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Conventional economic assumption that more sophistication in decision making is bet-
ter than less is challenged with a profitability analysis conducted with an oligopolistic
model consisting of a naive firm and a group of sophisticated firms. While the naive firm
is assumed to adopt a simple Cobweb strategy by equating its marginal cost of current
production to the last period’s price, the sophisticated firms can take either individually
or collusively any conventional sophisticated strategy such as Cournot and Stackelberg
strategies. Contrary to the economic intuition, it is not the sophisticated firms but the
naive firm who triumphs in equilibrium as well as during the dynamical transitionary
periods, no matter what strategies the sophisticated firms may take. Moreover, when the
economy turns cyclic or chaotic, a combination of the Cobweb strategy with a cautious
adjustment strategy could also bring relative higher average profits for the naive firm than
its rivals.
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1. Introduction

Oligopoly is considered to be one of the most important types of markets. Since the classic
work by Cournot in 1838, research interests in oligopoly were almost all concentrated on
competitions between firms which were homogeneous in the strategy, either in output
or price, although some generalizations have been made to the cases involving product
differentiation, randomness in demand, and the mixture of price and quantity strategies.
Following the conventional economic intuitions that greater sophistication in decision
making is better than less and more information is beneficial, if output is the only choice
variable, “price-taking strategy” (Cobweb strategy), in which a firm ignores its output
impact to the market and sets its output through equating the estimated market price
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to the marginal cost, has long been regarded as an inferior strategy comparing to the
more sophisticated strategies such as the Cournot or Stackelberg strategy, or to a collusion
in terms of economic efficiency. Such beliefs are challenged in Huang [1, 2], where the
Cobweb strategy, despite being simple and naive, has been shown to be the most effective
and efficient among all possible alternative strategies in the sense that it always results in
a profit higher than or equal to its rivals in equilibrium, no matter what strategies the
latter may take (including acting as “relative profit maximizer”). The current research
takes a step further by showing that a naive firm that adopts the Cobweb strategy could
make higher profit than its rivals during the dynamic transition process. Moreover, a
combination of Cobweb strategy with a cautious adjustment strategy could bring higher
relative profits for the naive firm than its rivals if the oligopolistic market turns cyclic or
chaotic.

The paper is organized as follows. In Section 2, a heterogeneous oligopoly model is
set up. Section 3 generalizes the results of Huang [2] and shows that a naive firm (i.e.,
the firm taking a Cobweb strategy) always outperforms its sophisticated rivals in equi-
librium. Section 4 then examines the relative profitability of a naive firm in transitionary
dynamics. Section 5 modifies the original model by incorporating a cautious adjustment
strategy in the naive firm’s production decision. Section 6 examines the relative prof-
itability of a naive firm with the cautious adjustment strategy in a chaotic environment.
It is shown, both in theory and by simulations, that through limiting the output growth
rate to a certain level, a naive firm does not only stabilize the economy, but also makes
a higher average profit than its sophisticated rivals. Concluding remarks and issues for
further studies are offered in Section 7.

2. A heterogeneous oligopoly model

Consider an oligopoly market, in which N = n+m firms produce a homogeneous prod-
uct with quantity qit, i = 1,2, . . . ,n+m, at period t. The inverse market demand for the
product is given by pt = D(qdt ), where D′ ≤ 0. The conventional assumption that qdt =∑N

i=1 q
i
t, that is, the actual market price adjusts to the demand so as to clear the market at

every period, applies.
All firms are assumed to have an identical technology and hence an identical cost func-

tion C(q).
The firms can be classified into two categories: the naiver and the sophisticated. The

first n firms are the naiver, who are either deficient in market information or less strategic
in market competition. They make their production decision based on a simple Cob-
web strategy, that is, acting as price-takers with naive price expectations: p̂it = pt−1 and
planning their production based on pt−1 =MCi

t, for i= 1,2, . . . ,n. By taking into account
the fact that all naiver have the same cost function, they should all produce an identical
output, xt, with

C′
(
xt
)= pt−1, (2.1)

which defines implicitly an identical reaction function Rx for all naiver.
In contrast, the other m firms are the sophisticated. They are assumed to command

complete market information, such as the current and historical market demand, the
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market share, and/or the possible reaction functions of other firms. They are capable of
forming accurate market expectations based on available information as well as taking

into account the reactions of the others. Let p̂
j
t and y

j
t be the price expectation and the

output by the j’s sophisticated firm, j = 1,2, . . . ,m, respectively. Then the expected profit
of the sophisticated is given by

π̂
y
j = p̂

j
t y

j
t −C

(
y
j
t

)
, j = 1,2, . . . ,m. (2.2)

Without loss of generality, it is assumed that the conventional strategies such as Cour-not
or Stackelberg leader/follower are adopted to maximize the expected profit, which gives
rise to the following implicitly defined optimal reaction function r j :

p̂
j
t + y

j
t
d p̂

j
t

dy
j
t

= C′
(
y
j
t

)
, (2.3)

where p̂
j
t and dp̂

j
t /dy

j
t depend on the current and historical data {pt−s−1,xt−s, yt−s}ts=0, as

well as their knowledge about the other firms.
Equations (2.1) and (2.3) together form a discrete dynamical process:

xt = Rx
(
pt−1

)= rx
(
xt−1,

{
y
j
t−1

}
j=1,2,...,m

)
,

y
j
t = Rj

(
xt,xt−1,xt−2, . . . ;

{
y
j
t−1

}
j=1,2,...,m,

{
y
j
t−2

}
j=1,2,...,m, . . .

)

= r j
(
xt−1,xt−2, . . . ;

{
y
j
t−1

}
j=1,2,...,m,

{
y
j
t−2

}
j=1,2,...,m, . . .

