynamics [48]. In a search
for alternative approaches to the ensemble aver-
aging, many useful ideas have been generated
during recent years. The intrinsic ability of Markov
Chains to form a canonical Gibbs ensemble
numerically has led to growing interest in the
subject [19,35]. Using the principles of statistical
physics we can assign to each state xt 52 the
probability

exp(-f(xt)/T)
(5.4)pT(Xt)

Y]x,e.a exp(--f(xt)/T)’

where f(xt)=(xt)/k. The quantity (xt) can be
interpreted as the potential energy of each state (or
subsystem) in phase space that belongs to an
ensemble. The probability that a system belongs
to the ensemble is proportional to exp[-/(kT)]
where k is the Boltzmann constant. We observe
that the smaller T> 0 is, the more evident is the
tendency of the Gibbs distribution defined by (5.4)
to be concentrated on states xt with small values of
f(xt). Hence, if we could simulate the cooling of the

There are classic examples of SAs like the steepest-descent method that have potentially the same problems as CAs.
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system, a state of minimum energy may, in
principle, be obtained provided that the Markov
Chain converges (in distribution) to the Gibbs
distribution (stationary) law. This allows us to
consider CAs as a partial case of this general
interpretation when a Markov Chain is run for
T 0 +. Another extreme case of the "high Tlimit"
ultimately leads to the idea of dynamic continuity.
In such a case all states are assigned the same

probability, and evolution is thought as moving
from a state to its neighbours uniformly. The
computational implementation of the above idea
is provided by the simulated annealing algorithm
first proposed in [31]. For a real physical system,
temperature may be lowered too rapidly, and the
system may be trapped in a local energy minimum.
However, the choice of Tn c/logn with a suffi-
ciently large c can theoretically guarantee the
system’s "escape" from the local minimum [21].
In practice, the algorithm works as follows. If for
the time-index n xt, is given, then from the set Nxt,
we choose state t, calculate Af--f(t)-f(xt,),
and set

Xtn+
Xt

with probability p exp(-A/Tn),
with probability p,

where A is A when A is positive and zero otherwise.
Ofcourse, the choice of the neighbourhoodstructure
is crucially important for the algorithm’s perfor-
mance. If the neighbourhood is chosen too small,
then the resulting simulated Markov Chain may
move very slowly around in the search of
the minimum. On the other hand, if the neigh-
bourhood is chosen too large, then the process
eventually performs a "blind" random search
throughout P. It samples randomly from a large
portion of the state space, and every next possible
state is chosen practically uniformly over the whole
set . As an extreme case it may happen that

Nxt- . The conclusion which has to be drawn
from the above consideration is that the choice of
neighbourhood should be adapted to the approx-
imation of the energy functional (or system
Hamiltonian) in the search for a compromise
between these two extremes.

The first step towards such an adaptation is
realized in EAs. Typically, EAs deal with a

population of solution instead of a single partial
solution, as in CAs or SAs. The most important
advantage of EAs consists of allowing an exchange
of information between solutions in the current

population (a cooperation step during the "gen-
eration cycle"). The main problems for EAs are
related to the self-adaptation step when the
solution’s internal structure may be changed with-
out interaction with other members of the popula-
tion. When there are a lot of replicates of the same
solution in a population, EAs may converge
prematurely, which is usually called a diversity
crisis. In such situations EAs are not competitive
with the best versions of SAs.

Let us summarise the definitions of strategies in
the above three classes of discrete optimization
algorithms:

St "’1 (Xt-At, )
St "’2 (Xt-At, Nx,-At, )

for CA,
for SA,
for EA.

Here At > 0 is a relaxation time coupled to the
algorithm performance when e > 0, and X, is a pop-
ulation of solutions for the nth generating cycle.
Functions Fi, i= 1,2, 3 are algorithm-specific. In
general, they can be regarded as recursive functions
of energy functionals, and the set of initial
approximations X, for the specific algorithm:

Fi fni(fni-l(... (fl(Xe, c) ...)). (5.6)

At any specified moment of time t, the definition
of strategy st implies a coupling rule between e and

ni. The definition of such a coupling leads to
the well-posedness of the problem. In this sense,
the well-posedness of limiting models based on the
assumptions e ec and ni oc is totally depen-
dent on complete information about the initial
conditions of the system, and a precise definition
of the energy functional.
The process of constructing mathematical

models is always a competition between (i) an

approximation of the system-environment boundary
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interface (which involves the system’s internal time

[44]), and (ii) the conservation laws for integral
characteristics of the system (which involves mod-
eler’s time [39]). As a result ofsuch a competition, the
resulting mathematical models simulate coupling of
the system to its environment, and can be considered
as models of neither isolated nor closed systems. A
formal expression of the competition is provided by
the physical concept of relaxation time. Having
captured in the mathematical model the notion of
information formally, its numerical expressions can
be used in decision making with uncertainty,
characterised by the adequacy of the simulation of
the system-environment coupling. In general,
numerico-logical methods can be used effectively
only if an appropriate model has been constructed.
Hence, the quality of an algorithm depends deci-
sively on an adequate reflection of the system-
environment coupling in the mathematical model. If
constructing a model is an art rather than a science,
then the latter formally begins from the derivation of
an algorithm from the model [56].

In concluding this section, it should be empha-
sized that the quality of a mathematical model for
dynamic system evolution is decisively dependent
on (i) the approximation of the initial conditions
for the system, and (ii) the approximation of the
system-environment boundary interface. To mini-
mize such dependency, the solution of a sequence
of optimization problems can be used as an
alternative to the limiting rescaling procedures
approach. Such an approach seems to be more

physically reasonable, since a priori information
about the system can be given only as a certain
possibilistic distribution which allows us to select a
new distribution according to certain principles
[15,49].

COUPLED MATHEMATICAL MODELS
OF MACRO- AND MICRO-EVOLUTION

The complexity in identifying a "hard boundary"
interaction between system and its environment is
eventually determined by the degree of recurrence

in the definition of the system Hamiltonian. Such a

definition should be given with respect to the upper
bound of error e in the identification of the set of
initial conditions X. Since, in general, perturbed
and unperturbed models might give rise to qualita-
tively distinct types of descriptions of system
behaviour for any arbitrary e > 0, the perturbation
parameter alone cannot be an appropriate char-
acteristic of the model’s uncertainty. We observe
that perturbations are an important part of the
system dynamics which cannot be appropriately
formalized in mathematical models unless we

regard the mathematical modelling of dynamic
system evolution as a decision making process with

limited information from the very beginning of the
modelling process. Additional information about
the system becomes available in time at stages due
to the model-associated computations, observa-
tions and measurements. Hence, to approximate
the dynamic system evolution, it is essential to take
into consideration the fact that initial information
about the system can only be given approximately.
A mathematical formalization of such approxima-
tions is a challenging problem that requires new

approaches.
On one hand, the idea of sequential approxima-

tion and the hyperbolicity of the underlying
differential equations is an intrinsic element of
recent investigations in physics foundations [46,30].
On the other hand, rescaling procedures allow us to

construct mathematical models which are essen-

tially parabolic by their nature. Moreover, the
latter have proved to be a very useful tool for

investigating the laws of nature. Although such
rescaling procedures are always connected with the
loss of some information, a justification of para-
bolic approximations of dynamic system evolution

may be obtained if we assume that there exists a

system density f on the Gibbs phase space P such
that its associated index of probability is given by
logf. In general it allows us to consider the
definition of entropy in the Gibbs form as

