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We consider a multiparameter discrete inclusion and we prove that the reachable set of
a certain variational multiparameter discrete inclusion is a derived cone in the sense of
Hestenes to the reachable set of the discrete inclusion. This result allows to obtain suffi-
cient conditions for local controllability along a reference trajectory and a new proof of
the minimum principle for an optimization problem given by a multiparameter discrete
inclusion with endpoint constraints.
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1. Introduction

The concept of a derived cone to an arbitrary subset of a normed space has been intro-
duced by Hestenes in [8] and successfully used to obtain necessary optimality conditions
in control theory. However, in the last years, this concept has been largely ignored in fa-
vor of other concepts of tangents cones, that may intrinsically be associated to a point of
a given set: the cone of interior directions, the contingent, the quasitangent and, above
all, Clarke’s tangent cone.

In our previous papers [3–7], we indentified certain derived cones to the reachable sets
of “ordinary” differential inclusions, hyperbolic differential inclusions, and some other
classes of discrete inclusions in terms of the variational inclusion associated to the dif-
ferential inclusion and to the discrete inclusion. These results allowed to obtain a simple
proof of the maximum principle in optimal control and sufficient conditions for local
controllability along a reference trajectory.

In the present paper, we consider a multiparameter discrete inclusion that describes
the Roesser model and we prove that the reachable set of a certain variational multipa-
rameter discrete inclusion is a derived cone in the sense of Hestenes to the reachable set
of the discrete inclusion.
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2 Multiparameter discrete inclusions

As applications of our main result, we point out the possibility to obtain some refine-
ments of the existing results in the theory of necessary optimality conditions and also in
controllability theory for multiparameter discrete inclusions.

Optimal control problems for systems described by discrete inclusions have been stud-
ied by many authors ([2, 10, 12], etc.). In the framework of multivalued problems, nec-
essary optimality conditions for a problem without endpoint constraints are obtained in
[10] and improved afterwards in [12]. The idea in [12] is to use a special (Warga’s) open
mapping theorem to obtain a sufficient condition for the discrete inclusion to be locally
controllable around a given trajectory and as a consequence, via a separation result, to
obtain the minimum (maximum) principle.

In contrast with the approach in [12], even if the problem studied in the present paper
is more difficult, due to endpoint constraints, the method in our approach seems to be
conceptually very simple, relying only on 2-3 clear-cut steps and using a minimum of
auxiliary results.

The paper is organized as follows. In Section 2 we present the notations and prelim-
inary results to be used in the sequel. Section 3 is devoted to our main result; while in
Section 4 we present the above mentioned applications concerning controllability and
necessary optimality conditions.

2. Preliminaries

For a set that is, in general, neither a differentiable manifold nor a convex set, its infinitesi-
mal properties may be characterized only by tangent cones in a generalized sense, extend-
ing the classical concepts of tangent cones in differential geometry and convex analysis,
respectively.

From the rather large number of “convex approximations,” “tents,” “regular tangents
cones,” and so forth, in the literature, we choose the concepts of a derived cone introduced
by Hestenes in [8].

Definition 2.1 [8]. A subset M ⊂Rn is said to be a derived set to X ⊂Rn at x ∈ X if for any
finite subset {v1, . . . ,vk} ⊂M, there exist s0 > 0 and a continuous mapping a(·) : [0,s0]k →
X such that a(0) = x and a(·) is (conically) differentiable at s = 0 with the derivative
col[v1, . . . ,vk] in the sense that

lim
Rk

+�θ→0

∥
∥a(θ)− a(0)−∑k

i=1 θivi
∥
∥

‖θ‖ = 0. (2.1)

We will write in this case that the derivative of a(·) at s= 0 is given by

Da(0)θ =
k
∑

i=1

θjvj , ∀θ = (θ1, . . . ,θk
)∈Rk

+ := [0,∞)k. (2.2)

A subset C ⊂ Rn is said to be a derived cone of X at x if it is a derived set and also a
convex cone.
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For the basic properties of derived sets and cones we refer to Hestenes [8]; we recall
that if M is a derived set, then M∪{0} as well as the convex cone generated by M, defined
by

cco(M)=
{ k
∑

i=1

λjvj ; λj ≥ 0, k ∈N, vj ∈M, j = 1, . . . ,k

}

, (2.3)

is also a derived set, hence a derived cone.
The fact that the derived cone is a proper generalization of the classical concepts in

differential geometry and convex analysis is illustrated by the following results [8]: if X ⊂
Rn is a differentiable manifold and TxX is the tangent space in the sense of differential
geometry to X at x:

TxX =
{

v ∈Rn; ∃c : (−s,s)−→ X , of class C1, c(0)= x, c′(0)= v
}

, (2.4)

then TxX is a derived cone; also, if X ⊂ Rn is a convex subset, then the tangent cone in
the sense of convex analysis defined by

TCxX = cl
{

t(y− x); t ≥ 0, y ∈ X
}

(2.5)

is also a derived cone. By clA we denote the closure of the set A⊂Rn.
Since any convex subcone of a derived cone is also a derived cone, such an object may

not be uniquely associated to a point x ∈ X ; moreover, simple examples show that even a
maximal with respect to a set-inclusion derived cone may not be uniquely defined: if the
set X ⊂R2 is defined by

X = C1∪C2, C1 =
{

(x,x), x ≥ 0
}

, C2 =
{

(x,−x), x ≤ 0
}

, (2.6)

then C1 and C2 are both maximal derived cones of X at the point (0,0)∈ X .
On the other hand, the up-to-date experience in nonsmooth analysis shows that for

some problems, the use of one of the intrinsic tangent cones may be preferable. From the
multitude of the intrinsic tangent cones in the literature (e.g., [1]), the contingent, the
quasitangent, and Clarke’s tangent cones, defined, respectively, by

KxX =
{

v ∈Rn; ∃sm −→ 0+, xm ∈ X :
xm− x

sm
−→ v

}

,

QxX =
{

v ∈Rn; ∀sm −→ 0+, ∃xm ∈ X :
xm− x

sm
−→ v

}

,

CxX =
{

v ∈Rn;∀(xm,sm)−→ (x,0+), xm ∈ X , ∃ym ∈ X :
ym− xm

sm
−→ v

}

,

(2.7)

seem to be among the most oftenly used in the study of different problems involving
nonsmooth sets and mappings.
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We recall that, in contrast with KxX , QxX , the cone CxX is convex and one has CxX ⊂
QxX ⊂ KxX .

It follows from Definition 2.1 and from (2.7) that if C ⊂ Rn is a derived cone to X at
x, then C ⊂ QxX . On the other hand, example (2.6), for which C0X = {0}, shows that a
derived cone may not be contained into the cone CxX .

We recall that two cones C1,C2 ⊂Rn are said to be separable if there exists q ∈Rn \ {0}
such that

〈q,v〉 ≤ 0≤ 〈q,w〉, ∀v ∈ C1, w ∈ C2. (2.8)

We denote by C+ the positive dual cone of C ⊂Rn:

C+ = {q ∈Rn; 〈q,v〉 ≥ 0, ∀v ∈ C
}

. (2.9)

The negative dual cone of C ⊂Rn is C− = −C+.
The following “intersection property” of derived cones, obtained by Mirică [11], is a

key tool in the proof of necessary optimality conditions.

Lemma 2.2 [11]. Let X1,X2 ⊂ Rn be given sets, let x ∈ X1 ∩X2, and let C1, C2 be derived
cones to X1, respectively, to X2 at x. If C1 and C2 are not separable, then

cl
(

C1∩C2
)= (cl

(

C1
))∩ (cl

(

C2
))⊂Qx

(

X1∩X2
)

. (2.10)

For a mapping g(·) : X ⊂ Rn → R which is not differentiable, the classical (Fréchet)
derivative is replaced by some generalized directional derivatives. We recall only the upper
right-contingent derivatives defined by

DKg(x;v)= limsup
(θ,w)→(0+,v)

g(x+ θw)− g(x)
θ

, v ∈ KxX , (2.11)

and in the case when g(·) is locally-Lipschitz at x ∈ int(X) by Clarke’s generalized direc-
tional derivative defined by

DC g(x;v)= limsup
(y,θ)→(x,0+)

g(y + θv)− g(y)
θ

, v ∈Rn. (2.12)

The results in the next section will be expressed in the case where g(·) is locally-
Lipschitz at x, in terms of the Clarke generalized gradient defined by

∂Cg(x)= {q ∈Rn; 〈q,v〉 ≤DC g(x;v), ∀v ∈Rn
}

. (2.13)

