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The adaptive adjustment mechanism is applied to the stabilization of an internally cou-
pled map lattice system defined by xi,t+1 = G((1− αi − βi)xi,t + αixi+1,t + βixi−1,t), where
f : R→ R is a nonlinear map, and α and β are nonnegative coupling constants that sat-
isfy the constraint αi +βi < 1, for all x ∈R, i= 1,2, . . . ,n. Sufficient conditions and ranges
of adjustment parameters that guarantee the local stability of a generic steady state have
been provided. Numerical simulations have demonstrated the effectiveness and efficiency
for this mechanism to stabilize the system to a generic unstable steady state or a periodic
orbit.

1. Introduction

The issue of controlling spatiotemporal chaos has attracted more and more attentions
from physicists due to its broad applications in plasma, laser devices, turbulence, and
chemical and biological systems. Recent advances include constant pinnings proposed by
Parekh et al. [6], feedback pinnings by Hu and Qu [2], phase space compression tech-
nique by Xu and Shen [9], the linear control basing on symmetry property by Grigoriev
and Cross [1], delayed-feedback strategies by Parmananda et al. [7], and the adaptive
control proposed by Sinha and Gupte [8]. Due to the presence of numerous more unsta-
ble spatial modes resulting from spatial interactions, the control of spatiotemporal chaos,
leading up to the control of turbulence, turns out to be much more complicated than the
similar practice on a one-dimensional discrete system. However, most methods proposed
so far are system-specific or deficient in providing convincing theoretical foundations.
In [5], the adaptive adjustment mechanism [3, 4] is applied to stabilize a most general
type of externally coupled map lattice system. Simulations conducted have shown that
such a stabilization turns out to be very effective and efficient. Stabilization of an original
unstable coupled map system is usually achieved soon after the adaptive adjustment is
triggered.

In the present paper, the study is extended to a new type of spatiotemporal chaos
model—internally coupled map lattice system. Sufficient conditions and ranges of
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adjustment parameters are provided. Numerical simulations show the effectiveness and
efficiency for this mechanism to stabilize the system to a generic unstable fixed point or a
periodic orbit.

2. Control chaos through adaptive adjustment

Consider an n-dimensional dynamical process defined by

Xt+1 = F
(

Xt
)
, (2.1)

where Xt = (x1t,x2t, . . . ,xnt) and F = ( f1, f2, . . . , fn), with fi being well-defined functions
on a domain in Rn.

Definition 2.1. An adaptive adjustment mechanism is defined by the following adjusted
process:

Xt+1 = F̃Γ = (I−Γ)F
(

Xt
)

+ΓXt, (2.2)

where Γ = diag{γ1,γ2, . . . ,γn} is a diagonal matrix, with γi ≥ 0, for i = 1,2, . . . ,n, and is
referred to as an adaptive parameter matrix.

A simple but effective type of adaptive adjustment is the so-called uniformly adaptive
adjustment defined by

Γ= diag{γ,γ, . . . ,γ} = γIn, (2.3)

where In is an order n identity matrix. That is, all state variables are adjusted with same
speed:

Xt+1 = F̃Γ = (1− γF)
(

Xt
)

+ γXt. (2.4)

Let X̄ be a fixed point of (2.1), that is, X̄= F(X̄). Then the process F̃Γ(Xt) shares exactly
the same set of fixed points of X̄, that is, X̄= F̃Γ(X̄).

Let J(X̄) be the Jacobian matrix of the original process F, evaluated at X̄, with {λ1,
λ2, . . . ,λn} being the n eigenvalues solved from the following characteristic equation:

∣∣λIn−�(X̄)
∣∣=

n∏
j=1

(
λ− λj

)= 0. (2.5)

Denote a pair of complex conjugates λj and λ̄ j by

λj = aj + bj i, λ̄ j = aj − bj i, (2.6)

with the modulus |λj| = |λ̄ j| =
√
a2
j + b2

j . Then an unstable fixed point can be classified
according to the modulus of related eigenvalues as follows.
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Definition 2.2 (classification of unstable fixed points). (i) Type I unstable fixed points:
aj < 1, for all j, that is, the fixed points with all eigenvalues less than unity in real parts.

