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The paper shows that analytical dynamic models coupled with the available signal pro-
cessing methods could be used for describing the self-organization and chaos degree
in the heartbeats propagation and pressure pulses in ventricular at ejection phase. We
proposed a unit analytical approach that could be associated with real ECG and pres-
sure pulses signal processing. Our findings confirm that the real-time computer mon-
itoring of the main cardiovascular parameters obtained by the use of analytical mod-
els and verified by signal processing of real clinical data may be considered as available
method for measuring and controlling self-organization and chaos degree in pulse prop-
agation.
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and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Our main goal is application of nonlinear reaction-diffusion models coupled with real-
time ECG and pressure pulses signal processing to monitoring and analysis of the main
cardiovascular parameters. For effective applications of the new methods of discrete non-
linear dynamics the continuous models should be adopted by novel approaches to dis-
cretizations (see, e.g., Gontar [5]). In the present work the coupled analytical and signal
processing approach to this problem is proposed. In the recent years a number of exper-
imental and signal-processing investigations of cardiovascular disorders: atrial and ven-
tricular tachycardia, ventricular fibrillation, acute hypertension, and so forth have been
conducted (see, e.g., [3, 9, 19]). On the other hand, the new concepts of nonlinear dy-
namics like coherent structures and solitons, fractals and deterministic chaos have been
developed (for references see [17]). From our point of view, the above-mentioned con-
cepts coupled with signal processing of biomedical data may be useful in problems of
measuring and controlling of self-organization and chaos degree in heartbeat and pulse
propagation. We consider the possibility of construction of the so-called hybrid models,
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2 Nonlinear reaction-diffusion models

based on our newly obtained strongly nonlinear generalizations of the known differen-
tial equations of reaction-diffusion type, coupled with the real ECG and pressure pulses
signal processing. It allows to implement the unit approach to investigation of heartbeats
and pulse propagation in the cardiovascular system which based on applications of new
methods of nonlinear chaotic vibrations and nonlinear discrete dynamics. On one hand,
according to our “kinetic” approach to description of the electrophysiological parame-
ters, some mechanic terms, like “kinetic electrical energy,” “pulse velocity,” and so forth,
will be used furthermore.

Below we consider two such models.

(1) To model the cardiac cell membrane potential dynamics a generalized FitzHugh-
Nagumo system with the diffusion coefficient, depending on the potential gradient, is
suggested. The assumptions that the inhibitor factors for every heartbeat can be de-
scribed by a linear function and that the heartbeats can be presented as an oscillating
traveling waves allow to reduce the model to a sequence of nonlinear ordinary differ-
ential equations. An equality that describes the dynamic balance of the heartbeats aver-
aged “electrical kinetic energy” and nonlinear diffusion is constructed. It is important
that for every heartbeat it determines a function of two variables, the activator and in-
hibitor. This function contains structural parameters describing the important physio-
logical characteristics, such as threshold of the heart excitation, the ratio of excitable
and refractory time, and so forth. On the other hand, the model contains a nonlinear
diffusion term that describes a feed-back interaction of the averaged heart electrical po-
tential propagation with conductive properties of cardiac cells (gradient dependent dif-
fusion). It allows us to introduce into model the possible influence of electromechani-
cal interaction that was considered in a number of recent investigations (see, e.g., [8]).
It is important that the suggested dynamic model allows, in particular, to present the
pulse-to-pulse variability of the main electrophysiological characteristics of the heart-
beats: the averaged heart potential velocity, the intensity of diffusion through cardiac
cells, threshold of the heart excitibility, and so forth as a function of the heart rate vari-
ability (HRV). In this connection, the proposed model may be also considered as an at-
tempt to show an analytical way of approaching the complexity of cardiovascular neu-
ral regulation [12]. We find the main parameter that describes the dynamics of activa-
tor and inhibitor interaction corresponding to self-organization in human neural sys-
tem. The dynamics of this parameter may be associated with interaction of sympathetic
and parasympathetic neural systems. In the figures and tables that will be presented,
one may observe the responsibility of this parameter discrete dynamics to heart fail-
ure and arrhythmia. Computer simulation, signal processing, and real-time monitoring
of this dynamics using real ECG signal processing may be applied to development of
clinical methods for diagnosis of arrhythmia and for antiarrhythmic drug administra-
tion.