By �(Rn) we denote the family of all subsets of Rn.
Corresponding to each type of tangent cones, say τxX , one may introduce (e.g., [1]) a

set-valued directional derivative of a multifunction G(·) : X ⊂Rn →�(Rn) (in particular
of a single-valued mapping) at a point (x, y)∈Graph(G) as follows:

τyG(x;v)= {w ∈Rn; (v,w)∈ τ(x,y) Graph(G)
}

, v ∈ τxX. (2.14)
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We recall that a set-valued map, A(·) :Rn→�(Rn), is said to be a convex (resp., closed
convex) process if Graph(A(·))⊂Rn×Rn is a convex (resp., closed convex) cone. For the
basic properties of convex processes we refer to [1], but we will use here only the above
definition.

In what follows we are concerned with the discrete inclusion

xi j ∈ Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)

, i= 0,1, . . . ,N , j = 0,1, . . . ,N , (2.15)

where Fi j(·) : R3n →�(Rn), i, j = 0,1, . . . ,N . �(Rn) denotes the family of all subsets of
Rn.

Denote by SF the solution set of inclusion (2.15), that is

SF := {x = (x0,x1, . . . ,xN
)

; xi =
(

xi0,xi1, . . . ,xiN
)

, xi j ∈Rn,

i, j = 0,1, . . . ,N , x is a solution of (2.15), xi j = 0, if i < 0 or j < 0
}

,
(2.16)

and by RN
F := {xNN ; x ∈ SF} the reachable set of inclusion (2.6).

We consider x = (x0,x1, . . . ,xN )∈ SF a solution of (2.15).
In the sequel we will assume the following hypothesis.

Hypothesis 2.3. The set-valued maps Fi j(·) have nonempty compact convex values for
all i, j ∈ {0,1, . . . ,N} and there exists L > 0 such that Fi j(·) is Lipschitz with the Lipschitz
constant L, for all i, j ∈ {0,1, . . . ,N}.

In order to associate the linearized (variational) inclusion to our problem we need the
following hypothesis.

Hypothesis 2.4. There exists Aij(·) : R3n →�(Rn), i, j = 0,1, . . . ,N as a family of closed
convex processes such that

Aij(u,v,w)⊂Qxij Fi j
((

xi j−1,xi−1 j ,xi−1 j−1
)

; (u,v,w)
)

, (2.17)

for all u,v,w ∈Rn, for all i, j ∈ {0,1, . . . ,N}.
Let A0 be a derived cone to F00(0,0,0) at x00. To the problem (2.15) we associate the

linearized problem

wij ∈ Aij
(

wij−1,wi−1 j ,wi−1 j−1
)

, w00 ∈ A0, i, j = 0,1, . . . ,N , i+ j > 0,

with the boundary conditions wij = 0, for i < 0 or j < 0.
(2.18)

Denote by SA the solution set of inclusion (2.18) and by RN
A the reachable set of inclu-

sion (2.18).
We recall that if A : Rn → �(Rm) is a set-valued map, then the adjoint of A is the

multifunction A∗ :Rm→�(Rn) defined by

A∗(p)= {q ∈Rn;〈q,v〉 ≤ 〈p,v′〉, ∀(v,v′)∈ graphA(·)}. (2.19)
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In the study of our optimization problem we need the next duality result.

Lemma 2.5 [12]. Assume that Hypothesis 2.4 is verified and let r(·) : Rn →�(Rn) be the
set-valued map defined by

r(α) := {wNN ;w = (w0, . . . ,wN
)

is a solution of (2.18), w00 = α
}

. (2.20)

Then, for all b ∈Rn,

r∗(b)= {u1
01 +u2

10 +u3
11;
(

u1
i j ,u

2
i j ,u

3
i j

)∈ A∗i j
(

u1
i j+1 +u2

i+1 j +u3
i+1 j+1

)

,

i, j = 0,1, . . . ,N , 0 < i+ j < 2N ,
(

u1
NN ,u2

NN ,u3
NN

)∈ A∗NN (b)
}

.
(2.21)

Corollary 2.6. Assume that Hypothesis 2.4 is satisfied and A0 ⊂Qx00F00(0,0,0) is a closed
convex cone.

