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We give a short proof of the Cushing-Henson conjecture concerning Beverton-Holt dif-
ference equation, which is important in theoretical ecology. The main result shows that
a periodic environment is always deleterious for populations modeled by the Beverton-
Holt difference equation.
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1. Introduction

Recently there has been a great interest in studying nonlinear difference equations and
systems, in particular those which model some real life situations in population biology
and ecology, see, for example, [1–13], and the references therein.

In [3], among other things, Cushing and Henson investigate the positive solutions of
a special case of the Beverton-Holt difference equation [2]

xn+1 = μKnxn
Kn + (μ− 1)xn

, n∈N0, (1.1)

where μ > 1 and Kn = Kn+p, n∈N0, for some p ≥ 2.
Equation (1.1) with Kn = K , n ∈ N0, appeared in theoretical ecology, where the pa-

rameters μ and K play an important role. The coefficient μ is considered a characteristic
of the population (its intrinsic growth rate), determined by life cycle and demographic
properties such as birth rates, survivorship rates, and so forth. The coefficient K is con-
sidered a characteristic of the habitat or environment (called the carrying capacity), for
example, resource availability, temperature, humidity, and so forth. It is quite common
for biological populations that parameters fluctuate in time. For example, in the case of
(1.1), periodic fluctuations are common (caused, e.g., by annual or daily fluctuations in
the physical environment), in which case μ and/or K become periodic functions of time.
Hence, it is of interest to consider nonautonomous (1.1).
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In [4] Cushing and Henson posed the following two conjectures.

Conjecture 1.1. There is a positive p-periodic solution {x̄0, . . . , x̄p−1} of (1.1) and it glob-
ally attracts all positive solutions.

Conjecture 1.2. The following inequality holds (1/p)
∑p−1

i=0 x̄i < (1/p)
∑p−1

i=0 Ki.

In a private communication with Professor Elaydi we found out that both conjectures
have been confirmed recently by Elaydi and Sacker (the first one in [5] and the second one
in [6]). Moreover, they have shown that (1.1) possesses a positive solution with period p,
but it need not be the minimal period of the solution. Case p = 2 has been solved in [3].

Here, we present our proofs of these two conjectures, which are simpler than those in
the existing literature. The reason for the simplicity relies on the fact that (1.1) is solvable
(as a special case of Riccati equation). The main result in this note, Theorem 1.3, confirms
Conjecture 1.2, which is more interesting than Conjecture 1.1.

First note that by the change of variable yn = 1/xn, (1.1) can be written in the form

yn+1 = qyn + (1− q)Ln, n∈N0, (1.2)

where q = 1/μ and Ln = 1/Kn.
Since (1.1) and (1.2) are equivalent, it is enough to find p-periodic solutions of (1.2).
It is not difficult to find periodic solutions of (1.2), namely, if ( ȳ0, ȳ1, . . . , ȳp−1) is such

a solution, from (1.2), we have that it must be

ȳ1 = qȳ0 + (1− q)L0, ȳ2 = qȳ1 + (1− q)L1, . . . , ȳ0 = qȳp−1 + (1− q)Lp−1. (1.3)

By iterating, or by solving linear system (1.3), we obtain

ȳ0 =
(1− q)

[
L0qp−1 + ···+Lp−2q+Lp−1

]

1− qp
(1.4)

and by cyclicity of system (1.3), it follows that

ȳi =
(1− q)

[
Lσ [i](0)qp−1 + ···+Lσ [i](p−2)q+Lσ [i](p−1)

]

1− qp
, i∈ {1, . . . , p− 1}, (1.5)

where σ is the permutation (0,1,2, . . . , p − 1) → (1,2, . . . , p − 1,0), σ [i] = σ ◦ σ [i−1] and
σ [0] = Id (the identity permutation).

Hence,

x̄i = μp− 1

(μ− 1)
∑p−1

j=0

(
μj/Kσ [i]( j)

) = 1
∑p−1

j=0

(
αj/Kσ [i]( j)

) , (1.6)

for i∈ {0,1, . . . , p− 1}, where

αj = (μ− 1)μj

μp− 1
, j ∈ {0,1, . . . , p− 1}. (1.7)

Now we are in a position to confirm Conjecture 1.2 in an elegant way by proving the
following result.



