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We give some sufficient conditions for the existence of positive solutions of partial differ-
ence equation aAm+1,n+1 + bAm,n+1 + cAm+1,n− dAm,n +Pm,nAm−k,n−l = 0 by two different
methods.
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1. Introduction

In this paper, we consider the linear partial difference equation

aAm+1,n+1 + bAm,n+1 + cAm+1,n−dAm,n +Pm,nAm−k,n−l = 0, (1.1)

where Pm,n > 0 on N2
0 , k, l ∈N0, Ni = {i, i+ 1, . . .} and i is an arbitrary integer. Throughout

this paper, we assume that a, b, c, d are positive constants.
A double sequence {Am,n} is said to be a solution of (1.1) if it satisfies (1.1) for m≥m0,

n≥ n0. A solution {Ai, j} of (1.1) is said to be eventually positive if Ai, j > 0 for all large i
and j, and eventually negative if Ai, j < 0 for all large i and j. It is said to be oscillatory if it
is neither eventually positive nor eventually negative.

The oscillation of (1.1) has been studied in [2]. In the following, we mainly consider
the existence of positive solutions of (1.1) by two different methods.

2. The method of fixed point

The following lemma will be used to prove our main results in this section.

Lemma 2.1 [3] (Knaster’s fixed point theorem). Let X be a partially ordered Banach space
with ordering ≤. Let M be a subset of X with the following properties: the infimum of M
belongs to M and every nonempty subset of M has a supremum which belongs to M. Let
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2 Existence of positive solutions for PDEs

T : M →M be an increasing mapping, that is, x ≤ y implies Tx ≤ Ty. Then T has a fixed
point in M.

Theorem 2.2. Assume that a ≥ d, b ≥ d, c ≥ d, and one of the following three conditions
holds.

(i) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(a−d)λm+1+i,n+1+i+ j +
∞∑
j=0

∞∑
i=1

bλm+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=0

cλm+1+i,n+i+ j +
∞∑
j=0

(b−d)λm,n+1+ j +
∞∑
j=0

∞∑
i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j

}
≤ 1.

(2.1)

(ii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(a−d)λm+1+i+ j,n+1+i +
∞∑
j=0

∞∑
i=0

bλm+i+ j,n+1+i

+
∞∑
j=0

∞∑
i=1

cλm+1+i+ j,n+i +
∞∑
j=0

(c−d)λm+1+ j,n +
∞∑
j=0

∞∑
i=0

Pm+i+ j,n+iλm−k+i+ j,n−l+i

}
≤ 1.

(2.2)

(iii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
i=0

∞∑
j=0

aλm+1+i,n+1+ j +
∞∑
i=0

∞∑
j=0

(b−d)λm+i,n+1+ j

+
∞∑
i=0

∞∑
j=1

cλm+1+i,n+ j +
∞∑
i=0

(c−d)λm+1+i,n +
∞∑
i=0

∞∑
j=0

Pm+i,n+ jλm−k+i,n−l+ j

}
≤ 1.

(2.3)

Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.

Proof. We only give the proof of (i), and the other cases are similar.
Let X be the set of all real bounded double sequence y = {ym,n}∞,∞

m=m0,n=n0
with the

norm ‖y‖ = supm≥m0,n≥n0
|ym,n| <∞. It is easy to prove that X is a Banach space. We

define a subset Ω of X as follows:

Ω= {y = {ym,n
}∈ X : 0≤ ym,n ≤ 1, m≥m0, n≥ n0

}
(2.4)

and define a partial order on X in the usual way, that is,

x, y ∈ X , x ≤ y means that xm,n ≤ ym,n for m≥m0, n≥ n0. (2.5)

It is easy to see that for any subset S of Ω, there exist inf S and supS. We choose m1 >m0,
n1 > n0 sufficiently large such that (i) holds.
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Set

D =Nm0 ×Nn0 , D1 =Nm1 ×Nn1 ,

D2 =
(
Nm0 ×Nn1

) \D1, D3 =
(
Nm1 ×Nn0

) \D1,

D4 =D \ (D1∪D2∪D3
)
.