)
, j = 1,2, . . . ,m.

(2.4)

For the convenience of reference, we will call the above model a general heterogeneous
oligopoly model (a GHO model).

We will concentrate on a dynamical process that is economically meaningful in the
following sense.

Definition 2.1. An output bundle (xt,{yt}) for the general heterogeneous oligopoly model
is said to be economically meaningful if the following inequalities are met:

(i) xt > 0 and y
j
t > 0, j = 1,2, . . . ,m, that is, positive outputs for all firms;

(ii) 0 < pt =D(xt +
∑m

j=1 y
j
t ) <∞, that is, positive and limited price.

To illustrate the main points of the study with a deep understanding of the role of the
naiver in the very oligopolistic game, a model that is analytically manipulable is needed.
The following linear heterogeneous oligopoly model (an LHO model) will serve our pur-
pose. In particular, to exemplify the role of the naiver, we will concentrate on the case of
n= 1, that is, there is only one naiver in the market. (However, all results revealed in this
study apply to arbitrary n and the case of differentiated costs.) We also assume that all the
sophisticated firms form a collusion and produce at an identical quantity yt. The market
demand is assumed to be linear so that its inverse demand function is given by (For the
convenience of graphical illustration and comparison, the current demand function is
adopted instead of the conventional setting in Huang [2] as pt = 1− xt −myt.)

pt =D
(
xt +myt

)=m+ 1− xt −myt, (2.5)
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whereas the marginal cost is linear so that the cost function adopts the form of

C(q)= σq2

2
. (2.6)

It follows from (2.1) that the naiver’s reaction function is:

xt = Rx
(
pt−1

)= pt−1

σ
, (2.7)

or, alternatively,

xt = rx
(
xt−1, yt−1

)= m+ 1− xt−1−myt−1

σ
. (2.8)

The collusion formed by the sophisticated is assumed to take the Cournot strategy with
rational expectation (or exact knowledge of the naiver’s current output), (Discussion on
more complicated strategies, such as relative profit maximization, can be found in Huang
[2].) whose reaction function is thus derived from the first-order profit maximization
condition

D
(
xt +myt

)
+
dD
(
xt +myt

)

dyt
yt = C′

(
yt
)
, (2.9)

which is simplified to

yt = Ry(xt)=̇m+ 1− xt
2m+ σ

, (2.10)

that is,

yt = ry
(
xt−1, yt−1

)= Ry
(
rx
(
xt−1, yt−1

))

= (m+ 1)(σ − 1) + xt−1 +myt−1

σ(2m+ σ)
.

(2.11)

3. Profitability in equilibrium

Before analyzing the dynamical characteristics of the discrete process (2.4) (as well as
(2.7) and (2.10)) under the different possible strategic specifications for the sophisticated
firms, relative profitability in equilibrium for the two types of oligopolistic firms needs to
be addressed.

Assume that the dynamic process (2.4) reaches an economically meaningful equilib-
rium at (x, y1, y2, . . . , ym), then which type of firms will make more profit, the sophisti-
cated or the naiver?

The following counter-intuitive result revealed in Huang [2] for the duopoly is gener-
alized into the following.

Theorem 3.1. When an economically meaningful equilibrium is reached for the heteroge-
neous oligopoly model, if the cost function C is strictly convex, the naive firms perform not
worse or even better than each and every sophisticated rival in terms of the profit, regardless
of the types of strategies the sophisticated firms may take.



Weihong Huang 5

Proof. When the equilibrium (x, y1, y2, . . . , ym) is arrived, the market price is fixed at an
equilibrium level

p =D

(

nx+
m∑

j=1

y j

)

. (3.1)

By the assumption, the marginal cost of the naiver must be equal to the price level, that
is, C′(x)= p.

Now, compare the profit difference between the naiver (they all have, the same profit)
and any of the sophisticated firms, say, firm k, whose output is yk, then we have

πx −πk = p
(
x− yk

)− (C(x)−C
(
yk
))

= C′(x)
(
x− yk

)− (C(x)−C
(
yk
))
.

(3.2)

It follows from the assumption of C′′(·) > 0 that C′(x)(x− yk)− (C(x)−C(yk))≥ 0, or
equivalently,

πx ≥ πk, (3.3)

where the equality holds if and only if x = yk.
Since the sophisticated firm k’s production strategy is not explicitly specified in our

proof, inequality (3.3) thus leads to the conclusion immediately. �

Remark 3.2. Theorem 3.1 simply states that, unless a sophisticated firm produces the
same quantity as the naiver does in equilibrium, then the equilibrium profit made by the
sophisticated firms will definitely be less than the one gained by the naiver, which holds
true even if all sophisticated firms form a collusion, as assumed in the LHO model.

It needs to be emphasized that the conclusion in Theorem 3.1 is valid only for eco-
nomically meaningful equilibriums since an equilibrium existed in theory may not be
economically meaningful in economic sense. The existence of such economically mean-
ingful equilibrium, its uniqueness, and its stability depend on its rival’s strategies, the
market demand, and the production technology. However, when there are more than
one equilibria, the conclusion holds for all economically meaningful ones.

Table 3.1 summarizes the equilibrium outcomes for the linear model. It is immediately
verified that Π

x
/Π

y
> 1 for all σ and m.

To serve for the benchmarking purpose, two extreme situations are also included in
Table 3.1, one with all m+ 1 firms adopting the Cobweb strategy and the other with all
m+ 1 firms forming a collusion. (These two cases will be denoted with subscripts “w”
and “u,” respectively.)