H(f) fp r/(f)#e(dx,) (6.1)
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instead of the definition (5.1), where is defined by
(1.9). Such a formal identification of a (thermo)-
dynamic system with a probability space is based
on the Gibbs conjecture. Namely, we assume that
the appropriate description of a macroscopic
system in thermodynamic equilibrium may be
provided by certain probability measures on the
phase space of the system. Although this con-

jecture has never been rigorously proved [24,39,40],
the passage from (5.1) to (6.1) is not without
certain gains. It provides a convenient framework
for the development of a mathematical theory for
dynamic systems allowing the formulation of the
concept of ergodic theory that expresses at least
some aspects of irreversible thermodynamic evolu-
tion [45]. However, the introduction of a recursion
function using the Lebesgue measure #e(dxt)
does not answer the question of stability for a

"projection" of the Liouville measure (for a system
with a certain degree of freedom (5.1)) onto the
energy surface using a sequence of the Gibbs
measures that deal with microcanonical ensembles.
As we explained above, from the physical point of
view we should approximate the system ttamilto-
nian on the energy surface, which is also subject to
an approximation. Hence, mathematically speak-
ing, to rigorously justify models arising from
application of the Gibbs conjecture, we should
be able to construct both the forward-evolution
model and its associate for the backward-evolu-
tion as we explained it in Section 3. Gibbs was the
first who arrived at the concept of mixing, and
who noticed that the very use of probabilities in
the description of physical states implies a time

asymmetry [45]. In turn, the latter implies rever-
sibility of distribution functions in a mathematical
sense, as well as a forgetfulness property with
respect to the initial conditions of the system in the
flow of time. Such a reversible time-asymmetry in
the mathematical theory of dynamic systems is in
contrast with the irreversible character of evolu-
tion implied by the second law of thermodynamics
and Eddington’s time arrow. The complexity of
the mathematical formalization of evolution irre-
versibility was well understood by J. Gibbs, who

wrote [22],

it should not be forgotten when ensembles are

chosen to illustrate the probabilities of events
in the real world, that while the probabilities
of subsequent events may often be deter-
mined from the probabilities of prior events,
it is rarely the case that probabilities of prior
events can be determined from those of
subsequent events, for we are rarely justified
in excluding the considerations of the ante-
cedent probability of the prior events.

Almost a century ago he clearly pinpointed that the
main difficulty in a mathematical formalization of
the backward evolution models lies in the complex-
ity of a probabilistic description of the initial
conditions for the dynamic system, even if the
probability of a terminal event is assumed to be
given a priori. At the same time he proposed an

approach that allows the effective construction of a
framework for a formal separation of the "obser-
ver" from the "modeller", and the system from its
environment. Such a construction plays a resolving
role in mathematical modelling and computational
experiments. In fact, if the conjecture is accepted,
the "modeller" (at least in principle) can perform a

task in the "best" possible way, and the idea to
exclude the "observer" from the intermediate
process of computations (except at the very begin-
ning and the very end of this process) becomes
natural [60]. Then the whole time-set of the evolu-
tion of a dynamic system may be associated exclu-
sively with the "modeller" as an "error-nulling"
optimizing device. The existence of such a device
depends on the existence of an error-free model of
dynamic systems, that in turn eventually depends
on the definition of a sequence of switching events
or a time-partition, when the "modeller" may
become the "observer" and vice versa.

Starting from this idea we can introduce the
notion of a Generalized Dynamic System (GDS)
where the decision maker (modeller/observer or

problem solver) is considered as an intrinsic part of
the model [39]. The basic steps of such a model
construction are as follows: first, we consider the
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mathematical model of a dynamic system

en+l H(v,en), n O, 1,... (6.2)

as a mapping that couples two space-time events
of the system evolution by a function of the
perturbed velocity v and the system’s Hamiltonian
or its approximation H. Then, we specify a

sequence of events (e0, e,...) by temporal evolu-
tion. In practice such a specification is always an

approximation for both the probabilistic and
deterministic approaches. We assume that the
basic features of dynamic rules that govern a

system can be appropriately described by a

velocity function Vl. Furthermore, we allow the
possibility of a "correction" of these dynamic rules
by another dynamic which is specified by another
velocity function v0. Formally, Vl can be seen as a

higher, but a priori unknown, degree of recursion
of the function v0. As a result, we arrive at the two
coupled sequences

(x0, xl,...) and (h0, hl,...). (6.3)

When n--oo and e+0 + we expect that the
sequences (6.3) merge, producing events that can
be characterized by the limit of the model (6.2).
Since neither the degree of recursion nor the level
of perturbations are known a priori, we formalize
the dynamics of the system by the two equations

xt+l Hl(V,Xt),
(6.4)

h+l Ho(vo, h-),

where H is an approximation to H and H0 is an

operator for sequential corrections of such an

approximation. If we assume that in principle
system dynamics can be described with arbitrary
accuracy, then the first equation of the system (6.4)
in the long run should be practically independent
of v0. Such a limiting case corresponds to viewing
perturbations as a force, "continuously" external
to the system. However, in general, both functions

v0 and v are perturbation-dependent. Thus, the
system (6.4) provides the possibility of looking at

the coupling between the velocity of the perturbed
system and perturbations of its environment. It is

assumed that in general such coupling can be
looked at in two different space-time frames of
reference, macroscopic and microscopic.
One possible direction in the development of the

theory of dynamic systems was provided by the
celebrated Gibbs conjecture which we mentioned
above. This led naturally to the idea ofthe control of
dynamics described adequately (for example, in the
almost-everywhere sense) by thefirst equation of
the system (6.4) or its consequences, some of which
we have considered in previous sections. Under this

approach mathematical formalization of the deci-

sion rules need some a priori assumptions on the
smoothness of the function (or functions) that
provides (or provide) an approximation to the
recursive function H. It is precisely these assump-
tions which formally allow the use of the perturba-
tion theory in the investigation of underlying
dynamic problems. In this way we "localize" the

problem of scale interactions into a perturbation
parameter e which stores information about the
complexity of the problem no matter how big the

degree of recursion n really is. From this point of
view it seems reasonable to look at the classical

system of the theory of singular perturbations
(like (1.3),(3.24),(3.25)) as those that may be
obtained as a partial case of (6.4) by some

appropriate rescaling procedures. More precisely,
if e is interpreted as a force, which is external to the
system, then in the limit of e 0 + the classic models
in the theory of singular perturbations may be
regarded as an infinite-recursion decision rule.

In the general case, however, the model (6.4)
provides an interpretation of perturbations as an

intrinsic to-the-system force. In this case it is

reasonable to assume that both functions v0 and

v are dependent on e for any interval of time.