Then

(

RN
A

)+ ⊂ {q ∈Rn; ∃u1
i j ,u

2
i j ,u

3
i j ∈Rn such that

(

u1
i j ,u

2
i j ,u

3
i j

)∈ A∗i j
(

u1
i j+1 +u2

i+1 j +u3
i+1 j+1

)

,

i, j = 0,1, . . . ,N , 0 < i+ j < 2N ,
(

u1
NN ,u2

NN ,u3
NN

)∈A∗NN (q),

u1
01 +u2

10 +u3
11 ∈A+

0

}

.
(2.22)

Proof. Obviously, RN
A = r(A0), where r(·) was defined in the statement of Lemma 2.5.

Therefore (RN
A )+ = (r(A0))+ = r∗−1(A+

0 ). If b ∈ (RN
A )+, it follows that r∗(b)∈ A+

0 and the
corollary follows now from Lemma 2.5. �

Finally, we recall the definition of local controllability.

Definition 2.7. Inclusion (2.15) is said to be locally controllable around the solution x if
xNN ∈ int(RN

F ).

3. The main result

We prove that the reachable set RN
A of the variational multiparameter inclusion (2.18) is

a derived cone to the reachable set RN
F at xNN .

Theorem 3.1. Let A0 ⊂Rn be a derived cone to F00(0,0,0) and assume that Hypotheses 2.3
and 2.4 are satisfied.

Then the reachable set RN
A is a derived cone to RN

F at xNN .

Proof. In view of Definition 2.1, let {w1
NN , . . . ,wm

NN} ⊂ RN
A , hence there exist the solutions

w1 = (w1
0,w1

1, . . . ,w1
N ), . . . ,wm = (wm

0 ,wm
1 , . . . ,wm

N ) to the variational inclusion (2.18).
Since A0 ⊂Rn is a derived cone to F00(0,0,0), there exists θ0 > 0 and continuous map-

pings a0(·) : S= [0,θ0]m→ F00(0,0,0) such that

a0(0)= x00, Da0(0)s=
m
∑

j=1

s jw
j
00, ∀s∈Rm

+ . (3.1)
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Further on, for any s= (s1, . . . ,sm)∈ S we denote

u(s)=
m
∑

j=1

s jw
j , u(s)= (u0(s),u1(s), . . . ,uN (s)

)

, y(s)= x+u(s). (3.2)

For x = (x0,x1, . . . ,xN )∈R(N+1)n×R(N+1)n×···R(N+1)n we define

F(x)= (F0(x),F1(x), . . . ,FN (x)
)

, A(x)= (A0(x),A1(x), . . . ,AN (x)
)

, (3.3)

with

Fi(x)= (F̃i0(x), F̃i1(x), . . . , F̃iN (x)
)

, Ai(x)= (Ãi0(x),Ãi1(x), . . . ,ÃiN (x)
)

, (3.4)

where

F̃i j(x) := Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)

, Ãi j(x) := Aij
(

xi j−1,xi−1 j ,xi−1 j−1
)

, (3.5)

i, j = 0,1, . . . ,N , xi j = 0 for i < 0 or j < 0 and A00(·)=A0.
We prove next that

lim
s→0

d
(

y(s),F
(

y(s)
))

‖s‖ = 0. (3.6)

Since Aij(·) are convex process, for any s∈ S \ {0} one has

ui j

(
s

‖s‖
)

∈ Aij

(

ui j−1

(
s

‖s‖
)

,ui−1 j

(
s

‖s‖
)

,ui−1 j−1

(
s

‖s‖
))

⊂Qxij Fi j

(
(

xi j−1,xi−1 j ,xi−1 j−1
)

;
(

ui j−1

(
s

‖s‖
)

,ui−1 j

(
s

‖s‖
)

,ui−1 j−1

(
s

‖s‖
)))

,

(3.7)

and it follows from the definition of quasitangent derivative of lipschitzian set-valued
maps that

lim
h→0+

1
h

d
(

xi j +hui j

(
s

‖s‖
)

,Fi j

(

xi j−1 +hui j−1

(
s

‖s‖
)

,xi−1 j

+hui−1 j

(
s

‖s‖
)

,xi−1 j−1 +hui−1 j−1

(
s

‖s‖
)))

= 0.