(2) During the ventricular injection, the myofibre energy is transferred to the blood
and delivered to the circulatory system. Ventricular injection is a complex physical pro-
cess that involves the ventricular wall mechanics and intraventricular blood fluid dynam-
ics. We propose a strongly nonlinear differential equation of reaction-diffusion type for
modeling the blood injection from the ventricle to the aorta. On the assumption that
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the pressure-flow relationship may be approximated by a quadratic function the pres-
sure pulses have been presented as sequences of compact solitary waves (compactons).
An analysis of the recurrence energy evolution allows us to conclude that the pulse reg-
ularity ranges and critical conditions of transition to full deterministic chaos are mainly
determined by the ratio of the elasticity coefficients of the ventricle and aorta walls. This
conclusion is in accordance with the investigations of the end-systolic pressure-volume
relation in left ventricle (see the main results and references in [16]). The suggested model
allows to estimate some important hemodynamic parameters that are not measured di-
rectly by conventional methods (e.g., the pulse velocity in the root of the aorta). The
obtained quantitative estimation of the critical values of these structural parameters may
be applied to the problem of prediction and early diagnosis of transition from arrhytmia
to ventricular fibrillation.

2. Strongly nonlinear model of electrical cardiac activity.

For the simulation of electrical cardiac activity the multidimensional FitzHugh-Nagumo
(FHN) system has been considered (see [2]):

∂u

∂t
= c
(− v+ bu−u3)+∇∗ (D∇u),

∂v

∂t
= 1

c
(−v+α+u).

(2.1)

The variable of state u (activator) represents the properties of the membrane potential
and excitability, v (inhibitor) is responsible for accommodation and refractoriness. Both
α and b are time constants. The parameter c is defined as an adaptive function of the u
back time variation δu= ut −ut−∇t . It may be expressed in sigmoidal form:

c = c0
(
1.2 + tanh

(
c1δu

))
, (2.2)

where c0 and c1 are constants that scale the response of ∂u/∂t, ∂v/∂t, and δu. During
the depolarization ∂u/∂t > 0→ δu > 0 and during repolarization ∂u/∂t < 0→ δu < 0. Al-
though c is a variable parameter, it is kept bounded within the range of 0.2c0 and 2.2c0.

Below is suggested a generalized FitzHugh-Nagumo model in which the diffusion tensor
depends on the potential gradient:

∂u

∂t
=

3∑

i=1

di(∇u)
∂2u

∂2xi
+ c
(− v+ bu−u3),

∂v

∂t
= 1

c
(−v+α+u).

(2.3)

Here the coefficients di(∇u) of the diffusion are considered as power functions of the
heart potential gradient components. From our point of view, it may be associated with
self-excitation properties of the cardiac cells depending on electrical potential variations.
Below was considered the case of linear inhibitor variation for every heartbeat under the
assumption that ∂v/∂t =An = const. It is supposed that the cardiac cell electrical potential
dynamics is governed by modified FHN equation for every heartbeat with coefficients
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changing from beat to beat. Thus the heartbeats dynamics may be described in the average
by a sequence of equation with cubic nonlinearity:

∂un
∂t

=
3∑

i=1

di
(∇un

)∂2un
∂2xi

+ cn
[
(b− 1)un−u3

n +Anc−α
]

(n= 1,2, . . .). (2.4)

Since Anc− α = un − vn, it is reasonable to consider the magnitude βn = Anc− α as
a parameter that implements the feedback control of the heart beat-to-beat interaction of
activator and inhibitor intensity. We consider solutions of traveling-wave type:

un(t,X)= fn

( 3∑

i=1

xi +Vnt

)

= fn(s). (2.5)

Here constant Vn denotes the pulse velocity during the nth heart beating.
Substituting the last expression into (2.4) gives an ordinary differential equation:

V f
′
n =

3∑

i=1

di
(
f
′
n

)
f ′′n + cn

[
(b− 1) fn− f 3

n +Anc−α
]
. (2.6)

We denote by D(g)=∑3
i=1

∫ g
0 di(z)dz the function that describes the diffusion potential,

D(0) = 0. The structure of this function should be approximated by analysis of experi-
mental electrophysiological data. Evidently, (2.4) may be rewritten as follows:

Vn f
′
n =

d

ds
D
(
f ′n
)

+ cn
[
(b− 1) fn− f 3

n +βn
]
. (2.7)

The multiplication of (2.6) by term f
′
n and subsequent integration over the interval [sn,s]