(ii) Type II unstable fixed points: aj > 1, for all j, that is, the fixed points with all eigen-
values greater than unity in real parts.

(iii) Type III unstable fixed points: ai > 1, aj < 1, for some i and j, that is, the fixed
points with some real parts greater than unity, others less than unity in real parts.

(iv) Type IV unstable fixed points: there exists at least one j such that either aj = 1 or
λj = 1, that is, the fixed points with unity eigenvalues.

Then the following theorem is proved by the author in [4].

Theorem 2.3. For an n-dimensional dynamical process Xt+1 = F(Xt), an unstable fixed
point X̄ can be stabilized through uniformly adaptive adjustment defined by (2.4) if and
only if X̄ is either a type I fixed point (aj < 1 for all j = 1,2, . . . ,n) or a type II fixed point
(aj > 1 for all j = 1,2, . . . ,n).

On the other hand, when an unstable fixed point X̄ is of type III, an implementation
of uniformly adaptive adjustment (2.4) usually leads the adjusted system to a periodic
cycle. If our goal is to stabilize the system to its generic fixed point, then a nonuniformly
adaptive adjustment mechanism defined by (2.2) has to be resorted. The detail discussion
is offered in [4].

3. Internally coupled map lattice systems

Definition 3.1. A nonlinear process F(X)= { f1(X), f2(X), . . . , fn(X)}, with X= (x1,x2, . . . ,
xn), is an internally coupled map lattice if

xi,t+1 = fi
(

Xt
)=G

((
1−αi−βi

)
xi,t +αixi+1,t +βixi−1,t

)
, i= 1,2, . . . ,n, (3.1)

with periodic boundary conditions, whereG : R→R is a nonlinear map and αi ≥ 0, βi ≥ 0
for all i. For convenience, we will refer to G as a coupling map and to αi and βi as coupling
constants.

Definition 3.2. An internally coupled map lattice system defined by (3.1) is said to be
uniformly coupled if αi = α and βi = β for all i= 1,2, . . . ,n.

Definition 3.3. An internally coupled map lattice system defined by (3.1) will be referred
to as backward-coupled system if αi = 0, for all i, and as forward-coupled system if βi = 0,
for all i.

If x̄ is a fixed point of one-dimensional map, that is, G(x̄)= x̄, then ¯X=(x̄, x̄, . . . , x̄) is
also a fixed point of F. For the convenience of reference, we will refer to ¯X=(x̄, x̄, . . . , x̄) as
a generic fixed point of (3.1).

Then we have the following lemma.

Lemma 3.4. A generic fixed point X̄= (x̄, x̄, . . . , x̄) of an internally coupled map lattice system
defined by (3.1) is unstable if x̄ is an unstable fixed point of G.

Moreover, if εi = αi +βi ≤ 1 for all i, then X̄ is stable if and only if x̄ is stable.
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Proof. Denote σ = G′(x̄). The Jacobian matrix of F evaluated at X̄, denoted by � =
[i j]n×n, can be expressed as

�=




(
1−α1−β1

)
σ , α1σ , 0, ··· β1σ

...
. . . ··· ··· ...

··· βiσ ,
(
1−αi−βi

)
σ , αiσ , ···

... ··· ··· . . .
...

αnσ , 0, ··· βnσ ,
(
1−αn−βn

)
σ



. (3.2)

Local stability of the generic fixed point X̄ requires that the largest modulus of eigenvalues
evaluated from the characteristic equation |λIn−�(X̄)| = 0 be less than unity. However,
it can be seen that σ is also an eigenvalue of �. Therefore, if x̄ is an unstable fixed point
of G, then X̄ must be an unstable fixed point of F as well.