Moreover, since the only available apriori informa-
tion on e is its positiveness, we need to introduce a

mapping to describe the behaviour of e while the

system evolves. To put it differently, in order to

perform at least in principle an infinite-recursion
procedure when e ---+ 0 + and n oc, we need some
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learning rules to be introduced into the model. In
[39] it was shown that under quite general assump-
tions the optimal control problem (1.3), (1.5), (3.2)
is reducible to the hyperbolic-type equation (gen-
eralized energy equation):

(1 + v) O# +-- +f0 -0,
v

(6.5)

that has a unique generalized solution (in the sense

of an integral identity). The unknown function was
assumed to be Lebesgue integrable, that is

# E LI(Q), where Q is the space-time region of
interest. In the general case this function is referred
to as the decision maker function. The interpreta-
tion of Eq. (6.5) as a partial case of the system (6.4)
can be formally given as follows. We consider a

mathematical model that consists of two parts:
(i) an idealized equation for a phase point in the
system’s time (with a trajectory h(-)) associated
with the centre of the system gravity, and (ii) the
macro-model of dynamic system micro-evolution
in the decision-maker time "external" to the system
(in terms of the decision-maker function #)e. Such a

model of a Generalized Dynamic System couples
two different space-time scales with the perturbed
velocity function v in its two different manifesta-
tions, micro-velocity v0, and macro-velocity Vl:

h, u),

ou/o + o.
(6.6a)
(6.6b)

Hence, the model is constructed in such a way that
both parts of the perturbed velocity functions v0
and v inherit their dependency on the decision-
maker function. If two events (between which
GDS evolution has to be studied) are specified,
then a pair of functions (h(-),#(t,x)) gives the
solution to the problem. An approximation of
such events can be given using a probabilistic
connection between the micro and macro levels of
the system description in the form of the corn-

plementarity principle

(6.7)

If the smaller velocity v0 is assumed, then the
bigger # at the initial moment of time should be
chosen. Hence, formally by (6.7), we postulate the
existence of the system in a space-time of events
with the probability at the initial moment to of
absolute DM-time for any arbitrary small values
of Vo. Since % may be given only approximately,
any approximation that follows from (6.6),(6.7)
enables us to identify such an approximation
with a Perturbed GDS (PGDS). In the limit of
vanishing perturbations (e0 +) the model
(6.6), (6.7) (PGDS evolution) formally converts
into the model for Unperturbed GDS (UGDS)
evolution and merges with the model (6.2). There-
fore, in principle the model (6.5) can be obtained
from (6.6), (6.7) using (6.6(b)) as a corrector for
Eq. (6.6(a)). Such a corrector induces the presence
in Eq. (6.5) of the goal function f0. The main
difficulty behind such a formal procedure is how
to construct an appropriate corrector. From the
probabilistic point of view this difficulty was dealt
with by Gibbs. Of course, there do not exist two

non-identical events (related to the present state of
the system evolution, and its future or past
behaviour) described by any mathematical model
with the same probability exactly equal to 1. In
reality, all constructions of mathematical models
for dynamic system evolution start from a

countable base in space-time of events of PGDS
evolution. At the next step, we approximate (6.2),
and this "fuzzifies" the deterministic concepts of
evolution in the probabilistic descriptions of
events. It should be noted, however, that a

randomness of GDS evolution is induced by
inherent approximations in the model construction
and is not an independently established fact by
itself. The lack of rigour in the description of a

dynamic system by purely probabilistic models
stems from the fact of such an approximation. On

eWe started from the consideration of the equations/ v0(’, h, #) and 2 -vl(t,x,#).
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the other hand, the main difficulty in applications
of deterministic models is in the construction
of effective correctors to describe adequately
dynamic rules. In both situations the success of
modelling is defined by the quality of an algo-
rithm, which should be derived from the model
using the concept of system stability.

COMPUTATIONAL MODELS AS
MARKOV CHAIN APPROXIMATIONS

As soon as dynamic rules (with or without control)
define a model for system evolution as a function of
time x[, such a function becomes subject to intrinsic
uncertainty for arbitrary small intervals of time.
This is a natural reflection of the approximate
character of mathematical models which can be in
principle characterized by the degree n of recursion
for such a function with respect to the function of
density. Since such a degree can be rarely given
a priori, we can approach the problem solution by
imposing an upper bound on e. It seems to be
natural that in applications to the real world,
mathematical models of dynamic systems have to
be understood as perturbed rather than unper-
turbed models. Of course, they will remain as such
in the foreseeable future. In general, it precludes
assumptions on the forgetfulness property for den-
sity distributions, and as a result the Markovian
property for the perturbed system dynamics x[.
Behind the complexity of the problem is the
question of the system’s stability. The idea which
will be developed in what follows is to construct a
Markov Chain approximation simultaneously with
an approximation of the system (that depends on

Markov Chain parameters) to guarantee its stabi-
lity. Hence the Markov Chain shallplay the role ofa
learning rulefor the system under an approximation
of the perturbed system’s velocity by its approx-
imation Vl in the macroscopic DM frame of
reference. As a result of such a construction and

the Markov theorem on the generalized law of big
numbers, the pair of functions (h(-), #(t, x)), which
describes the process of GDS evolution, shall
possess the Markovian property. Furthermore, it
is proposed to approximate this process by a pair
of discrete functions (h h

,#n ), where is an
associated (with the microscopic frame of refer-
ence) Markov Chain state.

Let us consider the PGDS described by the form
of the generalized energy equation (6.5)

Ot---- Vl(t,x,#)x-- fo(t,x,#) (7.1)

The approximation of the initial condition for this
model is specified in the DM-time scale as

/z(x, t)lt=,0 (e), (7.2)

where e depends on the approximation of the
function v0 in (6.7). Hence, formally, the model
(7.1), (7.2) can be seen as a macro-model for GDS
evolution. However, microscopic features of the
dynamicsg are taken into account by the possibility
of coupling between the parameter of system
perturbations e and the decision-maker function #.
In what follows, a technique which is based on the
construction of a hybrid-type algorithm [10] for the
solution of this problem will be developed. The
main results concern the derivation of a learning
heuristic procedure that combine the effective
features of (5.5), (5.6). To simplify the derivation,
I explain the main ideas in the one-dimensional
case, denoting a characteristic length of the system
as h and assuming that h << T- to. Let us consider
the evolution of the system defined by the dynamic
rules (7.1), (7.2) in a square region of the macro-
scopic frame of reference

G-{(x,t)" Xo<X<Xt, to<_t<Tx}, (7.3)

where absolute DM-times of initial (t- to) and
terminal (Tx-T) events, as well as a position

x- x0 of the system, are specified. If GDS

Compared to random processes with Markov Chain parameters in the continuous absolute time in [13,19] and references therein.
Induced by (i) an approximation of system-environment boundaries at to and (ii) corrections of the function Vl by v0.
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evolution takes place in ( under a certain level of
perturbations e > 0, then for this region the func-
tion vl depends on the DM-function #. This
depends on v0 being subject to approximation from
the initial moment of DM-time. Hence, we shall
approximate the function Vl with respect to our

approximation of the function v0 in a recursive
manner. First we introduce the discrete grid in the
region (7.3):