(sn ≤ s≤ sn+1) (where sn,sn+1 are consequence of maximal (peak) points of ECG) gives the
following relationship that may be considered as equality that determines the heartbeats
“electrical energy” balance:

En(s)=Vn

∫ s

sn
f ′2n ds−D

(
f ′n
)= cn

[
1
2

(b− 1) f 2
n −

1
4
f 4
n +βn fn

]s

sn

. (2.8)

The function En(s) may be considered as the “averaged electrical energy” variability on
the interval [sn,s]. This equality coupled with real ECG may be used for the dynamic
estimation of the averaged pulse-wave velocity. This may be confirmed by the following
motivations. Since f

′
i = 0 for “peak points,” the last equation on s= sn+1for an arbitrary

heart beating cycle may be presented as follows:

En,n+1 =Vn

∫ sn+1

sn
f ′2n ds= cn

[
βn
(
An+1−An

)
+

1
2
b1
(
A2
n+1−A2

n

)− 1
4

(
A4
n+1−A4

n

)
]
.

(2.9)
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Here Ai are maximal amplitudes on ECG (R-values), b1 = b− 1 and U( f ) may be con-
sidered as a potential function of heart electrical activity. The last equality implies an
important formula for the averaged heart pulse velocity:

Vn =
cn
[
βn
(
An+1−An

)
+ (1/2)b1

(
A2
n+1−A2

n

)− (1/4)
(
A4
n+1−A4

n

)]

∫ sn+1

sn f ′2n ds
. (2.10)

It is clear from this formula that the pulse-wave velocity Vn is a ratio of the heart po-
tential variation on the R-points of ECG to the mean value of its “kinetic” energy. Since
the last formula contains the main structural parameters, Vn can be considered as the
control parameter that regulates the stability of heartbeats and may cause its instability
on an abnormal variation. One can apply the equality (2.9) coupled to real ECG signal
for estimation of chaos (or turbulence) degree in heartbeats by direct calculation and
analysis of the sequence (En,n+1)Nn=1 regularity properties. For such analysis the modern
methods of nonlinear discrete dynamics and applied deterministic chaos can be used. Be-
low we present the results of our computer simulation using a real ECG signal. On the
other hand, formula (2.10) can be applied to the analysis of the dynamics of the averaged
heart potential velocity corresponding to other important parts of ECG, for example, to
ST complex. It is known that abnormal alterations of the ST complex are associated with
disorders in repolarization process and may be considered as a predictor of transition
to ventricular fibrillation (see, e.g., [1, 7]). In the presented figures one can observe the
fluctuations in the dynamics of the parameter Vn and other associated parameters corre-
sponding to the presence of the ventricular tachycardia features in the real ECG.

The above-mentioned relationships determine the dependence of the value Vn on the
main structural parameters. Of a particular importance is the above-mentioned param-
eter βn = un − vn, which in our model is a constant value, changing from one heartbeat
to another. It allows us to assume that the pulse-wave velocity (i.e., an important physio-
logical parameter) is controlled, particularly, by the difference of heart electrical potential
and inhibitor factors that may be associated with the sympathetic and parasympathetic
nervous systems interaction. One can also suppose that this process is implemented by
the feedback interaction of the parameters cn and Vn. From our point of view, it may help
to reveal the nature and physiological mechanisms of the heart rate variability.

From the above discussion follows the importance of constructing the beat-to-beat
time series of the above-mentioned general electrophysiological parameters using ECG
data. By integration of the equality (2.6) over the interval [sn,sn+1] one obtains the rela-
tionship:

(
An+1−An

)
Vn = cn

[

βnRn + b1

∫ sn+1

sn
fnds−

∫ sn+1

sn
f 3
n ds

]

, (2.11)

where Ai = fi(si),Rn = sn+1− sn,b1 = b− 1.
We consider a diffusion function of the type:

D(p)=Dpm (m≥ 0). (2.12)
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Here the exponent m characterizes the nonlinear diffusion intensity. It is evident that
when m= 0 the diffusion coefficient is constant.