In the former case, a sophisticated firm has an identical output as the naiver (ry ≡ rx),
and the equilibrium is known as a Walrasian equilibrium (competitive equilibrium). For
the latter case, all firms act together as a monopoly and maximize the total profit; the
first-order condition is given by

D
(
(1 +m)yt

)
+ (m+ 1)ytD′

(
(1 +m)yt

)= C′
(
yt
)
. (3.4)
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Table 3.1. Equilibrium outcomes.

All price-taker 1 price-taker
m colluded

All colluded

Reaction of the
naiver

rx
(
xt−1, yt−1

)
—

Reaction of the
sophisticated

rx
(
xt−1, yt−1

)
ry
(
xt−1, yt−1

)
—

Equilibrium
price p

w
= σ(m+ 1)

1 +m+ σ
P = σ(m+ 1)(m+ σ)

2σm+ σ2 +m+ σ
pu =

(m+ 1)(m+ σ + 1)
2m+ 2 + σ

Equilibrium
outputs

xw = yw = qw X = (m+ 1)(m+ σ)
m(2σ + 1) + σ2 + σ

xu = yu = qu

(

qw =
m+ 1

1 +m+ σ

)

Y = σ(m+ 1)
2σm+ σ2 +m+ σ

(

qu =
m+ 1

2m+ 2 + σ

)

Equilibrium
profits

πx
w = πy

w = πw Π
x = 1

2
σ(m+ 1)2(m+ σ)2

(2σm+ σ2 +m+ σ)2
πx
u = πy

u = πu

(

πw = σ(m+ 1)2

2(1 +m+ σ)2

)

Π
y = 1

2
(2m+ σ)(m+ 1)2σ2

(
2σm+ σ2 +m+ σ

)2

(

πu = 1
2

(m+ 1)2

2 + 2m+ σ

)

Profits ratio
Π

x

Π
y = (m+ σ)2

σ(2m+ σ)
≥ 1

An equilibrium is reached immediately without dynamical transitions:

xu = yu =
m+ 1

2m+ 2 + σ
. (3.5)

If all firms, the sophisticated firms and the naive firms, adopt the Cournot strategy or
collude together, will any firm have an incentive to “downgrade” to a price-taker? The
conventional answer would be a straightforward “No,” should all firms maximize their
own profits instead of relative profits. It is believed that a higher relative profit enjoyed
by a betrayer (a price-taker) is achieved by hurting the others (those remain in the col-
lusion) more than themselves. The price paid by the betrayer from the collusive and/or
oligopolistic commitment is the reduction in its own profit as well. Regretfully, such rea-
soning does not hold in general when the number of firms in an oligopolistic market
is larger. A firm may prefer to take a Cobweb strategy (behaving as a “price-taker”) not
just for the relative profit compared to the rest but also for the sake of increasing its own
profit. There exist situations in which an individual firm can achieve the dual goal of
maximizing the absolute profit and relative profit simultaneously by changing from the
sophisticated strategy to the Cobweb strategy. In the terminology of game theory, the
“Cobweb strategy” can be a dominant strategy for a firm, regardless what other firms do.
Such a discovery improves our understanding of the beauty of simple strategy in dealing
with a complex and changeable environment.
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Figure 3.1. Critical π values.

Take the LHO model as an illustration and compare πu to (Π
x
,Π

y
) given in Table 3.1.

While Π
y
< πu for all m and σ , we have

Π
x −πu = 1

2
(m+ 1)2 σm

2(2m+ σ)− (σ +m)(2mσ + σ +m)
(
2mσ + σ2 +m+ σ

)2
(2 + 2m+ σ)

. (3.6)

Therefore, we have πx
c > πu when σ > σ̂ , where

σ̂ = m

(m− 1)2− 2

(
m−m2 + 1 +m

√
m(m− 2)

)
. (3.7)

That is, there exist situations in which any firm has the incentive to betray the collusion,
not only for the relative profitability but also for the instantaneous payoff.

For example, when σ = 1 and m> 2, we have

Π
x −πu = 1

2
(m+ 1)2

(
2m(m+ 1)(m− 2)− 1

)

(3m+ 2)2(3 + 2m)
> 0. (3.8)

However, σ̂ defined in (3.7) is valid only when m≥ 2. That is, betrayal can never be ben-
eficial either in a duopoly or in triopoly. That may explain why it has never been revealed
in the literature, since most Cournot analysis and game-theoretic researches focuss only
on duopoly.

Figure 3.1 illustrates the relative profits with respect to the change of σ for the duopoly
(m= 1) and an oligopoly case (m= 3). We see that πu >Π

x
for all σ in the duopoly, but

Π
x
> πu when σ > σ̂ for the oligopoly.

4. Profitability in transitionary dynamics

The relative profitability in an equilibrium for the naiver, though may be contrary to
economic intuition, can still be justified by economic theory. In fact, at an equilibrium,
the market price is fixed regardless of the output levels of all oligopolistic firms, neither
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the naiver nor the sophisticated firms, the equality of marginal cost to the market price
is indeed the result of an optimal response for the case of diseconomies of scale. (The
explicit assumption made for market structure is the strict convexity for the cost function
so as to exclude the case of a constant marginal cost. In the latter case, the price-taking
strategy becomes economically meaningless. As long as the marginal cost is not constant
everywhere, the requirement for “strict convexity” can be weakened to “convexity.”)

However, an equilibrium, though may be shown to exist in theory, may not neces-
sarily converge in a dynamical adjustment process. Therefore, the scenario is unclear to
us unless we further examine the relative profitability in dynamical adjustments. In this
section, we will focus on the issue of relative profitability for the periods of dynamic tran-
sition, that is, from one equilibrium to the other. More complex situations such as cyclic
fluctuations and chaotic fluctuations will be analyzed later.