03-rh { (Xi, tJ)" Xi+l Xi + hi, j+ j -+- ,
i--O,n- 1, j--O,m- 1, m- T}, (7.4)

and consider an elementary space-time cell

ci- [xi, xi+] (R) [tJ, +1] c (. The nodes of the grid
(7.4) connect events relevant to the system evolu-
tion. We shall refer to the whole set of such events
in 0 as a set of macroscopic events. Let J and J+

be two moments of absolute time (defined by DM)
that correspond to two subsequent macroscopic
events ej, ej+ of system evolution. Since the
process (xt,#t) is assumed to be Markovian,
these events can be specified by two pairs of
discrete functions e (fh, (Xi, J)), ej+l

-rh X()+, #( i+1, tJ+’)), where fh= x and f+h x_
are states of the associated Markov Chainh. To
preserve basic macroscopic features of the system,
the values ofjumps Afh j. fh of this chain
should be subordinated to the corresponding
approximation of system-environment bound-
aries. For example, let the time spent to cover the
characteristic length h of the system be -. Then, we
formally express the idea of subordination in the
definition which follows, where we consider the
limiting case - 0 of such a subordination.

DEFINITION 7.1 Let ej (fh, (Xi tj)), ej+

(, #(xi+,,t+’)) be two subsequent macro-

scopic events of GDS evolution that happen with
the probability 1. Then the GDS velocity function
between the macroscopic events ej and ej.+ can be

defined in an elementary space-time cell c0. c G as

E-hl(x,) /Nfhv(t,x)- lim (7.5)
--0 T

The numerator under the limit in (7.5) is referred
to as the velocity of the Markov Chain between two

subsequent macroscopic events.

The definition of the velocity function as the
most probable jump of the associated Markov
Chain (the jump which minimizes the energy of the

transition) gives a way to construct a stable
approximation of the Hamiltonian of GDS evolu-
tion. We relate the macroscopic behaviour of the
system to its microscopic characteristics defined in
an elementary space-time cell cij. As a result, in
any such cell the GDS velocity defined by (7.5) is
always greater than or equal to 1. Hence, if the
process is approximated in ci, the Courant-
Friedrichs-Lewy (CFL) stability condition [12]
0-_< h) is satisfied automatically, regardless of the
actual values of the velocity function in cij.

Remark 7.1 In the limiting case h0, Defini-
tion 7.1 loses its meaning and a macroscopic
system degenerates into a point. Mathematically,
however, this situation is well-defined as n-+

(m _> n):

lim v(t,x)- v, (7.6)

which returns us to the model (6.2).

Although formally, definition (7.5) coincides
with the ordinary definition of the velocity function
under the assumption of continuity (an infinite
number ofmicroscopic events between ej. and ey + 1),
the latter is subject to application only in the case
when both of the following claims are justifiable:

knowledge of the "exact" Hamiltonian;
knowledge of the initial conditions with "infinite

precision".

h To simplify the notations, numeric indexes near - and h are omitted.
It cannot degenerate into a point due to the existence of the macro-level.
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Neither of these two can be guaranteed even for
a simplified dynamic motion [44,45]. Whereas in
the classical definition of the velocity function we
relate microscopic points in the macroscopic frame
of reference, (7.5) establishes a correspondence
between two macroscopic events on the probabi-
listic basis of microscopic events between them.
Hence, the GDS velocity is a measure of changes
which take place on the microscopic level with
respect to the macroscopic behaviour of the system.
If we assume that such changes are vanishing,
lim_0+ v 11, then we can expect (see (7.6)) that

lim v(t,x)- 11. (7.7)
-0+

We call the mathematical idealization of evolution
described by the model (6.2) with the limiting
velocity defined by (7.7) an Infinite Length
Unperturbed Markov Chain (ILUMC). The reality
of perturbations (e > 0) implies an approximation
v vl that leads to the computational idealization
of an Infinite Length Perturbed Markov Chain

(ILPMC). The approximate relationship

lim v(t,x) l (7.8)
n----oo

reflects our endeavours to describe the evolution of
PGDS. In general, mathematical modelling of
GDS evolution according to (7.8) implies an

approximation of the macroscopic velocity func-
tion with respect to an inevitable approximation of
the function of micro-velocity. Such an approx-
imation can be seen as the choice of a countable
base in a topological space that induces a transfor-
mation from a space-time of events of PGDS to a

discrete space-time of macroscopic events of this
system evolution. This assumes a passage from the
grid of macroscopic events coh defined by (7.4) to a
new grid, nodes ofwhich are computational models
of these events defined by a topology base in the
macroscopic frame of reference.
A consideration of the space-time as a causal

discrete set was the subject of many publications
(see, for example, [7,9] and references therein).
Recently some new theoretical results on dynamic
system discretizations on lattices have been
obtained [14]. Below we formalize these ideas with

respect to our models using the Markov Chain
approach. First, the state space of the initial

macroscopic event e0 has to be specified with
respect to

absolute time of the decision maker, and
an approximation of the system-environment
boundary at the initial moment of such absolute
time.

In the case of a one-dimensional approximation
we define this space in the macroscopic frame of
reference as

E(i;0) {xi, O, 1,2, 3,...,N;
N- 2n, n- V(T- to)/h}. (7.9)

We assign to each state of .=. a particular prob-
ability weight pi, which can be defined on the basis
of the micro-velocity approximation with the
property of decreasing probabilities _> p0 > p0 >
p... >p0u>_0 (the theoretical limit of "infinite
precision" is not excluded). Thus, to define the
state space of a macroscopic event, we include a

theoretical possibility ofGDS evolution in each cell
of the grid of macroscopic events. If hi-h,
i- 0, 1, n 1, then maxj -j _< h and the limiting
case of equality leads to a consideration of a square
grid a(m-n) which has the resolution to
identify any macroscopic event relevant to system
evolution in ( when n oc. This case implies h 0

(and as a consequence - 0) when the state space
of the initial macroscopic event defined according
to (7.10) degenerates into a ray that indicates the
loss of connection between absolute DM-time and
relative time of the dynamic system. We can

circumvent this problem of uncontrolled propaga-
tion of initial uncertainty by a probabilistic descrip-
tion of macroscopic states which are subject to
conservation of the Markov condition on the basis
of an appropriately constructed Markov Chain
associated with GDS evolution.

DEFINITION 7.2 A set of macroscopic events
defined by a mapping co - =(i; j), where

,=,(i; j) { (xi, J), k, 2n k, j k, k O, n},
(7.10)
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is called the cone of macroscopic events of system
evolution.

Remark 7.2 The formula (7.10) in Definition 7.2
is given for a "one point target in absolute DM-
time" and can be generalized for any target set
including a set of isolated points in the DM-time
scale (t- T). This may be of the great importance
for some optimal control problems.

Our next step is an approximation of the macro-
velocity function with respect to the micro-velocity
using Definition 7.1. As a characteristic of the
microscopic velocity function e>0 we use a
numerical index Xn 0(7- + h) defined in the macro-
scopic frame of reference by probability weights
of the neighbourhood states of an associated
Markov Chain.