(2.6)

Clearly, D =D1∪D2∪D3∪D4. Define a mapping T : Ω→ X as follows:

Tym,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(a−d)λm+1+i,n+1+i+ j ym+1+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=1

bλm+i,n+1+i+ j ym+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=0

cλm+1+i,n+i+ j ym+1+i,n+i+ j

+
∞∑
j=0

(b−d)λm,n+1+ j ym,n+1+ j

+
∞∑
j=0

∞∑
i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j ym−k+i,n−l+i+ j

}
, (m,n)∈D1,

n

n1
Tym1,n +

(
1− n

n1

)
, (m,n)∈D2,

m

m1
Tym,n1 +

(
1− m

m1

)
, (m,n)∈D3,

mn

m1n1
Tym1,n1 +

(
1− mn

m1n1

)
, (m,n)∈D4.

(2.7)

From (2.7) and noting that ym,n ≤ 1, we have

0≤ Tym,n ≤ 1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(a−d)λm+1+i,n+1+i+ j +
∞∑
j=0

∞∑
i=1

bλm+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=0

cλm+1+i,n+i+ j +
∞∑
j=0

(b−d)λm,n+1+ j

+
∞∑
j=0

∞∑
i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j

}
≤ 1, for (m,n)∈D1,

0≤ Tym,n ≤ 1 for (m,n)∈D2∪D3∪D4.

(2.8)



4 Existence of positive solutions for PDEs

Therefore, TΩ⊂Ω. Clearly, T is nondecreasing. By Lemma 2.1, there is a y ∈Ω such
that Ty = y, that is,

ym,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(a−d)λm+1+i,n+1+i+ j ym+1+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=1

bλm+i,n+1+i+ j ym+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=0

cλm+1+i,n+i+ j ym+1+i,n+i+ j

+
∞∑
j=0

(b−d)λm,n+1+ j ym,n+1+ j

+
∞∑
j=0

∞∑
i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j ym−k+i,n−l+i+ j

}
, (m,n)∈D1,

n

n1
Tym1,n +

(
1− n

n1

)
, (m,n)∈D2,

m

m1
Tym,n1 +

(
1− m

m1

)
, (m,n)∈D3,

mn

m1n1
Tym1,n1 +

(
1− mn

m1n1

)
, (m,n)∈D4.

(2.9)

It is easy to see that ym,n > 0 for (m,n)∈D2∪D3∪D4, and hence ym,n > 0 for all (m,n)∈
D1. Set

xm,n = λm,nym,n, (2.10)

then from (2.9) and (2.10), we have

xm,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
d

{ ∞∑
j=0

∞∑
i=0

(a−d)xm+1+i,n+1+i+ j +
∞∑
j=0

∞∑
i=1

bxm+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=0

cxm+1+i,n+i+ j +
∞∑
j=0

(b−d)xm,n+1+ j

+
∞∑
j=0

∞∑
i=0

Pm+i,n+i+ jxm−k+i,n−l+i+ j

}
, (m,n)∈D1,

n

n1
Tym1,n +

(
1− n

n1

)
, (m,n)∈D2,

m

m1
Tym,n1 +

(
1− m

m1

)
, (m,n)∈D3,

mn

m1n1
Tym1,n1 +

(
1− mn

m1n1

)
, (m,n)∈D4,

(2.11)

and so

axm+1,n+1 + bxm,n+1 + cxm+1,n−dxm,n +Pm,nxm−k,n−l = 0, (m,n)∈D1, (2.12)

which implies that x = {xm,n} is a positive solution of (1.1). The proof is complete. �
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Similarly, we can get the following conclusions according to variant relations of coef-
ficients of (1.1).

Theorem 2.3. Assume that a ≥ d, b ≥ d, c < d, and one of the following three conditions
holds.

(i) Equation (2.1) holds.
(ii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=1

(
c

d

)i
aλm+1+i+ j,n+1+ j +

∞∑
j=0

∞∑
i=0

(
c

d

)i
bλm+i+ j,n+1+ j

+
∞∑
j=0

(a−d)λm+1+ j,n+1+ j +
∞∑
j=0

∞∑
i=0

(
c

d

)i
Pm+i+ j,n+ jλm−k+i+ j,n−l+ j

}
≤ 1.