Multiplication of (2.6) in turn by fn, f 2
n and subsequent integration over [sn,sn+1] (tak-

ing into account the relationships fn(sn) = An, fn(sn+1) = An+1, f ′i (si) = 0, i = 1,2) gives
the following equations:

1
2

(
A2
n+1−A2

n

)
Wn−Dn

∫ sn+1

sn
f ′m+1
n ds−Kn

∫ sn+1

sn
fnds−Ln

∫ sn+1

sn
f 2
n ds=

∫ sn+1

sn
f 4
n ds,

(2.13)

1
3

(
A3
n+1−A3

n

)
Wn− 2Dn

∫ sn+1

sn
f ′m+1
n fnds−Kn

∫ sn+1

sn
f 2
n ds−Ln

∫ sn+1

sn
f 3
n ds=

∫ sn+1

sn
f 5
n d

(2.14)

with respect to variables Wn, Kn, Ln, and Dn, where

Dn = Dn

cn
, Wn = Vn

cn
, Kn= cnβn, Ln = b1cn. (2.15)

The magnitude of cn may be considered as control parameter, responding on the neural
feedback regulation by using sympathetic and parasympathetic interaction (in agreement
with the variations of the parameter βn). Thus relationships (2.10)–(2.14) make up the
system of linear algebraic equations that allows to construct the time series of the above-
mentioned cardio-physiological parameters.

For an averaged description of the heart potential diffusion dynamics we propose to
calculate the time series of the parameter:

σn =Dn

∫ An+1

An

f
′m
n (s)

[
βn +Bn fn(s)− f 3

n (s)
]
ds. (2.16)

On the other hand, our studies implies that if the conditions

dii(w)= o(w) on w −→ 0 (i= 1,2,3) (2.17)

are fulfilled, which corresponds to the assumption that m > 0, the finite-localized (com-
pact) waves are formed [10]. From our point of view, the strong nonlinear phenomena of
the steady state localized structure forming in the heart electrical potential distribution
can be considered as a powerful interblocking factor that may cause acute heart failure,
arrhythmia, and a transition to venticular fibrillation.

On the other hand, in recent investigations, the formation of steady state waves in
the heart potential propagation is considered as possible, so-called gentle, defibrillation
factor (see, e.g., [6]).

In the following figures and tables, one may observe the interactive response of the
above-mentioned system of parameters to the presence of the features of the arrhythmia
and heart failure in the patients of ECG (see Figure 3.1 and Tables 4.1 and 4.2). It is
evident that on the time intervals of the “Holter” signal marked as vt1-vt4 corresponding
to presence of ventricular tachycardia in patient heartbeats is observed the reducing of
the main nonlinear dynamic and statistical characteristics.
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3. Strongly nonlinear model of pulse propagation in ventricle-aorta system

A multidimensional generalization of the Korteveg-de Vries equation,

∂u

∂t
+

3∑

i=1

[
∂

∂xi
f (u) +

∂3

∂x3
g(u)

]
= 0, (3.1)

is considered as an averaged dynamic model of the blood pressure dynamics in the system
ventricle-aorta during the ejection phase. Here the function f (u) describes blood flux
through the ventricle and g(u) characterizes the blood injection to the aorta, the func-
tion u(t,x) describes the output blood pressure distribution. The structural functions
f (u),g(u) should be determined by the method of dynamic identification and improved
by using experimentally recording signals.

We will consider that pressure-flow relationship (compliance) in ventricle can be de-
scribed by function of the type:

f (u)= a+ a1u+ bu2 (3.2)

and the averaged injection (blood diffusion) can be described by the function g(u)= du2.
Here one may assume that coefficients a, a1 depend on the geometrical properties of
the ventricle and coefficient b depends on its wall elasticity properties. Correspondingly,
coefficient d depends on the aorta elasticity (see, e.g., [2]). We consider solutions of (3.1)
of the traveling-wave type:

u= ϕ

( 3∑

i=1

xi + vt

)

. (3.3)

Here v = const is the velocity of the traveling wave. By substitution of expression (3.3)
into (3.1) one can obtain an ordinary differential equation with respect to the function
ϕ(s) (here s=∑3

i=1 xi + vt) is a self-similar variable:

v
dϕ

ds
+

d

ds
f (ϕ) +

d3

ds3
g(ϕ)= 0. (3.4)

Integration reduces (3.4) to a second-order equation with an arbitrary number parameter
C0 that is determined by the initial conditions:

d2

ds2
g(ϕ) + f (ϕ) + vϕ= C0. (3.5)

Assuming that

g
′2 �= 0 (3.6)

and multiplying (3.5) by expression (d/ds)g(ϕ)= g
′
(ϕ)(dϕ/ds) one may obtain the first-

order equation that determines the total energy conservation law:

(
dϕ

ds

)2

= 2
E−C0g(ϕ)−Ψ(ϕ,v)

g ′2(ϕ)
. (3.7)
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Figure 3.1. Interactive sensitivity of the main electrophysiological parameters to presence of VT.
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Here the function Ψ(ϕ,v) is determined by formula:

Ψ(ϕ,v)=
∫ ϕ

ϕ0

[
f (z) + vz

]
g
′
(z)dz, (3.8)

where the constants E,ϕ0 denote the total energy and initial value. Furthermore we as-
sume that g(ϕ0)= g

′
(ϕ0)= 0.

On the other hand, it is known that if the function g(u) has singular points, satisfying
to condition g

′
(u)= 0, then, as evident from equality (3.7), the corresponding solutions

are nonanalytic (see [15, 11]). These singular solutions can be used to model inelastic
shear stress in large arteries.

Formulas (3.7), (3.8) determine the function that gives the dependance of the local
momentary energy from structural parameters and the pulse velocity v. Our main as-
sumption is that analytical and computer analysis of this function using the concepts
of the modern chaotic vibrations and deterministic chaos theory (see, e.g., [14]) allows
a quantitative estimation of the nonregularity and chaos degree of the pressure pulses
and allows to find the optimal ranges of variation of the above-mentioned parameters.
On the other hand, by the direct substitution into (3.7) the corresponding parameters
of the real pressure pulse signal one may construct beat-to-beat time series that describe
the dynamics of the associated hemodynamic parameters. It may be applied to computer
monitoring and implementation of diagnostic procedures using the modern concepts of
nonlinear dynamics (fractal dimension, Lyapunov exponents, etc.).

Below we suppose that ϕ0 = 0 and s(0,v)= 0. By separating the variables in (3.7) one
may obtain the expression that determines the inversion to solution

s(ϕ,v)=±
√

2
2

∫ ϕ

0

∣
∣g

′
(z)
∣
∣dz

√
E−C0g(z)−Ψ(z,v)

. (3.9)

It can be shown that for wide classes of structural functions f ,g, for instance, for even
functions, the solutions of problem (3.1) determined by formula (3.9) are by three pa-
rameters dependent periodic function. On some critical values of these parameters and
structural functions coefficients these solutions transfer to transitional waves (transients)
of the two following types: compact solutions of the solitons type (finite-localized transients:
compactons or peakons [11, 15]) and compact shock waves that, in contrast to the traditional
transients, have finite-transitional time or periodic structure (see the recent author’s paper
[10]).

We suppose that f (u) = a+ a1u+ bu2, g(u) = du2. Such approximation of the struc-
tural functions conforms with the averaged physical conditions of the flow propagation
in elastic tube (laminar Poiseuille’s flow profiles and experimental displaying form of the
pressure-flow relationship). By using the general formula (3.8) one may obtain

Ψ(ϕ,v)= 1
2
daϕ2 +

1
3

(v+ a1)dϕ3 +
1
2
bdϕ4

=Aϕ2 +Bϕ3 +Cϕ4.
(3.10)
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Below we will consider the localized solutions of (3.7) (see the conditions of its forma-
tion, e.g., in [10]). It is evident from (3.7) that the conditions of the solution localization
are the equality E = 0 and the requirement that the number ϕ0 = 0 is two-multiple root
of the equation

C0g(u) +Ψ(u,v)= 0. (3.11)

The nonzero roots of this equation are determined by the formulas

ϕ1′ 2 (v)= −B±
√
B2− 4(A+dC0)C

2C
; (3.12)

provided that B2− 4(A+C0)C > 0. We assume that ϕ1(v) > 0, ϕ2(v) < 0 and B > 0,C > 0.
Under these conditions there exist two harmonic solutions that according to (3.9) are

determined by the formulas

ϕ+(s,v)= B

2C
+

√
B2− 4

(
A+dC0

)
C

2C
sin

(√
2d√
C
s

)

,

ϕ−(s,v)=− B

2C
−
√
B2− 4(A+dC0)C

2C
cos

(√
2d√
C
s

)

.

(3.13)

These harmonic solutions are suggested as a basis for the approximation of pressure and
flow pulses in the root of aorta.

