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An original model of toy quantum mechanics that uses hidden variables but does not
violate the well-known Bell theorem is proposed.

1. Introduction

It is used to state that no local theory assuming any kind of evolving-in-time physical field
(hidden variables) can reproduce the same predictions as standard quantum mechanics.
Bell formulated a corresponding theorem in [1]. An advanced variant of the theorem was
proposed in [2]. Feynman, in [3], stated another but analogous idea: not any classical
computational device (even when probabilistic algorithms are used) can exactly repro-
duce evolution of a quantum system.

Here, an original model of a toy quantum particle which does not violate the theo-
rems in [1, 2] but nevertheless has hidden variables is proposed. The reasons of that are
explained at the end of the paper.

2. What is toy particle?

The words “toy particle” and “toy quantum mechanics” mean that the model does not
describe real physical systems but only demonstrates principal possibility to build corre-
sponding theory. It is very important to understand this.

Toy particle represents a single property of real quantum particles: it can make transi-
tion from one registered localized state to another. The field of hidden variables exists in
every point of space, but experiments register only two spatially separated events: radia-
tion of a particle and its fall into registering device.

In other words, the proposed model is qualitative; it is of the same class as the famous
model of coupled vortexes by Maxwell [5]. (That model was the predecessor of Maxwell’s
equations of classical electromagnetic field.)
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3. Evolution of a toy quantum particle

The model uses cellular automata (CA), which are traditional instruments for soft mod-
eling. In the case of one spatial dimension, CA is a line of identical cells. The rule that
governs the change of a cell’s state is local, that is, it takes into account only a few neigh-
bors of a cell.

We assume a one-dimensional CA, the cell states of which belong to the following set:
fi ∈ {“0”; “1”; “e”; “→”; “←”; “<”; “>”}. These symbols mean the following:

(0) no localized particle in the cell;
(1) a localized particle may be in the cell;
(e) a particle expands or diffuses over the space;

(→) a query to the right;
(←) a query to the left;
(>) a refuse to the right;
(<) a refuse to the left.

The change of cells’ states ticks synchronously in CA by tradition (since J. von Neu-
mann’s times). Our CA violates this tradition. Each elementary step of CA evolution con-
sists of a random choice of a pair of neighboring cells, which change their states. The cells
in a pair are not equal: one of them is assumed as leader, while the second is driven. The
leader is randomly selected first, then the driven cell. Such an asynchronous work of CA
cells seems more physically realistic than von Neuman’s scheme.

Full and formal description of the CA transition rules is in [4], but it is better and
easier to understand these rules following the examples of evolution below.

In the beginning, the single particle of our toy world is localized. The CA space looks
like this: . . .0001000. . . . Outer subject forces a transition “1”→ “e”: . . .000e000. Using the
outer subject means only that devices radiating and detecting the particle are macroscopic
unstable systems. Their description is external in principle for microscopic model.

The sign “e” means “expand”—the particle is delocalized and it begins to “diffuse” in
space. Diffusion or expansion sign expands in both sides with average velocity 1/2 site per
time step: . . .00eeee000. . . .

Each space point with “e” sign can be reset, also from outside, to “1,” “e” → “1”:
. . .000eee1eee1ee1eee000. . . .

Thus, a number of different cells, pretending to be the final localization of the particle,
appear in the space. Physically pretender means a particle detector put in the cell.

Just after the pretenders appear in the space, they begin their duel to be the single new
location of the particle. This means that cell detectors begin certain signal exchange. They
send to the left and to the right queries for localization “→” and “←.” This is depicted by
Figure 3.1.

To make this scheme clear, we have to make the next comment.

(1) When two queries from different pretenders, “→” and “←,” collide, one of them
converts to opposite refuse signal, that is, “<” or “>.” The choice of “loser” is
random with probability 1/2. Refuse signal “<”(“>”) expands in the direction
where it shows. While propagating, it erases query signals (and their source, which
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00ee1eeeeee1eee0 0ee 1 eeee 1 ee0 · · ·

00001 10000 00001 < 10000 · · ·

00001 < 10000 · · · 00001< 10000

0000 10000 00000 10000 · · ·

0000000000 10000 · · · 00000000000010000.

Figure 3.1. Toy particle evolution in 2-detector case.

0e1eeeee1eeee1eee0 0 1 eee 1 ee 1 ee0 · · ·

001 1 1 00 001 > 1 < 10000 · · ·

001 < 10000 001< 10000

000 10000 · · · · · · 0001000.

Figure 3.2. Toy particle evolution in 3-detector case.

is cell-pretender or cell-detector) and changes them to opposite queries, that is,
“←” to “→” and vice versa.

(2) When a query signal “→”/“←” reaches “0” in its propagation, it begins to propa-
gate backwards, leaving “0” in front.