DEFINITION 7.3 A Markov Chain h, n< oe

is consistent with the Markov process (h(7-), #(t, x))
defined by the mathematical model of GDS evolu-
tion (7.1), (7.2) if

Ehl(xi’j)A;h
]21 (Xi, j, ]AJ)7 -1- o(h -[- 7-) (7.11)

and

o(h + (7.12)

hold. We refer to the condition (7.11) as the
condition of local consistency, whereas (7.12) is
referred to as the global consistency condition.

Remark 7.3 The equalities (7.11), (7.12) imply the
fact that the macroscopic properties of the system
should not change dramatically in small (with
respect to the whole evolution) DM-time-sets,
although microscopic properties can vary signifi-
cantly subject to the velocity function. Another
way of putting it is that consistency conditions
referring to the probabilistic microscopic level
make explicit basic features of system evolution on
the macroscopic level. The same role in physics is
played by the second law of thermodynamics [45].

In general, even if in the reality of dynamic
system evolution there exists

a uniform movement of the microscopic frame
of reference with respect to the macroscopic
one with a velocity v,, and
a linear dependency of the corresponding points
(x, t) and (-, h),

these facts can be established neither by mathemat-
ical modelling nor by a measuring experiment.
However, the limiting case of our consideration
(when h 0 and hence 7-- 0) implies that

COVenhl(xi’uj)m;h 0 when n

Of course, the infinite length Markov Chain is
within the scope of the Markov theorem on the
generalized law of big numbers.

THEOREM 7.1 If a sequence of arbitrary random
values Al, AC2,..., An,... satisfies the condition

COV[A/] O,
i=l

then the limiting result

lim P{ n

1Z(A E[Ai])
i=1

holds for any arbitrary > O.

Therefore, if we construct a Finite Length
Perturbed Markov Chain (FLPMC) with the
properties (7.11) and (7.12), we can guarantee
convergence of such an approximation to ILPMC
in the probabilistic sense of Theorem 7.1 when the
number of macroscopic states n- ec. The limit
passages

A, --Ahn (if n oe then)
--+ A (if e - 0 then) Ao

illustrate schematically a connection between
FLPMC, ILPMC and ILUMC. An approxima-
tion error of FLPMC with respect to ILUMC is
defined by
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which vanishes in the limit e- 0 + and n---, oc. In
this case the macro-velocity of the system coin-
cides (see (7.7)) with the velocity of the associated
ILUMC, and

Any other cases assume a probabilistic description
of physical states (see [44]) that can be associated
with an appropriately constructed Markov Chain.
It makes it necessary to transform the continuous
space-time ofa macroscopic frame ofreference into
the discrete space-time of macroscopic events of
system evolution, that is to construct the cone of
macroscopic events. The base of this cone is subject
to the implementation of the complementarity
principle (6.7), which acknowledges the fact of the
system existence at the initial moment of DM-time
with the probability k. We note that as an

alternative approach there is the theoretical possi-
bility to control possible changes of macro-velocity
from the micro-level. In general, using an appro-
priate approximation (that is valid for the macro-

scopic level of system description), we can describe
the event e0 in the two complementary forms

organizing dynamic systems. DM in such cases

can be associated with the "observer", and this

approach can be formally regarded as the velocity-
energy formulation of evolutionary problems. To
combine both possibilities in such a specification of
the event e0, computational models of dynamic
system evolution should be derived. The main
difficulty that immediately arises stems from the
necessity of an approximation of the limit of ne(n)
for any dynamic system which evolves in space-
time (n-+ oc) under the possibility of vanishing
perturbations (e 0 +). The method proposed in
this paper is based on such a construction of
computational event-models in the cone of macro-
scopic events that preserve the stability property of
associated evolution. In general, such an approach
permits the DM to switch from "observer" to
"modeller" and vice versa whenever it is necessary.
To construct a stable approximation of the

model (7.1), (7.2) the idea of the upwind discrete
scheme with flux limiters [57] is used. Without loss
of generality for the numerical procedure, we

assume that j70 0, which reduces Eq. (7.1) to

6.6(b). First, let us introduce in the cone of
macroscopic events (7.10) a floating grid:

either position-and-DM formulation as (x0,1),
or time-and-macro-velocity formulation as

0).

Cdrh i=k, 2n-k, j=k, k=0,n},
(7.13)

Theoretically, we can combine both approaches
by considering the problem in terms of macro-

velocity and the DM-function that corresponds to
the specification of the event e0 as (0,1). Such a

consideration is typical for mathematical models in
optimal control theory, where the decision maker
plays the role of the "error-nulling" optimizing
device of a modeller type. This approach can be
regarded as the velocity-control formulation of
evolutionary problems. An alternative considera-
tion of initial conditions as (1,0) seems to be
intrinsic to the investigation of biological self-

where t-1 J-I + r./_l when j > 1, t o + r

when j-1, and tj’ o when j-0. Provided all

rj._l, j 1, n, r0 r are defined, the grid (7.13)
generates a set of approximations to the macro-

scopic events defined by E(i;j). Since for a

particular DM-time t-1 an associated event

depends only on the macroscopic event that
corresponds to the t-l-moment of DM-time, the
value of rj_l is subject to stability conditions for
the system. Such conditions depend on the velocity
of the system, which is approximated using an

evolution-associated Markov Chain. Now if we

When classical concept of continuous phase space trajectories can be formally applied.
However, it does not give a way to specify the initial condition for the macro-model (7.1), (7.2).
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denote approximations to #-function and V on coh
as d and v respectively, then the approximations

o { (- /+)/ f ; < 0,

Ox (d/1/2 d/-1/2)/h if vi > 0

The partial cases of v--0 (v + 0) and v+-0
(v-- 0) give the results

T
1+- (1 --")/1) 2 0, /1 0, ")/2 0,

allow us to derive the discrete scheme

+ /;-
(7.14)

where v + max[v/, 0], v- max[- vi, 0] and

d/;}- j + a/,(r/, d,.}- 41 + V4(r-,,

4- 41 + 4,%(r+’), <t- a + V44r.
Here , 1,4 are flux limiters which are subject
to definition with respect to the velocity func-
tion approximation. The other notations are the
common

Then the discrete scheme (7.14) can be rewritten in
the form

e+l {1 [11 +-T
+ /_,{[<(1 +)+ -z4]}
T

+41{[u-(-%)-
T T

+ 4{[-<]} +4{-3}. (7.18)

A verification of the sum of all coefficients near
unknown function on the right hand side of (7.15)
gives unity. Hence, provided nonnegativeness
conditions are satisfied, we can associate these coef-
ficients with transition probabilities of a Markov
Chain. In fact, the conditions of nonnegativeness
of probabilities are

T

-(1 + -- u+,) 0,

o, zz 2 o, (7.6)
+( + z) + -4 o, -(zz 1) + +z 5 o.

(7.17)

and

T

--(1+74)>0, 4>_0, 0_<73<,

respectively.

LEMMA 7.1 Under the conditions (7.16), (7.17)
the Markov Chain defined by time-transitions of
the discrete scheme (7.15) is locally consistent with
the process (h(-),#(t,x)) defined by the model
(7.1), (7.2)/f the equality for flux limiters

-[v- (1 4 4- ")/3) v+(1 4- 71 "72) v]--- o(- 4- h)
(7.18)

holds.