To serve our purpose, we will concentrate our analysis on the LHO model developed
in Section 2 because the multidimensional discrete process (2.8) and (2.11) can actually
be simplified into a one-dimensional discrete process.

It follow from (2.7) that xt = pt−1/σ and yt = Ry(xt), where Ry is defined in (2.10).
Therefore, the market price can be expressed as

pt = (m+ 1)− xt −myt

= (m+ 1)− pt−1

σ
−mRy

(
pt−1

σ

)

,
(4.1)

that is,

pt = fp
(
pt−1

)=̇ (m+ σ)(m+ 1)
2m+ σ

− m+ σ

σ(2m+ σ)
pt−1. (4.2)

The price dynamics given by (4.2) will cyclically converge to an equilibrium P if and
only if the multiplier of the steady state (the absolute value of the slope at the equilibrium
P) is less than unity, that is,

δ = m+ σ

σ(2m+ σ)
< 1. (4.3)

Since ∂δ/∂σ < 0, strict inequality δ < 1 is ensured when

σ > σ∗ = 1
2

+
1
2

√
1 + 4m2−m. (4.4)

We have

m+ σ∗

σ∗
(
2m+ σ∗

) < 1. (4.5)

Figure 4.1 depicts the graph of σ∗ against m. It is worth noticing that ∂σ∗/∂m < 0 and
limm→∞ σ∗ = 1/2, that is, the larger the number of the sophisticated firms is, the smaller
the value of the σ∗ is, that is, the more stable the market is.

In the equilibrium pt = P, we have shown that the naiver makes higher profit than the
sophisticated. Then we would expect that there exists an interval around P such that the
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Figure 4.1. Stability parameter σ .

naiver achieves a higher relative profit than the sophisticated when the price trajectory
enters into this interval. Formally, we have the following definition.

Definition 4.1. A price range Ωp is referred to as the naiver’s profitability regime if the
naiver makes higher relative profit than the sophisticated does when the market price
falls in this range.

Theorem 4.2. For the LHO model, the following facts hold:
(i) xt > yt if and only if pt < P∗;

(ii) πx
t > π

y
t if and only if pt ∈Ωp=̇(P∗,P∗) where

P∗=̇σ(1 +m)(m+ σ)
(σ + 1)(2m+ σ)

, (4.6)

P∗=̇ (1 +m)(m+ σ)
2m+ σ + 1

. (4.7)

Proof. Since the sophisticated responds to the output of the naiver with Ry defined in
(2.10), we have

xt − yt = xt −Ry
(
xt
)= xt(2m+ σ + 1)−m− 1

2m+ σ
. (4.8)

Substituting xt and yt = Ry(xt) into the linear demand function (2.5) provides a rela-
tionship between xt and the realized price pt:

xt = hx
(
pt
)=̇ (1 +m)(m+ σ)− (2m+ σ)pt

m+ σ
,

yt = hy
(
pt
)= Ry

(
h
(
pt
))= pt

m+ σ
,

(4.9)
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so that

xt − yt = (1 +m)(m+ σ)− pt(2m+ σ + 1)
m+ σ

= 2m+ σ + 1
m+ σ

(
P∗ − pt

)
, (4.10)

where p∗ is defined in (4.7).
Therefore, xt > yt if and only pt < P∗.
We also have

xt + yt = (1 +m)(m+ σ)− (2m+ σ)pt
m+ σ

+
pt

m+ σ

= 1
m+ σ

(
(1 +m)(m+ σ)− pt(2m+ σ − 1)

)
.

(4.11)

So that

Δπ
xy
t = πx

t −π
y
t = pt

(
xt − yt

)− σ

2

(
xt + yt

)(
xt − yt

)

= (xt − yt
)
(

pt − σ

2

(
xt + yt

)
)

,

that is, Δπ
xy
t = (σ + 1)(2m+ σ)(2m+ σ + 1)

2(m+ σ)2

(
P∗ − pt

)(
pt −P∗

)
,

(4.12)

where P∗ is defined in (4.7).
It is immediately concluded that Δπ

xy
t > 0 as long as P∗ < pt < P∗ is ensured, which

completes the proof. �

It can be verified that P ∈ Ωp. However, even when P is stable (the slope of fp is
steeper) and pt runs into Ωp in current period, it may iterate outside of Ωp in next period.
To see this, we notice that, starting with pt = P∗, we have

pt+1−P∗ = f
(
P∗
)−P∗ = −m(m+ σ)(m+ 1)(σ + 2m− 1)

(2m+ σ)2(σ + 1)(2m+ σ + 1)
< 0. (4.13)

When P∗ < pt < P, the increasing price (from pt to pt+1) guarantees that the price tra-
jectory remains in the realized profitability regime. In other words, if the naiver makes
higher relative profit at a price below the equilibrium, then it should keep the same relative
advantage in the next period as well.

On the other hand, starting with pt = P∗, for any σ > 0, we have

pt+1−P∗ = fp
(
P∗
)−P∗ = (m+ σ)(m+ 1)m(σ − 1)

σ(2m+ σ)(2m+ σ + 1)(σ + 1)
, (4.14)

which is positive if and only if σ > 1. That implies that if the naiver makes a higher relative
profit at a price above the equilibrium, then it may lose the relative advantage in the next
period, should σ be smaller than unity.

The above reasoning leads to the following theorem.

Theorem 4.3. When σ ≥ 1, if pt∗ ∈Ωp, then pt ∈Ωp for all t ≥ t∗, that is, when the price
wonders into the realized profitability regime, it will stay inside forever. However, if σ < 1,
then f (P∗) < P∗ but fp(P∗) < P∗.
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Figure 4.2. Critical price values: m= 3.