(3) It is very important that “→”/“←” and “<”/“>” signals propagate in the single
direction (where the arrow shows) with average velocity 1 cell per time step, while
expansion sign “e” expands in both sides with average velocity 1/2 site per time
step. That is why the collapse of the particle always happens, regardless of how far
“e” sign has expanded.

It is obvious from “odd-even” considerations that the final result of pretenders’ duel
will be exactly a single surviving pretender. The particle is localized again in new point
in general. That is also correct when the initial number of pretenders is greater than 2
(Figure 3.2).

Pay attention that refuse signals “>”/“<” never collide with each other but only
with “←”/“→” or “1.” When refuse signal writes appropriate “←”/“→” over pretender-
loser “1,” the refuse signal disappears.

4. What about Bell’s theorem?

We recall the essence of Bell’s theorem about hidden variables. Experiments are under
analysis when correlated pairs of particles are radiated from one point [2]. For example,
a radiation of two photons in two-cascade decay of excited atom is assumed. Radiated
photons fly in opposite directions. They are registered with simultaneous measurement
of their spins (polarizations).
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Assuming that realistic hidden-variable theories are right, the theorem derives some
inequalities involving frequencies of different types of registered events. Fulfillment of
these inequalities should mean that hidden variables might exist, while the violation of
them means that no hidden variables involved in local dynamics are possible in nature.

In the model described above, we have one rather than two particles, but this does
not influence the essence of the question discussed. In Bell’s theorem experiments, de-
vices that register particles are characterized by two adjustable parameters a and b. If we
deal with photons, these are polarization axes directions for polarizers that stand before
photo-electronic multipliers registering photons.

The central idea of the theorem’s proof (i.e., derivation of correlation inequalities) is
that statistical probability distribution ρ(λ) of hidden variables λ does not depend upon
macroscopic parameters a and b.

In our model query, signals “→”/“←” and refuse signals “<”/“>” constitute what are
referred to as hidden variables, while the cells with “1” are analogs of macroscopic ad-
justable parameters of detecting system. In other words, the presence or absence of a regis-
tering device in the point is by itself a macroscopic adjustable parameter. But it is obvious
from the description above that the statistical distribution ρ(→,←,>,<,x, t) strongly de-
pends on the number and location of detectors put into the space, regardless of when and
how they are established.

So, the type of dynamics of our hidden variables does not principally fall in the re-
gion of Bell’s theorem applicability. Straightforwardly, this means that appropriate ex-
periments showing the violation of Bell’s inequalities say nothing about the model de-
scribed.

5. Discussion

It is interesting to understand the logical source of the mentioned assumption made by
Bell and the authors of [2] about ρ(λ). The matter is in another, deeper physical assump-
tion: “suppose now that a statistical correlation of A(a) and B(b) is due to information
carried by and localized within each particle. . .” [2]. Here, A(a) and B(b) are events of
particles registering by two detectors with the adjustable parameters a and b mentioned
above.

Actually, if we look deeply into this statement, we see that the theorem’s proof is based
on the theorem’s conclusion! Localization of all the information in point-like particles
means by itself the absence of distributed field-like parameters.

What is a particle? We agree that we can “see” only registered particles. Without exper-
imental detecting or measurement, the notion “particle” is a useful abstraction only. We
propose a strict definition: a quantum particle is the event of its registering by a detector,
which is an unstable macroscopic system.

In terms of the proposed model, the act of registering means arising of combination
“010.” Configurations “e1e,” “e10,” “01e,” “← 1→,” “← 1e,” “e1→,” “01→,” “← 10” are not
events of registering. In other words, a particle’s arrival at a point is a compound event—it
consists of arising of “0” on both sides of “1.”

Information duplicating constitutes the core of the model. Incomplete information
about a particle may propagate over the space without being detected or localized. We
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can assume that nature allows only macroscopic (experimental) detection of events when
duplicated information arrives. That is why our hidden variables are truly hidden.

Essential duplicating of information at the moment of detecting can make clear the
notion of superposition of states and the physical sense of wave function in quantum
mechanics. Nonduplicated information about a particle’s presence may be present else-
where in space. The collapse or reduction of wave function in measurement may mean
that the single point in space gets duplicated information while all other points lose any
information.

Here is one more topic to discuss. If we apply our theory to a photon, the propagation
velocity of photon’s signals “→,” “←,” “<,” “>” will turn to be greater than the speed of
light! It is hard to believe but this does not contradict any established facts or theories.
We must recall that relativistic principles confine only the velocity for transfer of macro-
scopically detected information. In terms of our model, it is the duplicated microscopic
information. In other words, hidden variables must not obey principles for detected vari-
ables.
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