Proof If a previous state of the Markov Chain
was -x subject to control dj, then according
to the assumption of Lemma 7.1 we have the
following table of transition probabilities for a
new state ).h,.

New state Probability of transition

x h "r/h[v + (1 4- ")’2) 4- V--")/4]
x + h -/h[v-(1 "’3 1 + ")’1]
x 1--/h[Ivl 4- l-")/4--V +’)/1]
x- 2h r/h[-v +’3’2]
x + 2h 7/h[v-")/3]

Therefore it can be verified that

Ef’hl(x’dJ) A;h "r[v+(1 + 72)+ 1-")’4]
+ 7[v- "Y3) v+’3’1

7-
/ o[a {Ivl / v-,4 v/,a ]

27-[-v+72] + 2-[v-%]
-[v-(1 ")/4 4- ")/3)

1+( 4- ")’1 ’)’2)]"

This equality together with definition (7.11) com-

pletes the proof.
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Remark 7.4 The Markov Chain velocity VMC
[v-(1 -")/4-[-")/3) v+(1 -t- ")/1-- ")/2)] between two
successive macroscopic events coincides with the
velocity of the process when n-oc. For any
finite value of n we have VMc > v which corre-
sponds to the nonnegativeness of the covariance
of the Markov Chain jump between these macro-

scopic events.

LEMMA 7.2 Under the conditions (7.16), (7.17)
the Markov Cha& deft’ned by time-transitions of
the discrete scheme (7.15) is globally consistent

with the process (h(7-), #(t,x)) if the equality for
flux limiters

7-{h{v+( -3q 33’2) + v-(1 + /4 + 33’3)]- 7-VZMc}
0(7- + h) (7.19)

holds.

Proof In a way similar to what was done in the
proof of Lemma 7.1, we construct the following
table of transition probabilities:

New state Value of [/k-EA]2

X- h (-h TI:MC)2

x + h (h- 7-VMC)2

X (0- TIMC)2

x- 2h (-2h- 7-VMc)2

x + 2h (2h 7-Vc)2

We notice that the probabilities of transitions
correspond to those from the transition probability
table in Lemma 7.1. Therefore the computation of
covariance

E[ZX- EzX]
7-

[h2 + 2hT-VMc + 7- VMCh
)< IV+ (1 nt- ")/2) + V-4]
+ [h2 2hMC + raVc]
[-( ) +l]

T{1 -[1 + -4 +l])
+ [4h2 + 4hvMc + 2MC][--<]

x [4h2 4h-vMc + T
2 2 7_212MCc][-]} +

h[+( - ’) + -( + 4 + )]
TV2MC

gives the required equality (7.19), if we take into
account (7.12).

Remark 7.5 For each cell ci# c coh a probabilistic
analogue of the characteristics of Eq. (7.1) can be
defined by the equality

covf.hl(x"")Ah 4-7-vc const (7.20)

To estimate the value of const in (7.20) we can

eliminate the term o(7- + h) in our approximation
using (7.11) and (7.12):

COl;hl(x’dj)mfh
TVMC --TF. (7.21)

Using Lemma 7.2 the equality (7.21) can be
rewritten as

h[l+( -")/1 3")/2) q- V-(1 + ’3’4 + 3"y3)]- 7-V2Mc
7-(VMC V). (7.22)

Therefore nonnegativeness of covariance is equi-
valent to the stability condition

v+(1 -")q 33/2)+ v-(1 + 3’4 + 3"y3)
(7.23)

Iv-(1 + ’Y3 74) v+( + ")/1 ")/2)] 2,

which follows directly from (7.22). Provided flux
limiters are chosen in such a way that the equality

+(1 ")/1 33/2)+ v-(1 +74 + 33/3)
[v-( + "3 "4) v+( + " "2)] 2

(7.24)

holds, the stability condition (7.23) is satisfied.

Example 7.1 Examples of the choices of flux
limiters are given below for two partial cases.

If v--0 and ’)’2- 0 (i =j) then the value of the
flux limiter ’)’1 can be found from (4.16) in the
form

v/8v+ + +
21+
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If v+ =0 and "/3 0 (i N-j) then the value of
the flux limiter 74 is defined as

74=1+
x/8v- + +

The identification of flux limiters completes the
construction of the discrete scheme which defines
the Markov Chain with the corresponding inter-
polation interval - (subject to stability conditions)
and transition probabilities. We state the result in
the form of the theorem on the Markov-Chain-
approximation stability in discrete space-time of
events.

THEOREM 7.2 If transition probabilities of a
Markov Chain (h, n < oe) are defined by the

formula

Remark 7.7 (on numerical procedures). A numer-
ical method proposed in this section is an explicit
(evolution forward) stabilization procedure where
the DM-function is a stabilizing factor subject to
the velocity of the system.

Remark 7.8 (on backward evolution operators and
continuity of phase space trajectories). A prob-
abilistic description of event en0 precludes the
situation where terminating data for backward
evolution procedures can be specified in a "deter-
ministic" way. Moreover, states X(to) and x(T) of
the system in DM-absolute-time scale can be
characterised by different probability weights,
which makes the continuity assumption for the
connecting trajectory inapplicable in general.

ph [xJ, xi
+ v- 4 v+,-)/1],

Iv+(1 + ’72) + v-74],
[V-(1 ")/3) V+71],

0,

k-- i,

k=i-1,

k=i+l,

k=i-2,

k=i+2,

otherwise,

Vj= 0, n-1 and i=j,N-j (72=0 for i=j and
"’3---0 for N-j), whereas the interpolation inter-
val - satisfies the conditions (7.16), (7.17), (7.23),
then the Markov-Chain-approximation of the pro-
cess (h(-), #(x, t)) is stable, and discrete values of
the DM-function can be foundfrom the formula

d(xj+ tJ+
j+l d(XJk, lj d(XJk, (7=ZPrh[xJk, xi tJ). .25)

k

Remark 7.6 (on convergence). When n oc the
velocity of the Markov-Chain converges to the
velocity of the process in the sense of Theorem
7.1. If we consider, for example, a formulation of
the problem in terms of velocity-control, then due
to the complementarity principle the discrete
function (7.25) converges to the decision maker
function of the system.

COMPUTATIONAL ASPECTS OF
DISCRETE MARKOV DECISION
PROCESSES

In a vicinity of any event e0 which we might
conditionally associate with the present of GDS
evolution, there are infinitely many events relevant
to the GDS evolution which might be called past
andfuture events of evolution. As a result, an event
itself can be formalized mathematically, neither
with a deterministic certainty, nor with a precise
probability. This implies difficulty in justifying the
separability of topological spaces when the evolu-
tion of UGDS and PGDS is investigated.