With the above preliminary analysis, we are ready to examine the most interesting
initial situations, that is, the two extremes listed in Table 3.1.

For the first extreme, all firms adopt the Cobweb strategy and an equilibrium price is
reached with

p
w
= σ(m+ 1)

1 +m+ σ
. (4.15)

Starting with this equilibrium p0 =pw < P∗, if m sophisticated firms decide to form a
collusion and adopt the Cournot strategy, at their first move, we have

p1 = fp
(
p0
)= (m+ 1)(m+ σ)2

(2m+ σ)(1 +m+ σ)
< P∗, (4.16)

therefore, the collusive action is harmful to them at their first move.
But for the relative probability of the naiver for the rest moves, we need to distinguish

several possibilities.

Case 1.1 (σ ≥ 1). It follows from Theorem 4.3 that pt ∈Ωp for all t ≥ 1, that is, the naiver
will maintain the relative profitability for all converging periods towards the new equilib-
rium price P and continue to enjoy the relative advantage forever.

Case 1.2 (1 > σ > σ∗). p2 = fp(p1) will still stay in Ωp but p3 = f 2
p (p1) may wonder above

P∗. Due to converging characteristics of new equilibrium P, it will soon reach a state that
pt ∈Ωp forever.

Case 1.3 (σ = σ∗). The P-dynamics ends up with a two-period cycle, (p
w

, pw), where

pw = p1 > P > p
w

. Now, all firms make the same profit at p
w

, but the naiver makes a
higher relative profit at pw, and thus, the naiver profits more than the sophisticated on
average.
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Figure 4.3. Transitionary dynamics: starting with all price-takers.

Case 1.4 (σ < σ∗). The new equilibrium P is unstable. The P-dynamics ends up with a
divergent fluctuation. Even though the sophisticated make a loss in terms of relative profit
at their first move, they may soon reverse the relative disadvantage status since the price
will soon wonder away from Ωp.

Figure 4.3 illustrates Cases 1.1 and 1.3.
As for the second extreme, all firms collude and set a monopoly price at

pu =
(m+ 1)(m+ 1 + σ)

2(m+ 1) + σ
> P. (4.17)

Starting with this equilibrium p0 = pu > P∗, if one of the firms decides to betray the
collusion and becomes a naiver to adopt the simple Cobweb strategy, at its first move, the
market price becomes

p1 = fp
(
pu
)= (m+ σ)(m+ 1)

2σm+ σ + σ2− 1−m

σ(2m+ σ)(2m+ 2 + σ)
, (4.18)

so that

p1−P∗ = (m+ σ)(m+ 1)
2σm+ σ + σ2− 1−m

σ(2m+ σ)(2m+ 2 + σ)
− σ(1 +m)(m+ σ)

(σ + 1)(2m+ σ)

= (m+ σ)(m+ 1)
m

(
σ − σ∗∗

)

σ(2m+ σ)(2m+ 2 + σ)(σ + 1)
,

(4.19)

where σ∗∗=̇1 + 1/m > σ∗.
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Figure 4.4. Transitionary dynamics: starting with a full collusion.

Then there are four possibilities.

Case 2.1 (1 < σ < σ∗∗). We have p1 > P∗, that is, the first betrayal price lies in the realized
profitability regime, the betrayer (the naiver) enjoys a higher relative profit than its rivals
right at the first move. According to Theorem 4.3, it will keep the same relative advantage
forever.

Case 2.2 (σ∗ < σ ≤ 1). We have p1 < P∗, that is, the first betrayal price is lower than the
lower bound of the realized profitability regime, the betrayer (the naiver) suffers a lower
relative profit than its rivals at the first move (or a few moves) but inverts the relatively
losing status soon.

Case 2.3 (σ = σ∗). The P-dynamics process ends up with a two-period cycle (p
u
, pu),

where p
u
= p1 < P∗. However, due to pu > P∗, it follows from (4.12) that Δπ

xy
1 < 0, the

outcome is exactly contrary to Case 1.3, that is, the colluded sophisticated firms make higher
profit so that the betrayal is not awarded.

Case 2.4 (σ < σ∗). The new equilibrium P is unstable. The P-dynamics ends up with a
divergent fluctuation and the betrayer is not awarded at all since the naiver makes lower
relative profit than the sophisticated does. Such situation continues until the market is
driven into a noneconomically meaningful status.

Figure 4.4 illustrates Cases 2.2 and 2.3.
Figure 4.5 shows the numerical simulations for the case where σ = 1.

5. Cautious Cobweb strategy

For the LHO model, the price dynamics is relatively simple, either a convergence or a
divergence or a cyclic fluctuation. Especially when σ < σ∗, the price diverges explosively
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Figure 4.5. Convergency to the equilibrium, m= 3, σ = 1.

so as to drive the market into a noneconomically meaningful status. To force the market
price to stay in an economically meaningful region, the naiver is assumed to adopt a cau-
tious adjustment strategy. (This type of “cautious adjustment strategy” is often adopted
by an economic agent who responds cautiously to the uncertain and fluctuating environ-
ment. It was first studied by Day [3] in modeling the cautious behaviors of a competitive
firm in coping with the uncertain price fluctuations in a Cobweb economy and later ap-
plied by Day [4] in explaining the classical population growth behavior. Further develop-
ment by Huang [1], Weddpohl [5], and Matsumoto [6] revealed the role of the cautious
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adjustment strategy in controlling or stabilizing an economy, and the comparative prof-
itability for an economic agent under different dynamical environments.)