(2.13)

(iii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(
c

d

)i
aλm+1+i,n+1+ j +

∞∑
j=0

∞∑
i=1

(
c

d

)i
bλm+i,n+1+ j

+
∞∑
j=0

(b−d)λm,n+1+ j +
∞∑
j=0

∞∑
i=0

(
c

d

)i
Pm+i,n+ jλm−k+i,n−l+ j

}
≤ 1.

(2.14)

Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.

Theorem 2.4. Assume that a ≥ d, b < d, c ≥ d, and one of the following three conditions
holds.

(i) Equation (2.2) holds.
(ii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
i=0

∞∑
j=1

(
b

d

) j

aλm+1+i,n+1+i+ j +
∞∑
i=0

∞∑
j=0

(
b

d

) j

cλm+1+i,n+i+ j

+
∞∑
i=0

(a−d)λm+1+i,n+1+i +
∞∑
i=0

∞∑
j=0

(
b

d

) j

Pm+i,n+i+ jλm−k+i,n−l+i+ j

}
≤ 1.

(2.15)

(iii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
i=0

∞∑
j=0

(
b

d

) j

aλm+1+i,n+1+ j +
∞∑
i=0

∞∑
j=1

(
b

d

) j

cλm+1+i,n+ j

+
∞∑
i=0

(c−d)λm+1+i,n +
∞∑
i=0

∞∑
j=0

(
b

d

) j

Pm+i,n+ jλm−k+i,n−l+ j

}
≤ 1.

(2.16)

Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.
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Theorem 2.5. Assume that a ≥ d, b < d, c < d, and one of the following three conditions
holds.

(i) Equation (2.13) holds.
(ii) Equation (2.15) holds.

(iii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
i=0

∞∑
j=0

(
c

d

)i(b
d

) j

aλm+1+i,n+1+ j

+
∞∑
i=0

∞∑
j=1

(
c

d

)i(b
d

) j

cλm+1+i,n+ j +
∞∑
i=0

∞∑
j=0

(
c

d

)i(b
d

) j

Pm+i,n+ jλm−k+i,n−l+ j

}
≤ 1.

(2.17)

Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.

Theorem 2.6. Assume that a < d, b ≥ d, c ≥ d, and one of the following three conditions
holds.

(i) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=1

(
a

d

)i
bλm+i,n+1+i+ j +

∞∑
j=0

∞∑
i=0

(
a

d

)i
cλm+1+i,n+i+ j

+
∞∑
j=0

(b−d)λm,n+1+ j +
∞∑
j=0

∞∑
i=0

(
a

d

)i
Pm+i,n+i+ jλm−k+i,n−l+i+ j

}
≤ 1.

(2.18)

(ii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(
a

d

)i
bλm+i+ j,n+1+i +

∞∑
j=0

∞∑
i=1

(
a

d

)i
cλm+1+i+ j,n+i

+
∞∑
j=0

(c−d)λm+1+ j,n +
∞∑
j=0

∞∑
i=0

(
a

d

)i
Pm+i+ j,n+iλm−k+i+ j,n−l+i

}
≤ 1.

(2.19)

(iii) Equation (2.3) holds.
Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.

Theorem 2.7. Assume that a < d, b ≥ d, c < d, and one of the following three conditions
holds.

(i) Equation (2.18) holds.
(ii) Equation (2.14) holds.
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(iii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=0

(
c

d

) j(a
d

)i
bλm+i+ j,n+1+i

+
∞∑
j=0

∞∑
i=1

(
c

d

) j(a
d

)i
cλm+1+i+ j,n+i +

∞∑
j=0

∞∑
i=0

(
c

d

) j(a
d

)i
Pm+i+ j,n+iλm−k+i+ j,n−l+i

}
≤ 1.

(2.20)

Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.

Theorem 2.8. Assume that a < d, b < d, c ≥ d, and one of the following three conditions
holds.

(i) Equation (2.19) holds.
(ii) Equation (2.16) holds.