Let us denote a probabilistic error of the
inevitable approximation of such an event in the
initial conditions of a mathematical model as
p E (0, 1], e > 0. Then the principal mathematical
assumption which allows us to develop analytical
theory of dynamic system in continuous (space-)
time is a possibilistic assumption of vanishing error

lim ) 0. (8.1)
e--+O+

Moreover, a concept of absolute or "external" to
the system DM-time [45,38] leads to the theoretical
possibility of predicting a future event en which is



34 R.V.N. MELNIK

associated with the DM-time t=T (possibly
T= oc) with the probability 1. This means that

lim 9,0 0, (8.2)
e0+

where on0 is a probabilistic error in the definition of
this event. This approach (which is deterministic in
its essence) usually visualizes evolution as a
continuous trajectory x(t) between present e0 (time
t= to) and future en0 (time t= T) events along
which positions of the system can be determined at
least in principle with the probability 1. Assuming
that (8.2) holds, let us try to go backward in
continuous DM-time. If evolution of the system in
continuous space-time has taken place at all, we
can select between events en0 and e0 at least (no 1)
events relevant to system evolution, which we will
refer to as macroscopic. Further, we can extract
between macroscopic events el and e0 at least
(nl- 1) events relevant to system evolution which
we will call microscopic, and will denote as

e e2
O1 eO1 In the same way, we can findnl--l"

(n2- 1) sub-microscopic events el1 e2
11 eTMn2--1

etc. As a result, we obtain a functional of the event-
transition-error in the form

n0-1 n-1
F(x, t) Z 0i+1 (0i) -- Z 0/+1’0(0/’0)

i=1 i=1

n2-1
-+- Z 0i+1’00(0i’00)-I-- (8.3)

i=1

n-I
-t- Z 0i+1’(0i’, -t- "’,

i=1

where, for example, a probabilistic error in a transi-
tion between events e/TM and 0l (i- na 1)e:i+
is defined by oi+ ,oo(i,oo). To guarantee conver-

gence of the series in the right-hand side of (8.3) we
should require

lim L)2,00...O (1,00...0) O,

where, assuming that (8.1) holds, we also have

lim g, O.
k-x

Applying the same arguments in the forward DM-
time we can draw the conclusion that for any
"middle" macroscopic event em E (eo, eno) (DM-
time tm (to, T)) both events e0 (DM-time t= to)
and eno (DM-time T) are infinitelyfarfrom it in

the continuous (space-) time of events. However, in
the macroscopic frame of reference, the distance
between the events em and e0 as well as a distance
between em and en0 are well-defined in terms of
absolute DM-time by the intervals A0, tm-to
and Am,no T-tm respectively. In other words,
provided that both assumptions (8.1) and (8.2) can
be justified, any event em of GDS evolution has
two time-characteristics: (absolute macroscopic)
DM-time tm (to, T) and (relative microscopic)
system-time T (--OO,---OO). The mathematical
formalism, that allows us to circumvent the arising
difficulty of time scaling, is based on the Cauchy-
type models, and requires an exact specification of
initial (or terminal) conditions for the position-
vector or the density function in a separable
topological space. Eventually, mathematically
rigorous justification of such models requires
simultaneous application of the concept of a

time-infinity (either in the form of ergodic-type
hypotheses or infinite-step algorithm) and the
possibility of vanishing perturbations when time
goes by. Another way of putting it is that infinite
time is a necessary condition for the justification of
unperturbed mathematical models. However, suf-
ficiency of this condition is subject to possibility
theory [15,49] rather than the theory of probabil-
ities. From the physical point of view the analysis
of the described problem requires the concept of
relative time. The mathematical idealization which
reconciles the concepts of absolute and relative
time of dynamic system evolution is ILUMC in the
continuous space-time of events, for which the
claim of (t, -) (-oc, + oc) is natural. The very
next step in the modelling of dynamic system
evolution is ILPMC. Such models imply an

approximation of an event e0 that formally gives
two rays in relative-time directions ((-oc, -0) and
(-0, + oe)). Our knowledge of the relative time % is
based on its intermediate influence on the quality
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of approximations of objects of mathematical
modelling with respect to the moment to of
absolute time. A selection of one of the two rays
in relative-time directions corresponds to the
choice of a Markov semigroup [44] associated
either with a covariance-non-negative (for future)
or a covariance-non-positive (for past) Markov
Chain. Whatever model is chosen, the Markovian
property for the evolution should be preserved by
an appropriate algorithm. It requires consideration
of perturbed mathematical models with the
specified level of error.
An approximation of event e0 implies a trunca-

tion of the series F(x, t) in (8.3). Let us denote a

probabilistic error induced by such a truncation as

  ’d2L > 0.

Let us also assume that the limit of vanishing error,

lim 1,9, -lim -0,
l-oc 0

holds. Then, in general, the quality of prediction of
GDS evolution by means of mathematical model-
ling is defined by the quality of a solution of the
optimization problem

)i+l ()) min. (8.4)
i=0

Since the difference between an unperturbed
trajectory xt of ILUMC and a perturbed trajectory
x[ of ILPMC at a certain moment t-tm of DM-
time can be arbitrary big, the necessary condition
for convergence of series (8.4),

lim p+l (p) 0,

cannot be guaranteed in general, no matter how
small > 0 is assumed. This is not a surprising fact
since in general the optimizing function is a
function of an infinite degree of recursion of the
density function. The intrinsic idea in mathema-
tical modelling and computational experiments is

to reduce the degree of recursion to a finite
number. In doing so we arrive at the problem

n0

i+ (i) ---’ min,
i=0

which implies the construction of FLPMC.
Though the difference between two macroscopic
states x and x+ in DM-time scale might still be
arbitrary big in general (between two macroscopic
events ez: and ek+l there might be an infinite
number of microscopic events relevant to system
evolution), we are now able to estimate a prob-
ability of corresponding transition using the values

of// /. BY means of FLPMC we preserve the
stability of the macroscopic system (the object of
mathematical modelling) with respect to its micro-
scopic dynamics. Although stability of the micro-
scopic dynamics with respect to a macroscopic
system will follow in the limit of our construction
any finite time computational procedure is not
necessarily a reflection (even qualitatively) of the
latter. To put it differently using tools of
mathematical modelling results generated by
ILUMC or ILPMC (i.e. a complete description
of GDS evolution) cannot be guaranteed with the
probability 1. If it is granted that mathematical
modelling can give a way to describe the real
processes, systems, and phenomena, then a con-

ceptually necessary passage from continuous
trajectories (x(t) or x*(t)) in absolute ("external" to
the system) DM-time to a probabilistic description
of physical states should be undertaken. A con-
venient framework for a probabilistic description
of system evolution from one macroscopic event to
another provides the concept of DMDP [26]. Since
DMDP is considered in the macroscopic frame of
reference, both

a number of observed macroscopic events

(which is finite no no(T, to, h0-))), and
a topology of the state space,

depend on an approximation of initial e0 and
terminating en0 events. In the macroscopic frame of

which can change in general with respect to absolute DM-time due to fluctuating system-environment boundaries.
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reference the state space gives rise to the cone of
macroscopic events

where for j=0 we have nj.= 0 and Nj= N. In the
case of 1-D approximation (one-point-target), the
cone of macroscopic events was defined by (7.10).
At a certain moment j of absolute DM-time, the.