(3.8)

In order to prove that (3.8) implies (3.6), we consider the compact metric space Sm−1
+ =

{σ ∈Rm
+ ; ‖σ‖ = 1} and the real functions φij(·,·) : (0,θ0]× Sm−1

+ →R+ defined by

φij(θ,σ) := 1
θ

d
(

xi j+θui j(σ),Fi j
(

xi j−1 +θui j−1(σ),xi−1 j+θui−1 j(σ),xi−1 j−1 +θui−1 j−1(σ)
))

,

(3.9)

which according to (3.8) has the property

lim
θ→0+

φij(θ,σ)= 0, ∀σ ∈ Sm−1
+ , t = 0, . . . ,N − 1. (3.10)
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Using the fact that φij(θ,·) is Lipschitzian and the fact that Sm−1
+ is a compact metric

space, from (3.10) it follows easily (e.g., [7, Proposition 4.4]) that

lim
θ→0+

max
σ∈Sm−1

+

φij(θ,σ)= 0, (3.11)

which implies the fact that lims→0φi(‖s‖,s/‖s‖) = 0. Therefore, lims→0φ(‖s‖,s/‖s‖) = 0,
where φ(·)= (φ0(·), . . . ,φN (·)), φi(·)= (φi0(·), . . . ,φiN (·)) and using (3.1) it follows (3.6).

From the compactness of F00(0,0,0) and the fact that the values of Fi j(·,·,·) are com-
pact, there exists a mapping r(·)= (r0(·),r1(·), . . . ,rN (·)) :R(N+1)n×···×R(N+1)n → SF ,
ri(·)= (ri0(·), . . . ,riN (·)), ri j(·)= 0 if i < 0 or j < 0 satisfying

∥
∥x00− r00(x)

∥
∥= d

(

x00,F00(0,0,0)
)

,

∥
∥xi j − ri j(x)

∥
∥= d

(

xi j ,Fi j
(

ri j−1(x),ri−1 j(x),ri−1 j−1(x)
))

, i, j = 0,1, . . . ,N.
(3.12)

Moreover, by convexity of the values of Fi j(·,·), the mapping r(·) is continuous.
On the other hand, we have

∥
∥xi j − ri j(x)

∥
∥= d

(

xi j ,Fi j
(

ri j−1(x),ri−1 j(x),ri−1 j−1(x)
))≤ d

(

xi j ,Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
))

+L
[∥
∥xi j−1− ri j−1(x)

∥
∥+

∥
∥xi−1 j − ri−1 j(x)

∥
∥+

∥
∥xi−1 j−1− ri−1 j−1(x)

∥
∥
]

.
(3.13)

Therefore, there exists l > 0 depending only on L such that

∥
∥xNN − rNN (x)

∥
∥≤ ld

(

x,F(x)
)

, ∀x ∈R(N+1)2n
. (3.14)

Finally, we define the mapping a(·) : S→ RN
F by

a(s)= (r ◦ y)NN (s). (3.15)

Obviously, a(·) is continuous on S and satisfies a(0)= xNN .
To end the proof we need to show that a(·) is differentiable at s0 = 0∈ S and its deriv-

ative is given by

Da(0)(s)=
m
∑

j=1

s jw
j
NN , ∀s∈Rm

+ , (3.16)

which is equivalent with the fact that

lim
s→0

1
‖s‖

(∥
∥
∥
∥
∥
a(s)− a(0)−

m
∑

j=1

s jw
j
NN

∥
∥
∥
∥
∥

)

= 0. (3.17)
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One may write

1
‖s‖

∥
∥
∥
∥
∥
a(s)− a(0)−

m
∑

j=1

s jw
j
NN

∥
∥
∥
∥
∥
≤ 1
‖s|

∥
∥(r ◦ y)NN(s)− yNN (s)

∥
∥

≤ l

‖s‖ d
(

y(s),F
(

y(s)
))

.

(3.18)

�

4. Applications

An important application of Theorem 3.1 concerns the local controllability of the discrete
inclusion (2.15) in the sense of Definition 2.7.

Apart from Theorem 3.1 characterizing a derived cone to the reachable set, the main
tool in the study of controllability is the remarkable property ([8, Theorem 4.7.4]) of the
derived cones, according to which x ∈ int(X) if and only if C =Rn is a derived cone to X
at x.

Therefore, a straightforward application of this result and of Theorem 3.1 gives the
following result.

Theorem 4.1. Let x, Fi j(·), A0 ⊂ Rn, Aij(·), i, j = 0, . . . ,N satisfy the assumptions of
Theorem 3.1. If the linearized inclusion (2.18) is controllable at xNN ∈Rn in the sense that
RN
A =Rn, then the discrete inclusion (2.15) is locally controllable around the solution x.