Stevo Stević 3

Theorem 1.3. Consider (1.1), where μ > 1 and Kn is a nonconstant sequence of positive
numbers such that Kn = Kn+p, n ∈ N0, for some p ≥ 2. If {x̄0, . . . , x̄p−1} is the positive p-
periodic solution of (1.1), then

1
p

p−1∑

i=0

x̄i <
1
p

p−1∑

i=0

Ki. (1.8)

Proof. Since the function f (x)= 1/x is strictly convex on (0,∞) and
∑p−1

j=0 αj = 1, we have

p−1∑

i=0

x̄i =
p−1∑

i=0

1
∑p−1

j=0

(
αj/Kσ [i]( j)

) <
p−1∑

i=0

p−1∑

j=0

αjKσ [i]( j) =
p−1∑

j=0

αj

p−1∑

i=0

Kσ [i]( j) =
p−1∑

i=0

Ki, (1.9)

where the inequality is strict since the sequence Kn is nonconstant. �

The interpretation of Theorem 1.3 is that a periodic environment is always deleterious
for populations modelled by (1.1) in the sense that the average of the resulting population
oscillations is strictly less than the average of K ’s.

Remark 1.4. Conjecture 1.1 can be confirmed in a similar fashion. Namely, similar to
(1.4), for arbitrary solution (yn)n∈N0 of (1.1) the following relationship holds:

ymp+i = qp y(m−1)p+i + (1− q)
[
Lσ [i](0)q

p−1 + ···+Lσ [i](p−2)q+Lσ [i](p−1)
]
, (1.10)

m∈N0 and i∈ {0,1, . . . , p− 1}, and consequently

ymp+i = qmp yi +
1− qmp

1− qp
(1− q)

[
Lσ [i](0)q

p−1 + ···+Lσ [i](p−2)q+Lσ [i](p−1)
]
, (1.11)

m∈N0 and i∈ {0,1, . . . , p− 1}.
Letting m→∞ in the last formula for each i∈ {0,1, . . . , p− 1}, and noticing that q ∈

(0,1), we obtain that every solution of (1.2) converges to the p-cycle ( ȳ0, . . . , ȳp−1), which
implies that every solution of (1.1) converges to the p-cycle (x̄0, . . . , x̄p−1), as desired.

Remark 1.5. One of the referees of this paper noted that the existence of a periodic so-
lution of (1.1), as well as its global attractivity, was proved in [10]. However, in [10] the
periodic solution was not found in a closed form and Conjecture 1.2 was not considered.
Actually, the problem in Conjecture 1.1 is folklore and it is difficult to find its origins.

Remark 1.6. If μ in (1.1) is not constant but periodic with period p, for example, μn =
μn+p, then Conjecture 1.1 is also true. Indeed, in this case (1.2) becomes

yn+1 = qnyn +
(
1− qn

)
Ln, n∈N0, (1.12)

where qn = 1/μn. As above it can be obtained that

ȳi =
∑p−1

j=0

(
1− qσ [i]( j)

)
Lσ [i]( j)

∏p−1
k= j+1 qσ [i](k)

1−∏p−1
j=0 qj

, i∈ {0,1, . . . , p− 1}, (1.13)
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and that arbitrary solution (yn)n∈N0 of the equation has the form

ymp+i =
( p−1∏

j=0

qj

)m

yi +
1− (∏p−1

j=0 qj
)m

1−∏p−1
j=0 qj

p−1∑

j=0

(
1− qσ [i]( j)

)
Lσ [i]( j)

p−1∏

k= j+1

qσ [i](k), (1.14)

m∈N0 and i∈ {0,1, . . . , p− 1}.
Letting m→∞ in (1.14) it follows that ymp+i → ȳi, for each i ∈ {0,1, . . . , p− 1}, from

which the result follows.
From (1.13), we have that

x̄i =
∏p−1

k=0 μk − 1
∑p−1

j=0

((
μσ [i]( j)− 1

)
/Kσ [i]( j)

)∏ j−1
k=0μσ [i](k)

, i∈ {0,1, . . . , p− 1}. (1.15)

Let

αi, j =
(
μσ [i]( j)− 1

)∏ j−1
k=0μσ [i](k)

∏p−1
k=0 μk − 1

, i, j ∈ {0,1, . . . , p− 1}. (1.16)

Then, similar to the proof of Theorem 1.3, we obtain

p−1∑

i=0

x̄i =
p−1∑

i=0

1
∑p−1

j=0

(
αi, j /Kσ [i]( j)

) <
p−1∑

i=0

p−1∑

j=0

αi, jKσ [i]( j)

=
p−1∑

j=0

Kj

p−1∑

i=0

αi, j−i(mod p)

=
p−1∑

j=0

Kj

(
μj − 1

)∑p−1
i=0

∏ j−i−1(mod p)
k=0 μσ [i](k)

∏p−1
k=0 μk − 1

.

(1.17)

From (1.17) it follows that

1
p

p−1∑

i=0

x̄i <

(
maxi μi

)(
maxi μi− 1

)

(
mini μi

)(
mini μi− 1

)
1
p

p−1∑

i=0

Ki, (1.18)

which gives an estimate of the average (1/p)
∑p−1

i=0 x̄i for the case when μn is a nonconstant
periodic sequence, see [7].
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