(iii) There exists a positive double sequence {λm,n} such that for all sufficiently large m,n,

1
dλm,n

{ ∞∑
j=0

∞∑
i=1

(
b

d

) j(a
d

)i
bλm+i,n+1+i+ j

+
∞∑
j=0

∞∑
i=0

(
b

d

) j(a
d

)i
cλm+1+i,n+i+ j +

∞∑
j=0

∞∑
i=0

(
b

d

) j(a
d

)i
Pm+i,n+i+ jλm−k+i,n−l+i+ j

}
≤ 1.

(2.21)

Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.

Theorem 2.9. Assume that a < d, b < d, c < d, and one of the following three conditions
holds.

(i) Equation (2.20) holds.
(ii) Equation (2.21) holds.

(iii) Equation (2.17) holds.
Then (1.1) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n.

Example 2.10. Consider the equation

1
4
Am+1,n+1 +

1
4
Am,n+1 +

1
4
Am+1,n− 19

2
Am,n + 120Am−2,n−2 = 0. (2.22)

We can find that a < d, b < d, c < d, and λm,n = 5m+n satisfies (2.21). By Theorem 2.9,
(2.22) has a positive solution {Am,n} which satisfies 0 < Am,n ≤ λm,n. In fact, Am,n = 2m+n

is such a solution of (2.22).

3. The method of construction

Above all, we define several sets of vertices: Ω = {(i, j) : i, j are integers and i ≥ −k, j ≥
−l} where k and l are the same ones used in (1.1), Ω+ = {(i, j)∈Ω : i, j ≥ 0} and Ω∗ =
{(i, j)∈Ω : i≥ 0 or j ≥ 0}.

Given a vertex z = (i, j) ∈ Ω, the two adjacent vertices (i+ 1, j) and (i, j + 1) will be
denoted by zR and zT , respectively, and the vertex (i + 1, j + 1) will be denoted by zRT .
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Furthermore, we may also introduce an ordering for these vertices as follows: let w =
(m,n) and z = (i, j) be vertices in Ω, we say that w precedes z, denoted by w ≤ z if m≤ i
and n≤ j. As usual, we will denote the vertex (0,0) by 0. The vertex (k, l) and (m− i, n−
j) will be denoted by δ and w− z respectively.

For each pair of vertices w = (m,n) ∈Ω+ and z = (i, j) ∈Ω, we associate a real value
f (w,z). Thus we have a function f defined on Ω+ ×Ω, and we say that f is positive if
f (w,z) > 0 for all w ∈Ω+ and z ∈Ω.

Consider the equation

a f
(
w,wRT

)
+ b f

(
w,wT

)
+ c f

(
w,wR

)−df (w,w) +P(w) f (w,w− δ)= 0, w ∈Ω+,
(3.1)

where P(w) is a positive function defined at each vertex in Ω+ and a, b, c, d are the same
ones used in (1.1).

Lemma 3.1. If (3.1) has a positive solution f (w,w), then (1.1) has an eventually positive
solution.

Proof. Suppose (3.1) has a positive solution f (w,w), then we can define a sequence {Ai, j}
by Ai, j = f (w,z), and thus Am,n = f (w,w) is an eventually positive solution of (1.1). �

In the following, we consider two cases: (1) a= 0; (2) a �= 0.

Case 1. a= 0.
For this case, we will rely on the following nonlinear equation

φm,n = Pm,n

( m−1∏
s=m−k

b+ c

d−φs,n

)( n−1∏
t=n−l

b+ c

d−φm,t

)
, m,n≥ 0, (3.2)

where k, l and b, c, d, Pm,n are the same ones used in (1.1). Here and in the sequel, we will
adopt the convention that an empty product equals one.

Note first that in order for a double sequence {φm,n} to satisfy (3.2), it is only necessary
to define φm,n for (m,n)∈Ω∗. Furthermore, we may show that if {φm,n} is a double se-
quence strictly bounded between 0 and d for (m,n)∈Ω∗ and satisfies (3.2), then f (w,w),
defined by

f (w,z)=
( i−1∏

s=−k

d−φs,n
b+ c

)( j−1∏
t=−l

d−φm,t

b+ c

)
, (3.3)

for each pair of vertices w = (m,n) ∈ Ω+ and z = (i, j) ∈ Ω, is clearly positive and will
satisfy (3.1).
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Indeed, for any w = (m,n)∈Ω+,

b f
(
w,wT

)
+ c f

(
w,wR

)−df (w,w)