The experimentally constructed localized waves may be observed upon restriction of
output flow (e.g., at moment of the blood pressure measuring). From the physical point
of view, one may assume that this condition can be modeled by offsetting the output flow
by initial arbitrary constant, for example, one may assume that

1
2
a+C0 = 0 or C0 =−1

2
a. (3.14)

It is evident that under these conditions A+ dC0 = 0 the value ϕ = 0 is two-multiple
root of the equation

Ψ(ϕ,v)= 0. (3.15)

Taking this into account, from formulas (3.13) one can obtain the exact expressions for
finite localized transients of positive and negative polarities, respectively:

ϕ+(s,v)= B

2C

[
1 + sin

(
C√
2d

s
)]
= 4v

3b
cos2

(
π

4
−
√

1
8
b

d
s

)

on − π

4
≤ λs≤ 3π

4
,

ϕ−(s,v)=− B

2C

[
1 + cos

(
C√
2d

s
)]
=−4v

3b
cos2

(√
1
8
b

d
s

)

on − π

2
≤ λs≤ π

2
(3.16)

and ϕ±(s,v)= 0 in the opposite case. Here L=√b/8d.
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Figure 3.2. Approximation of the pressure pulse by compactons.

It is known from soliton properties that the solitary wave ϕ+(s,v) (of positive polarity)
runs from left to right (from heart to peripheral regions) and ϕ−(s,v)—in the opposite
direction. This corresponds to the known fact of the existence of the forward and back-
ward pulse waves in the cardiovascular system [18].

Using exact expressions (3.16) for the approximation of experimentally recording sig-
nals one can estimate the main structural parameters ai,bi,di and pulse velocity v in the
root of aorta. It is reasonable, from our point of view, to approximate the systolic wave
of the pulse pressure signal by function ϕ+(s,v) and the dicrotic wave (corresponding
to diastolic part of the pulse pressure) by function ϕ−(s,v). Below we give the results of
computer simulation of an approximation of the real pulse pressure signal, recorded from
the radial artery of the patient by using a piezoelectrical sensor. In Figure 3.2 one can see
the results of the root-mean square approximation of one cycle of this pulse pressure
signal.

For identification of the main structural parameters the following equalities were used:

Ai = 4vi
3bi

, Li =
√

bi
8di

(i= 1,2). (3.17)

Here Ai, Li denote the nondimensional values of the amplitude and width of the systolic
and dicrotic waves that may be measured on the recorded pressure pulse signals, and
vi,bi,di are corresponding values of the structural parameters that should be determined.
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In addition one may use the relationships

[
dϕ+

dt

]

t=t1
= 0,

[
dϕ−
dt

]

t=t2
= 0, (3.18)

where t1, t2 are the time values, corresponding to the maximal amplitudes of the systolic
and dicrotic waves. The system of equalities (3.16)–(3.18) allows one to obtain an ex-
act formula for calculating the main structural parameters mentioned above. The most
important are the velocities of the dyastolic wave v1, dicrotic wave v2, and the resulting
pressure pulse velocity v:

v = v1− v2 = 4L1z+π

4L1t1
− 2L2z

2L2t2
= z
(

1
t1
− 1
t2

)
+π
(

1
4L1t1

+
1

2L2t2

)
. (3.19)

Here the value z corresponds to the distance of the pressure wave from the root of aorta.
The obtained values of these parameters are sufficiently realistic:

v1 = 5.84m/s, v2 = 2.01m/s, v = 3.73m/s,

v1 = 11.99m/s, v2 = 3.71m/s, v = 8,28m/s
(3.20)

for the values z = 0.005m and z = 0.013m correspondingly. Here the values t1 = 12∗
10−3 s, t2 = 32∗ 10−3 s, L1 = 56.4, and L2 = 137.4 were determined by the signal process-
ing of the real pressure pulse signal recorded from the radial artery.

It is evident that formula (3.18) is applicable for sufficiently small values of the variable
z. From our point of view, at a distance from root of the aorta one should take into ac-
count the regulating influence of the peripheral vessels impedance (resistance). For more
exact determining of these parameters the correlation coefficients should be introduced.
Recent biomedical and clinical investigations conform the crucial importance of these
parameters [13].

Below we use a simple “energetic approach” for determining critical relationships on
the transition to chaotic dynamics. Since the obtained solitary waves present the so-called
separatrix solutions, they determine the bounds of a set of regular (periodic) solutions.
They determine also the size of the so-called separatrix layers on the phase plane, gener-
ated the chaotic trajectories.