Consider now the problem

minimize g
(

xNN
)

(4.1)

over the solutions of the multiparameter discrete inclusion:

xi j ∈ Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)

, i= 0,1, . . . ,N , j = 0,1, . . . ,N , (4.2)

with endpoint constraints of the form

xNN ∈ XN , (4.3)

where Fi j(·) :R3n→�(Rn), i, j = 0, . . . ,N , are given set-valued maps, XN ⊂Rn, and g(·) :
Rn→R is also a given function.

In what follows we obtain necessary optimality conditions for a solution x =(x0,x1, . . . ,
xN ) to the problem (4.1)–(4.3) in the form of minimum principle. The proof of maxi-
mum principle is due, mainly to the “intersection property” of derived cones obtained
by Mirică (Lemma 2.2 above). A last step uses the Tuan and Ishizuka duality results in
[12], that characterize the positive dual of the solution set of the variational inclusion
associated to (4.2) in terms of the adjoint inclusion.

Theorem 4.2. Let XN ⊂ Rn be a closed set, let x ∈ SF be an optimal solution for problem
(4.1)–(4.3) such that Hypothesis 2.4 is satisfied, and let g(·) :Rn →R be a locally Lipschitz
function.
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Then for any derived cones A0 of F00(0,0,0) at x00 and C1 of XN at xNN , there exist
λ∈ {0,1}, q ∈Rn, and u1

i j ,u
2
i j ,u

3
i j ∈Rn such that

(

u1
i j ,u

2
i j ,u

3
i j

)∈A∗i j
(

u1
i j+1 +u2

i+1 j +u3
i+1 j+1

)

, 0 < i+ j < 2N ,

(

u1
NN ,u2

NN ,u3
NN

)∈A∗NN (q),
(4.4)

q ∈ λ∂Cg
(

xNN
)−C+

1 , u1
01 +u2

10 +u3
11 ∈ A+

0 , (4.5)

〈

u1
i j+1 +u2

i+1 j+u3
i+1 j+1,xi j

〉=min
{〈

u1
i j+1 +u2

i+1 j +u3
i+1 j+1,v

〉

; v ∈ Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)}

,

0 < i+ j < 2N ,
〈

q,xNN
〉=min

{〈q,v〉; v ∈ FNN
(

xNN−1,xN−1N ,xN−1N−1
)}

,

〈

u1
01 +u2

10 +u3
11,x00

〉=min
{〈

v,x00
〉

; v ∈ F00(0,0,0)
}

,
(4.6)

λ+‖q‖ > 0. (4.7)

Proof. We have g(xNN )=min{g(x) : x ∈ XN ∩RN
F } and from definitions it follows that

DC g
(

xNN ;v
)≥DKg

(

xNN ;v
)≥ 0, ∀v ∈ KxNN

(

XN ∩RN
F

)

. (4.8)

For all i, j = 0,1, . . . ,N and y ∈Rn define

Ãi j(u,v,w)= cl
(

Aij(u,v,w) +
⋃

t>0

1
t

[

Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)− xi j

]
)

. (4.9)

Then, by [9, Proposition 3.5], {Ãi j}i, j=0,1,...,N is a family of closed convex processes

satisfying Hypothesis 2.4, Aij ⊂ Ãi j , and moreover

Ã∗i j(y)=
⎧

⎪⎨

⎪⎩

A∗i j(y), if
〈

y,xi j
〉=min

{〈y,v〉; v ∈ Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)}

,

∅, otherwise.
(4.10)

From Theorem 3.1, CN := RN
Ã

is a derived cone to XN at xNN . We have two cases.
In the case when CN and C1 are separable, there exists q ∈Rn \ {0} such that

〈q,v〉 ≤ 0≤ 〈q,w〉, ∀v ∈ C1, w ∈ CN , (4.11)

hence q ∈ −(C1)+ and q ∈ (CN )+. According to Corollary 2.6 and (4.10) there exist u1
i j ,

u2
i j ,u

3
i j ∈Rn such that u1

01 +u2
10 +u3

11 ∈A+
0 and (4.4), (4.6) hold true. Therefore, if we take

λ= 0 then (4.4)–(4.7) are verified.
In the case when CN and C1 are not separable, we have (CN ∩C1)+ = (CN )+ + (C1)+.