= b

( m−1∏
s=−k

d−φs,n
b+ c

)( n∏
t=−l

d−φm,t

b+ c

)
+ c

( m∏
s=−k

d−φs,n
b+ c

)( n−1∏
t=−l

d−φm,t

b+ c

)

−d

( m−1∏
s=−k

d−φs,n
b+ c

)( n−1∏
t=−l

d−φm,t

b+ c

)
=−φm,n

( m−1∏
s=−k

d−φs,n
b+ c

)( n−1∏
t=−l

d−φm,t

b+ c

)
,

P(w) f (w,w− δ)

= P(w)

(m−k−1∏
s=−k

d−φs,n
b+ c

)(n−l−1∏
t=−l

d−φm,t

b+ c

)

= P(w)

( m−1∏
s=m−k

b+ c

d−φs,n

)( n−1∏
t=n−l

b+ c

d−φm,t

)( m−1∏
s=−k

d−φs,n
b+ c

)( n−1∏
t=−l

d−φm,t

b+ c

)

= φm,n

( m−1∏
s=−k

d−φs,n
b+ c

)( n−1∏
t=−l

d−φm,t

b+ c

)

(3.4)

as required, and thus we get the following conclusion.

Theorem 3.2. Suppose there is a double sequence φ = {φm,n} which satisfies (3.2) and 0 <
φm,n < d for (m,n) ∈ Ω∗, then the function f : Ω+ ×Ω→ R defined by (3.3) is a positive
solution of (3.1).

The existence of {φm,n} can be seen in [1].

According to the analysis in [1], we can get the following conclusion similarly.

Corollary 3.3. Suppose either (i) k = l = 0, Pm,n ≤ λ < d; or (ii) k+ l > 0,

Pm,n ≤ dk+l+1(k+ l)k+l

(b+ c)k+l(k+ l+ 1)k+l+1
, (3.5)

then there is a positive solution of (1.1).

Remark 3.4. In [2, Corollary 2.2], the authors give an oscillation criterion for (1.1) as
follows: if

liminf
m,n→∞ Pm,n = P >

dk+l+1(k+ l)k+l

bkcl(1 + k+ l)1+k+l
, (3.6)

then every solution of (1.1) is oscillatory.
We can find that

dk+l+1(k+ l)k+l

(b+ c)k+l(k+ l+ 1)k+l+1
≤ dk+l+1(k+ l)k+l

bkcl(1 + k+ l)1+k+l
(3.7)
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for a= 0. Thus there is a gap between the oscillation condition (3.6) and condition (3.5)
for the existence of positive solutions for the case a= 0 in (1.1). How do we fill this gap is
an open problem.

Case 2. a �= 0.
For this case, we will rely on the nonlinear equation

φm,n = Pm,n

( m−1∏
s=m−k

[
2da+ c

(
b+ c+

√
(b+ c)2 + 4ad

)](
b+ c+

√
(b+ c)2 + 4ad

)
2d
[
2da+ c

(
b+ c+

√
(b+ c)2 + 4ad

)]− (b+ c+
√

(b+ c)2 + 4ad
)2
φs,n

)

×
(
b+ c+

√
(b+ c)2 + 4ad

2d

)l

(3.8)

or

φm,n = Pm,n

(
b+ c+

√
(b+ c)2 + 4ad

2d

)k

×
( n−1∏

t=n−l

[
2da+ b

(
b+ c+

√
(b+ c)2 + 4ad

)](
b+ c+

√
(b+ c)2 + 4ad

)
2d
[
2da+ b

(
b+ c+

√
(b+ c)2 + 4ad

)]− (b+ c+
√

(b+ c)2 + 4ad
)2
φm,t

)
,

(3.9)

where k, l and a, b, c, d, Pm,n are the same ones used in (1.1) and we can also define f (w,z)
as follows:

f (w,z)=
( i−1∏

s=−k

2d
[
2da+ c

(
b+ c+

√
(b+ c)2 + 4ad

)]− (b+ c+
√

(b+ c)2 + 4ad
)2
φs,n[

2da+ c
(
b+ c+

√
(b+ c)2 + 4ad

)](
b+ c+

√
(b+ c)2 + 4ad

)
)