It is important that according to the above-mentioned “energetic” interpretation of
formula (3.7) one can see that on the quadratic approximating of the structural functions
the momentary kinetic energy in the root of aorta may be presented as the function

T(u)= λu(1−u). (3.21)

Here λ= L2. If we consider the pulse propagation in the vicinity of the aorta as recurrent
process of exchanging the pulse pressure and blood flow kinetic energy, the following con-
clusion may be done: pulse propagation chaos degree may be described by Feigenboum’s
theory (see [4]).

According to Feigenboum’s theory, under the condition 3 < λ < 1 +
√

6 the loss of sta-
bility of the pulse energy and the doubling of frequency is displayed. Furthermore, after
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Figure 3.3. Stages of transition to deterministic chaos of pressure pulses simultaneous energy.

multiple doubling of frequency under the critical condition

λ= λ∞ = 3.5699··· , (3.22)

pulse transition to complete chaos dynamics may be observed.
Thus for

λ= 3.5699··· , (3.23)

the momentary kinetic energy of the compact solutions (3.16) after a sequence of double
bifurcations displays the transition to complete chaos (Figure 3.3). On the other hand,
according to formulas (3.16) the number L∞ presents the critical value of the pressure
pulse frequency on which the transition to deterministic chaos can be observed. Taking
into account these results, one may consider the value L∞ as a prognostic index, charac-
terizing the pulse transition to deterministic chaos.

4. Possible applications to biomedicine and conclusions

The main points of our approach are as follows.
(1) Pressure pulse signal, recorded by the noninvasive technique, should be used for

the analysis of the main cardiovascular parameters by signal processing procedures. The
obtained data may be used for the improvement of the above-mentioned mathematical
models. For this purpose the dynamic recognition of the model structural parameters
can be used. It may be implemented particularly by application of the experimentally
recorded signals and subsequent medical verification. By sufficient number iterations of
this process relatively accurate values of the model structural parameters can be obtained.
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Table 4.1. Reduction of the main nonlinear dynamic characteristics on the presence of arrhythmia.

ECG
Correlation Correlation Hurst Fractal

dimension entropy exponent dimension

H27vt000 4.703 0.178 0.5284 1.4716

H27vt001 4.209 0.225 0.5531 1.4469

H27vt002 3.518 0.014 0.5202 1.4795

H27vt003 3.285 0.225 0.6498 1.3502

H27vt1 2.464 0.222 0.6498 1.3502

H27vt2 0.514 0.022 0.5186 1.4814

H27vt4 0.344 0.008 0.5373 1.4627

Table 4.2. Estimation of pressure pulses chaos degree by largest Lyapunov’s exponent.

Files Number of points Lyapunov’s criterion (L)

15 306 2.2861

17 219 1.6745

21 1478 −0.379

24 592 1.461

25 913 1.5348

26 1036 1.2435

27 1159 0.75351

28 780 1.6943

(2) Constructed analytical formulas for the main cardiovascular parameters and exact
analytical expressions for solutions, coupled with recorded signals, allow to estimate the
above-mentioned hemodynamic and electrophysiological parameters and to implement
the real-time monitoring. Obtained time series display the interactive variability of the
main cardiovascular parameters that allow to implement the complex analysis. Thus, this
approach allows to use for diagnostics of the cardiovascular diseases the exact solutions
and analytical formulas coupled with signal processing of the pressure pulse signal.

(3) The method can be applied for estimating the critical bounds of the pressure pulse
regularity and chaos degree by using discrete dynamic algorithms. By application of the
modern nonlinear dynamic concepts and calculating the main statistical indices (corre-
lation dimension, correlation entropy, fractal dimension, etc.) one can implement the
computer assisted diagnostic and prognostic investigations of the cardiovascular system
conditions of the patient. Table 4.1 presented the results of pulse-to-pulse monitoring
of the averaged dynamics of the above-mentioned index L for number of the pressure
pulse signals, recorded by piezoelectrical sensor from radial artery of the patients with
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different degree of arrhythmia. Table 4.2 presents the corresponding values of the largest
lyapunov’s exponents (LLE) (see, e.g., [14]). It is known that the range of positive value
of the LLE characterizes the chaos degree of the signal. One may see the maximal value
of the LLE for the signal, corresponding to File 15. As have been validated by medical
diagnosis the corresponding patient condition was classified as pulse arrhythmia.
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