It follows from Lemma 2.2 that CN ∩C1 ⊂ Qx(N)(XN ∩ RN
F ). From a simple separation

result (e.g., [11, Lemma 5.1]), from the definition of Clarke’s generalized gradient, and
from (4.8), we obtain the existence of q ∈ ∂Cg(x(N))∩ ((CN )+ + (C1)+). Hence there exist
q1 ∈ (CN )+, q2 ∈ (C1)+ such that q = q1 + q2. As in the first case, using Corollary 2.6 we
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deduce the existence of u1
i j ,u

2
i j ,u

3
i j ∈Rn such that u1

01 +u2
10 +u3

11 ∈A+
0 and (4.4) holds. As

in the first case, from (4.10) we obtain (4.6). We take in this case λ = 1 and (4.7) is also
verified. �

In particular, when Fi j(·,·,·) are expressed in the parametrized form

Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)= fi j

(

xi j−1,xi−1 j ,xi−1 j−1,Uij
)

, (4.12)

where Uij ⊂ Rmij are compact sets for 0 < i + j < 2N and F00(0,0,0) = {x00}, for a so-
lution x of inclusion (4.2) and its corresponding control u = (u0,u1, . . . ,uN ), ui = (ui0,
ui1, . . . ,uiN ), ui j ∈Uij , i= 0,1, . . . ,N , j = 0,1, . . . ,N , we define

A1
i j =

∂ fi j
∂xi j−1

(

xi j−1,xi−1 j ,xi−1 j−1
)

,

A2
i j =

∂ fi j
∂xi−1 j

(

xi j−1,xi−1 j ,xi−1 j−1
)

,

A3
i j =

∂ fi j
∂xi−1 j−1

(

xi j−1,xi−1 j ,xi−1 j−1
)

.

(4.13)

Hypothesis 4.3. For all i, j ∈ {0,1, . . . ,N}, the mappings fi j(·,·,·) satisfy the following
conditions.

(i) The function fi j(·,·,·,ui j) is Lipschitz for every fixed ui j ∈ Uij and the function
fi j(xi j−1,xi−1 j ,xi−1 j−1,·) is continuous for every fixed xi j−1,xi−1 j , xi−1 j−1.

(ii) The function fi j(·,·,·,ui j) is differentiable at (xi j−1,xi−1 j ,xi−1 j−1).

Corollary 4.4. Let x = (x0,x1, . . . ,xN )∈ SF be an optimal solution for problem (4.1)-(4.2),
with Fi j defined by (4.12), such that Hypothesis 4.3 is satisfied. Consider XN ⊂ Rn a closed
set and g(·) :Rn→R a locally Lipschitz function.

Then for any derived cone C1 of XN at xNN there exist q ∈ Rn and a solution pi j ∈ Rn

such that

pi j =
(

A1
i j+1

)∗
pi j+1 +

(

A2
i+1 j

)∗
pi+1 j +

(

A3
i+1 j+1

)∗
pi+1 j+1, 0 < i+ j < 2n,

pi j = 0, for i > N or j > N , pNN ∈ λ∂Cg
(

xNN
)−C+

1 ,

〈

pi j ,xi j
〉=min

{〈

pi j ,v
〉

; v ∈ Fi j
(

xi j−1,xi−1 j ,xi−1 j−1
)}

, 0 < i+ j.

(4.14)

Proof. We putAij = (A1
i j ,A

2
i j ,A

3
i j) and thusAij satisfies Hypothesis 2.4. We apply Theorem

4.2 and we find q ∈Rn and u1
i j ,u

2
i j ,u

3
i j ∈Rn such that

(

u1
i j ,u

2
i j ,u

3
i j

)= A∗i j
(

u1
i j+1 +u2

i+1 j +u3
i+1 j+1

)

, 0 < i+ j < 2N ,

(

u1
NN ,u2

NN ,u3
NN

)= Aa
NNst(q),

(4.15)

such that the minimum condition (4.6) holds.
It remains to put pi j := u1

i j+1 +u2
i+1 j +u3

i+1 j+1, where u1
i j = u2

i j = u3
i j = 0 if i > N or j > N

and the proof is complete. �
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Revue Roumaine de Mathématiques Pures et Appliquées 50 (2005), no. 1, 19–29.
[6] , Derived cones to reachable sets of discrete inclusions, submitted to Nonlinear Studies.
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