A firm is said to take the cautious adjustment strategy if it limits its output growth rate
to β:

qt − qt−1

qt−1
≤ β, (5.1)

where β ≥ 0 is referred to as the growth-rate limit, so that

qt ≤ (1 +β)qt−1. (5.2)

Therefore, if the naiver takes the Cobweb strategy and the cautious adjustment strategy
simultaneously, its output is recursively determined by

xt =min
{

(1 +β)xt−1,Rx
(
pt−1

)}

=min
{

(1 +β)xt−1,rx
(
xt−1, yt−1

)}
.

(5.3)

Substituting yt−1 = Ry(xt−1) into (5.3) gives us

xt = Fx
(
xt−1

)=̇min
{
gx
(
xt−1

)
, fx
(
xt−1

)}
, (5.4)

where

gx
(
xt−1

)= (1 +β)xt−1,

fx
(
xt−1

)= (m+ σ)
σ(2m+ σ)

(
m+ 1− xt−1

)
.

(5.5)

In this way, a two-dimensional nonlinear discrete process is reduced to a one-dimen-
sional one.

Similarly, we can express yt as

yt = Ry
(
Fx
(
R−1
y

(
yt−1

)))
, (5.6)

where R−1
y indicates the inverse function of Ry :

R−1
y

(
yt
)= 1 +m− (2m+ σ)yt. (5.7)

Simple mathematical manipulation yields

yt = Fy
(
yt−1

)=̇max
{
fy
(
yt−1

)
,gy
(
yt−1

)}
, (5.8)

with

fy
(
yt−1

)= m+ 1
2m+ σ

− m+ σ

σ(2m+ σ)
yt−1,

gy
(
yt−1

)= (1 +β)yt−1− β(1 +m)
2m+ σ

.

(5.9)
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Substituting yt = Ry(xt) into the linear demand function (2.5) provides a relationship
between xt−1 and the realized price pt−1:

xt−1 = hx
(
pt−1

)=̇ (1 +m)(m+ σ)− (2m+ σ)pt−1

m+ σ
. (5.10)

Hence, (5.3) can be recast as

xt =min
{
h
(
pt−1

)
,Rx
(
pt−1

)}
. (5.11)

The price dynamics (4.2) is thus modified into

pt =m+ 1−min
{
gw
(
pt−1

)
,Rw

(
pt−1

)}−mRy
(

min
{
gw
(
pt−1

)
,Rw

(
pt−1

)})
, (5.12)

or, equivalently,

pt = Fp
(
pt−1

)=̇max
{
fp
(
pt−1

)
,gp
(
pt−1

)}
, (5.13)

where fp is defined in (4.2) and

gp
(
pt−1

)=̇(1 +β)pt − β(1 +m)(m+ σ)
2m+ σ

. (5.14)

The LHO model incorporating the cautious adjustment strategy is referred to as a
cautious LHO model. For the convenience of easy reference, we will call (5.4), (5.8), and
(5.13) as X-dynamics, Y-dynamics, and P-dynamics, respectively. To be consistent with
the analysis in the previous section, we will limit our analysis of the cautious adjustment
strategy to the P-dynamics.

We will see that, for a suitable choice of β, the price trajectory will be restricted in
an economically meaningful region so that the price dynamics becomes either cyclic or
chaotic. In fact, we notice that two branches of Fp intersect at

p̂ = σ(1 +β)(m+ σ)(1 +m)
σ(1 +β)(2m+ σ) +m+ σ

. (5.15)

As shown in Figure 5.1(a), there exists a trapping set Jp=̇[pmin, pmax], with

pmin = Fp( p̂)= (1 +m)(m+ σ)
(
σ(1 +β)(2m+ σ)−β(m+ σ)

)

(2m+ σ)
(
σ(1 +β)(2m+ σ) +m+ σ

) ,

= Fp
(
pmin

)

= (m+ 1)(m+ σ)
(
σ2(2m+ σ)2(1 +β) +β(m+ σ)

(
(m+ σ)− σ(2m+ σ)

))

σ(2m+ σ)2
(
σ(1 +β)(2m+ σ) +m+ σ

) ,

(5.16)

such that the price trajectories will be eventually trapped into it and remain inside for-
ever. (Since we are concerned with the long-run dynamical behavior, only the trajectories
inside the trapping set are meaningful. In this regard, a trapping set will be taken as the
domain of relevant variable unless it is otherwise stated.)
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An economically meaningful trapping set demands that pmin > 0, that is,

σ(1 +β)(2m+ σ) > β(m+ σ), (5.17)

which demands

β < βmax=̇ σ(2m+ σ)
(1− 2σ)m+ σ(1− σ)

. (5.18)

There exist two steady states, one is an economically meaningful equilibrium point
P, the intersection of fp with 45-degree diagonal line in the phase diagram, the other is
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a trivial steady state P̃, the intersection of gp with 45-degree diagonal line in the phase
diagram of Fp.

While the value of P, as specified in Table 5.1, is independent of the growth-rate limit
β, it happens that

P̃ = (1 +m)(m+ σ)
2m+ σ

= fp(0), (5.19)

which is also independent of β. Economically, it corresponds to the case in which only
the naiver produces all the output, while the sophisticated collusion ceases to produce.
Hence, it is not economically meaningful. The fact that

dβmax

dσ
= 2m(m+ σ) + σ2

(
m(1− 2σ) + σ(1− σ)

)2 > 0 (5.20)

implies that smaller σ (more unstable) requires a relatively smaller cautious adjustment
strategy to narrow down the price fluctuations.

In general, we have p̃ ≥ pmax and the equality holds only when β = βmax, a case in
which the trapping set Jp coincides with [0, P̃]. (This is exactly what we refer to as the
full-range chaos in the chaos theory.)