J to which wesystem can be in one of the states x
assign different probabilistic weights p/. With the
same probability weights we associate the corres-
ponding action set defined by

4(i;j) {#(tJ, x), i- nj, Nj}.

If we now define an allowable decision set for each
macroscopic event ej, j 0, no as

D(i;j) E(i;j) (R) 4(i;j),

then the construction of a probabilistic .model for
each macroscopic event of system evolution

ej {D(i;j); p}

has been completed. If #(tJ, xJi)vi n, ivy is known,
a description of the macroscopic event at DM-time

becomes totally deterministic. A reward set is
defined by the probability distribution of the next
macroscopic event:

R(ej -- ej+l)- ({(x{+1 #( tj+l ’--i-J+l ;+1},i
nj+l, Nj+I ).

The following stabilization procedure (which is
described with respect to the approximations used
in Section 7) can be applied as an implementation
of Theorerm 7.1.

ALGORITHM 8.1

Initialization of initial event.

Find initial values of the DM-function at t-t.
That is, define event eo by triples (xi #(xi to); p).
Then set complementary description of the initial
event as (t, vi pJi ).

Prediction step for an event-model.
Given values of#(xi to), define an approximation
to the velocity function of the process v(t + h,

i-2,2n at the next DM-+ h, t))
time-layer - to+ h. Set (t vi) as an approx-
imate description of the next macroscopic event.

Correction step for the event-model.
Using the approximate description of the event in

terms of time-velocity, find flux limiters and the
time-step ofstability 7-, for which define an event-

model as (t1,, #(x’, ;Pi where 2, 2n and
tl,- o + 7-.

Event definition.
The definition of DM-function by i(x],t)
#(x’,t1,) i-2,2n gives the new macro-

scopic event in the form of the set of triples
(x],#(x,tl);p) i- 2,2n.
Complementary description of the event.

Define complementary description of the event as

(t, v];p) and repeat the procedure for the next

DM-time-layer, etc.

Since in the DM-time scale (where the stabiliza-
tion procedure has to be employed) a real event
always follows after its event-model counterpart,
this implies that an error at each step of the
procedure is defined by a time-discrepancy between
the event and its event-model (for example, the first
step of 1-D approximation gives At= 1- tl’-=
h-7-). To minimize this error we should find a
Markov strategy which at each DM-time level
chooses the highest probability of a transition.
In general we have the whole family of DMDP
defined as

.M(eo, el,..., eno) {79(i; j), R(ej --- ej+l ),

pj+l (k; i), nj, Nj, j O, no },
j+lwhere pjJ+’ (k; i) ph[xJk, X ]#(X, tJ)]. Each of

such a DMDP constructs a probabilistic trajectory

of system evolution

7"(ko, ,k,o)
{p(k0), p(k0; kl),
p (kl ;k2),..., p]0_ (kno-1 ;kno )},
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(kl E [n,N], l= O, no), in the cone of macro-

scopic events. In general the equality Pno-ln
(kn0-1;kn0) cannot be guaranteed, and close-
ness of this probability to depends on values of
po(ko) and the structure of the cone of macroscopic
events (i.e. on the approximation of e0 and en0). To
single out amongst all probabilistic trajectories
defined by DMDP (5.5) an optimal one we define
the probabilities of successful prediction as

/0(k) miaxp (i; i), i- no, No,

and then

p’ (k; i) mxp(k; i),

/(k;k) m.axp’(k0;i), i- n,N1.

In general we have

p+ (k" i) maxoJ+ (k; i)
k t-j

J+ (k]" kj.*+ maxpJ+l (ky; i)Fj

where i= nj, Nj, j-- 1, no- 1. Then the policy

?), 0, n0},

induced by the optimal probabilistic trajectory

-{po(ko),plo(ko, k*),P(k;k),7*(k; .,k;o -o ,.

,p,o_l(k*o_l,k,,o)},

we call the optimal Markov policy, which gives (in
the DM-time scale) the Markov Chain approxima-
tion to GDS evolution (h(-), #(t,x)). The DMDP,
which is associated with this policy, corresponds to
the construction of such a Markov Chain which
evolves to the most probable state ofthe system pre-
serving of strong causality of macroscopic events.

9 CONCLUSION

In this paper mathematical modelling of dynamic
system evolution has been studied as a problem in

information theory. Computational models for
evolution based on the ideas of evolution-asso-
ciated Markov Chain approximations have been
developed. Since the velocity function of the system
is coupled to perturbations of its environment,
stability conditions for the system have been
derived in an explicit form.

Mathematical models for the evolution of

dynamic systems are closely connected with dis-
crete optimization problems through the definition
of information and the associated notion of
entropy for thermodynamic systems. Information
uncertainty in knowledge bases influences the
construction of mathematical models, and should
be taken into account. This implies a certain
heuristic nature in such a construction. Such
heuristic approaches are an important part of
studying dynamic system evolution, and will
remain as such in the foreseeable future, supple-
menting achievements obtained with the increasing
computational power of modern computers and
improved methods of data collection and ana-

lysis. Moreover, hybrid procedures combining the
features of constructive, sequential, and evolution-

ary algorithms of discrete optimization give a

general framework that could challenge well-
established techniques in optimization theory.
Many important breakthroughs in optimization

theory are intrinsically connected with the appli-
cation of algorithms of sequential analysis that
are based on the Markovian-type schemes. Such
schemes are typical in computational models where
minimax concepts of optimality are used. A
mathematical formalization of the problem is quite
natural, and is computationally consistent. The
problem is viewed as attempts by the decision
maker to obtain the best guaranteed result with

respect to available information about the prob-
lem. The same formalization is a starting point for
constructing mathematical models where other

(such as probabilistic) concepts of optimality are

used. In applications of such decision-maker
schemes there is a natural contradiction between
a desire for informational completeness in the
model that is being constructed and a desire to
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choose functional classes for which effective
computational algorithm exists. In a search for a

compromise between these two extremes induced
by the "energetic" (combinatorial) and informa-
tional complexity of the underlying algorithm
[56,58] it is reasonable to include the decision
maker as an intrinsic part of the constructed model
using some learning rules. As a result, mathema-
tical models become coupled to their computa-
tional associate. This allows us to look for the
optimal algorithms as those that at each step of
their performance in the best way to use the
information, which is accumulated by this step.
The number of steps and quality of performance
can be mathematically defined by the degree of
recursion of an approximation to the system
Hamiltonian (with respect to the density function)
and the parameter of perturbations. In studying
dynamic system evolution it is expected that a

compromise between the two mentioned types of
complexity can be achieved by the requirement of
system stability. This cannot be guaranteed in
general unless the underlying model is defined by
hyperbolic rather than purely parabolic dynamic
rules. Examples of this type have been derived, and
the limiting cases of vanishing perturbations and
infinite recursion rule have been discussed. The
results on the derivation of hyperbolic equations of
the Hamilton-Jacobi-Bellman type for non-
smooth and stochastic optimal control will be
published separately [39,40,41]. Their connection
with the principles of extended irreversible thermo-
dynamics [46,30] as well as computational algo-
rithms shall be also discussed elsewhere.
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