×
(

2d
b+ c+

√
(b+ c)2 + 4ad

) j+l

(3.10)

or

f (w,z)=
(

2d
b+ c+

√
(b+ c)2 + 4ad

)i+k

×
( j−1∏

t=−l

2d
[
2da+ b

(
b+ c+

√
(b+ c)2 + 4ad

)]− (b+ c+
√

(b+ c)2 + 4ad
)2
φs,n[

2da+ b
(
b+ c+

√
(b+ c)2 + 4ad

)](
b+ c+

√
(b+ c)2 + 4ad

)
)

(3.11)

for 0 < φm,n < (2d[2da + c(b + c +
√

(b+ c)2 + 4ad)])/(b + c +
√

(b+ c)2 + 4ad)2 or
(2d[2da+ b(b+ c+

√
(b+ c)2 + 4ad)])/(b+ c+

√
(b+ c)2 + 4ad)2 for (m,n)∈Ω∗, and the

following conclusion is similar to Theorem 3.2.
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Theorem 3.5. Suppose there is a double sequence φ= {φm,n} which satisfies (3.8) (or (3.9))
and

0 < φm,n <
2d
[
2da+ c

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)2 (3.12)

or

(
2d
[
2da+ b

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)2

)
, (3.13)

for (m,n)∈Ω∗, then the function f : Ω+×Ω→ R defined by (3.10) (or (3.11)) is a positive
solution of (3.1).

Corollary 3.6. Suppose either (i) k = l = 0,

Pm,n ≤ λ <
2d
[
2da+ c

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)2

or

(
2d
[
2da+ b

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)2

)
;

(3.14)

or (ii) k+ l > 0,

Pm,n ≤ kk

(1 + k)1+k

(2d)k+l+1
[
2ad+ c

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)k+l+2 (3.15)

or

Pm,n ≤ ll

(1 + l)1+l

(2d)k+l+1
[
2ad+ b

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)k+l+2 , (3.16)

then there is a positive solution of (3.1).

Remark 3.7. In [2, Corollary 2.1], the authors give an oscillation criterion for (1.1) as
follows: if

liminf
m,n→∞ = P > dk+1

((
a+

2bc
d

)l
bk−l

)−1
kk

(1 + k)1+k
, for k ≥ l, (3.17)

or

liminf
m,n→∞ = P > dl+1

((
a+

2bc
d

)k
cl−k

)−1
ll

(1 + l)1+l
, for l > k, (3.18)

then every solution of (1.1) is oscillatory.
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We can also find that for k ≥ l,

kk

(1 + k)1+k

(2d)k+l+1
[
2ad+ c

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)k+l+2

≤ dk+1

((
a+

2bc
d

)l
bk−l

)−1
kk

(1 + k)1+k
,

(3.19)

and for l > k,

ll

(1 + l)1+l

(2d)k+l+1
[
2ad+ b

(
b+ c+

√
(b+ c)2 + 4ad

)]
(
b+ c+

√
(b+ c)2 + 4ad

)k+l+2

≤ dl+1

((
a+

2bc
d

)k
ck−l

)−1
ll

(1 + l)1+l
.

(3.20)

So in the case a �= 0, there is also a gap between the oscillation condition and the condition
for the existence of positive solutions of (1.1) in Corollary 3.6. Filling this gap is an open
problem.

Example 3.8. Consider the equation

3 f
(
w,wT

)
+ 5 f

(
w,wR

)− 6 f (w,w) +
(
6− e−(m+n))8−4e6−4(m+n) f (w,w− δ)= 0, (3.21)

where δ = (2,2). Here we can find that φm,n = 6− e−(m+n) satisfies (3.2). Therefore, by
Theorem 3.2, (3.21) has a positive solution. In fact, we can construct a solution of (3.21)
by (3.3). Hence, by Lemma 3.1, the partial difference equation

3Am,n+1 + 5Am+1,n− 6Am,n +
(
6− e−(m+n))8−4e6−4(m+n)Am−2,n−2 = 0 (3.22)

has a positive solution.
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