The steady states, the turning point, and the trapping set can be similarly determined
for the X-dynamics Fx and the Y-dynamics Fy . The results are summarized in Table 5.1.
Also provided in Table 5.1 are the Ωx = [X∗,X∗] and Ωy = [Y∗,Y∗], which specify the
relevant relative profitability regimes (for the naiver) in terms of xt and yt, respectively. It
can be verified that the X-dynamics, the Y-dynamics, and the P-dynamics are synchro-
nized in the way that if Pt ∈Ωp, then xt ∈Ωx (yt ∈Ωy) and vice versa.

The mechanisms of the cautious adjustment strategy in limiting the fluctuation range
of the relevant variables are illustrated in Figures 5.1(a) and 5.1(b) for the P-dynamics
and the X-dynamics with three critical values of β : βmax,β∗ and β∗, where β∗ and β∗ are
two critical values defined by

β∗=̇ mσ

m+ σ −mσ
, (5.21)

β∗=̇ mσ(2m+ σ)2
(
mσ + σ +m+ 2m2

)
(m+ σ)−mσ(2m+ σ)2

, (5.22)

where β∗ is associated with Ωp in a way that pmin(β∗) = P∗ while β∗ is associated with
Ωp in a way that pmax(β∗)= P∗. The meanings of β∗ and β∗ will be further discussed in
Section 6.

6. Profitability in ergodic dynamics

We have discussed the relative profitability for the naiver both in equilibrium and in dy-
namical transition with an illustration of the LHO model. Now we are ready to examine
the relative profitability for the naiver in an unstable and chaotic market using the cau-
tious LHO model. We are interested in comparing the long-run average profits between
the naiver and the sophisticated. A formal definition for the average is needed.



Weihong Huang 19
Ta

bl
e

5.
1.

Q
u

an
ti

ty
dy

n
am

ic
s.

F
x

F
y

R
el

at
io

n
w

it
h
p t

h
x
(
p t
)
=

(1
+
m

)(
m

+
σ

)−
(2
m

+
σ

)p
t

m
+
σ

h
y
(
p t
)
=

p t
m

+
σ

Tu
rn

in
g

po
in

t
x̂=̇

(1
+
m

)(
m

+
σ

)
σ

(1
+
β

)(
2m

+
σ

)+
m

+
σ

ŷ
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Definition 6.1. For the difference in profit Δπ
xy
t =̇πx(Pt)−πy(Pt), its k-period average for

a periodic price cycle {Pi}ki=1 is defined as

〈
Δπxy

〉
k=̇

1
k

k∑

i=1

Δπ
xy
i , (6.1)

and its long-run average for a chaotic and ergodic fluctuation is given by

〈
Δπxy

〉=̇ lim
k→∞

1
k

k∑

t=1

Δπ
xy
i . (6.2)

Two typical numerical simulations are shown in Figures 6.1 and 6.2. We see that
〈Δπxy〉 > 0 for both cases.

It is noted that P∗ and P∗ are invariant with respect to the value of β, while pmin and
pmax vary with β in an opposite direction

dpmin

dβ
< 0,

dpmax

dβ
> 0, (6.3)

we can expect that a relative profitability for the naiver can be sustained even if the market
is chaotic, should the β growth-rate limit be set sufficiently small. To see this, we first note
a general result observed for the GHO model when the sophisticated adopts the Cournot
strategy.

Proposition 6.2. For the GHO model, π
y
t > 0 for all t if C(0)= 0, that is, the sophisticated

makes positive profit at each and every move when the Cournot strategy is adopted.

Proof. Since the output yt is determined from

pt +
dpt
dyt

yt = C′
(
yt
)
, (6.4)

we have

pt =−dpt
dyt

yt +C′
(
yt
)
> C′

(
yt
)
. (6.5)

Therefore,

π
y
t = pt yt −C

(
yt
)≥ C′

(
yt
)
yt −C

(
yt
)

= yt

(

C′
(
yt
)− C

(
yt
)

yt

)

≥ 0,
(6.6)

where the last inequality results from the convexity of the cost function C and C(0)= 0.
�
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Figure 6.1. Chaotic fluctuations, m= 3, σ = 1/8, β = βmax.

Theorem 6.3. For the cautious LHO model, let β∗ and β∗ be two critical growth-rate limits
defined in (5.21) and (5.22), respectively,

(i) if β ≤ β∗, for all pt ∈ Jp(β), then

πx
t > π

y
t > 0; (6.7)
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(ii) if β ≤ β∗, for all pt ∈ Jp(β), then

xt ≥ 1 +m

2m+ σ + 1
≥ yt > 0. (6.8)
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Proof. (i) For a fixed m, the equilibrium P is unstable if σ < σ∗. It follows from Theorem
4.3 that f (P∗) < P∗ but fp(P∗) < P∗. Therefore, as long as we can ensure that pmin > P∗,
the inequality pmax ≤ P∗ will hold.

Setting pmin = P∗ yields β∗ as defined in (5.21).
(ii) It follows from Theorem 4.2 that xt ≥ yt if and only if

pt ≤ P∗ = (1 +m)(m+ σ)
2m+ σ + 1

. (6.9)

The condition pt ≤ P∗ can be ensured by forcing pmax ≤ P∗, which yields β∗ is defined
in (5.22).

Substituting P∗ into (4.9) gives us inequality (6.8). �

Remark 6.4. Theorem 6.3(ii) can be alternatively proved by imposing the restriction of
ymax ≤ xmin where ymax and xmin are defined in Table 5.1.

Figure 5.2 depicts the monotonic relationship between σ and the critical values of β∗

and β∗, that is, the smaller the value of σ is (the more unstable the equilibrium is), the
smaller the values of β∗ and β∗ are.

When β∗ < β < β∗, xt > (1 +m)/(2m+ σ + 1) > yt is guaranteed. When β < β∗, πx
t >

π
y
t > 0 is guaranteed. By the continuity of πx

t and π
y
t as a function of β and the ergodicity

of the dynamical process (5.13), we can hypothesize that there exists a β̃ such that so long

as β < β̃k, although Δπ
xy
t < 0 may occur from time to time, we still have 〈Δπxy〉k > 0 for a

cyclic market. Apparently, the value of β̃k depends on the order of the periodic cycle.
For instance, it can be verified that there exists a unique type of period-2 cycle (P1,P2),

where

P1=̇ (m+ 1)(m+ σ)σ
(1 +β)(m+ σ) + σ(2m+ σ)

,

P2=̇ (m+ σ)(m+ 1)
(
β(m+ σ) + σ(2m+ σ)

)

(2m+ σ)
(
(1 +β)(m+ σ) + σ(2m+ σ)

) .

(6.10)

It follows from (4.12) that we have

〈
Δπxy

〉
2 =

1
2

(
Δπxy

(
P1
)

+Δπxy
(
P2
))

∼

1
2

2∑

i=1

(
P∗ −Pi

)(
Pi−P∗

)

∼ 2m2(2mσ +mβ+ σ2 + σβ
)−β2(σ2 + 2mσ + 1

)
(m+ σ)2.

(6.11)

So when β < β2, we have 〈Δπxy〉2 > 0, where

β2=̇
m
(
m+

√
2σ(2m+ σ)

(
σ2 + 2mσ + 1

)
+m2

)

(m+ σ)
(
σ2 + 2mσ + 1

) , (6.12)

whose graph is depicted in Figure 5.2 in comparison with other critical β values.
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Similar expectation can be obtained for the chaotic dynamics. There exists a β̃ value

such that for all β < β̃, we have 〈Δπxy〉 > 0. There is no general estimation on the value

of β̃. Figure 6.3 depicts the numerical simulations of 〈πx〉 and 〈πy〉 with respect to β for

several σ values. When σ is relatively large (more cyclic economy), β̃ is smaller than β∗, as
illustrated in Figure 6.3(d). On the other hand, when σ is relatively small (more divergent

economy), β̃ can be greater than its maximum possible value βmax, as illustrated in Figures
6.3(a) and 6.3(b).

The following theorem provide further insights about the last observation.

Theorem 6.5. For the cautious LHO model, when σ < σ̃ , where

σ̃=̇1
2

√
4m2− 3 +

1
2
−m, (6.13)

then 〈Δπxy〉 > 0 for all β < βmax, that is, the naiver always makes higher relative profit for all
possible growth rate limit.

Proof. It follows from (4.12) that we have

Δπxy(p)= (σ + 1)(2m+ σ)(2m+ σ + 1)
2(m+ σ)2

(
P∗ − p

)(
p−P∗

)
. (6.14)

Therefore,

〈
Δπxy

〉= lim
T→∞

1
T

T∑

t=1

Δπ
xy
t =

∫ Pmax

Pmin

Δπxy(p)ϕ(p)dp

= (σ + 1)(2m+ σ)(2m+ σ + 1)
2(m+ σ)2

∫ Pmax

Pmin

(
P∗ − p

)(
p−P∗

)
ϕ(p)dp.

(6.15)

When β is set to its maximum value βmax, we have Pmin = 0, Pmax = P̃ = (1 +m)(m+
σ)/(2m+ σ), and ϕ(p)= 1/P̃, which leads to

〈
Δπxy

〉= (σ + 1)(2m+ σ)(2m+ σ + 1)
12(m+ σ)2

(
3P̃
(
P∗ +P∗

)− 2
(
3P∗P∗ + P̃2)). (6.16)

〈Δπxy〉 > 0 if and only if 3P̃(P∗ +P∗) > 2(3P∗P∗ + P̃2), or, equivalently, σ < σ̃ . �

For instance, when m= 3, we have σ̃ = 0.37228 and β̃ = βmax = 2.3723. For this partic-
ular set of parameters, the long-run averages of profits made by the naiver and the sophis-

ticated are identical, which is illustrated in Figure 6.3(c). When σ > σ̃ , we have β̃ < βmax,
as shown in Figure 6.3(d).

7. Concluding remarks

Through analyzing the relative profitability of the two types of firms in a general het-
erogeneous oligopoly model, we have generalized the conclusion drawn in Huang [2]
that the Cobweb strategy is the most effective and efficient among all possible alternative
strategies in the sense that it always results in a higher (or equal) profit than its rivals
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in equilibrium. Further analyzing a linear oligopolisitic model in a dynamical environ-
ment reveals that the naiver can still enjoy the relative profitability during most of the
dynamical transitionary periods. If the economy turns into cyclic or explosive fluctua-
tions, a combination of the Cobweb strategy with the cautious adjustment strategy could
still lead to a relatively higher average profits for the naiver.

Although most dynamic analysis in the current research is conducted using a simpli-
fied linear model to derive the analytical solutions, our numerical simulations for more
complex nonlinear models have confirmed that the conclusions drawn in this research
have universal implications. Further studies can aim to derive some universal conditions
for the relative profitability of the naiver and the sophisticated in a general setting.

Apparently, the current studies can be generalized in many ways. For instance, it is
interesting to see the relative profitability of the different agents in an oligopolist economy
with product differentiation. Analogous analysis can also be conducted for heterogeneous
oligopsonist model.
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