On the other hand, a generic fixed point is stable if
∑n

j=1 |i j| < 1, that is,

∣∣(1−αi−βi
)
σ
∣∣+

∣∣αiσ∣∣+
∣∣βiσ∣∣ < 1, (3.3)

for i= 1,2, . . . ,n. When εi = αi +βi ≤ 1 holds for all i, the left-hand side of (3.3) simplifies
to |σ|. Therefore, |σ| < 1 would guarantee the stability of X̄. �

Nevertheless, it deserves to emphasize that even when a generic fixed point X̄ is locally
stable, the convergence of the system to it may not be guaranteed due to the possibility
of coexistence of many more stable fixed points and periodic orbits. This phenomenon is
particularly true when the system size n is large.

Theorem 2.3 ensures that if the generic fixed point X̄ of (3.1) is either of type I or
type II, an implementation of uniformly adaptive adjustment (2.4) should make the fixed
point become local stable (local stability is emphasized in this paper instead of the con-
vergency issue as addressed in [3, 4] for a noncoupled dynamical system. This is because
many unstable fixed points and periodic orbits coexisting in a coupled map lattice system
(especially when the system size n is large) may become local stable if an adaptive adjust-
ment mechanism is implemented. Therefore, whether an adjusted system converges to a
generic fixed point or other periodic orbits depends on the initial states of the system).

Despite the fact that an unstable fixed point of the one-dimensional map G(x) can be
either of type I or type II, an internally coupled lattice system defined by (3.1), however,
does have the possibility of possessing a type III fixed point. Such undesired situations
can be illustrated with a simple example.

Example 3.5. Consider a four-dimensional uniformly forward-coupled lattice system in
the sense that αi = α and βi = 0, for all i. Let σ=G′(x̄). Then the Jacobian matrix evaluated
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Figure 3.1. Distribution of the generic steady state.

at a fixed point given by

�=




(1−α)σ ασ 0 0
0 (1−α)σ ασ 0
0 0 (1−α)σ ασ
ασ 0 0 (1−α)σ


 (3.4)

gives rise to four distinct eigenvalues: λ1 = σ , λ2 = (1− 2α)σ , and λ3,4 = (1−α)σ ± iασ .
If σ < −1, that is, the fixed point x̄ is of type I for the simple one-dimensional map

G, the internally coupled map lattice has at least one characteristic root that is less than
unity (λ1 = σ <−1). However, λ2 = (1− 2α)σ will be greater than unity if

α > α∗(σ)= σ − 1
2σ

, (3.5)

which makes the generic fixed point ¯X=(x̄, x̄, x̄, x̄) a type III one.
Similarly, if σ > 1, that is, the fixed point x̄ is of type II for the simple one-dimensional

map G, then X̄ will be a type III unstable fixed point if α > α∗(σ).

Figure 3.1 illustrates the distributions of types of unstable fixed points.
Thus, it is reasonable to expect that the stabilization of a strongly internally cou-

pled map lattice system requires nonuniformly adaptive adjustment, the success of which
sometimes relies on trial and error. Fortunately, in most practical situations, the map lat-
tice systems are relatively weakly coupled so that a simple uniformly adaptive adjustment
can be implemented. However, in the real applications where the system size n is large,
it is either unrealistic or impossible to verify whether a fixed point of a coupled lattice
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system is of type III or not. Such a consideration leads us to the next section, where some
sufficient conditions will be established so as to provide reliable criteria for practical ap-
plication.

4. Uniformly adaptive adjustment in internally coupled map lattice systems

We start with an implementation of uniformly adaptive adjustment:

Xt+1 = Fγ = (1− γ)F
(

Xt
)

+ γXt, (4.1)

where γ > 0 and F(Xt) is an internally coupled map lattice defined in Definition 3.1. If X̄
is a generic fixed point of F, then X̄ is also a generic fixed point of Fγ.

With the same notations utilized in the last section and letting

εi = αi +βi < 1, for i= 1,2, . . . ,n, (4.2)

we arrive at the following conclusions.

Theorem 4.1. (i) If the inequality 1− (1− εi)σ > εi|σ| holds for all i = 1,2, . . . ,n, there
always exists a Γ− = (γ−,1] such that the local stability of the generic fixed point of (4.1) can
be guaranteed for γ ∈ Γ− under uniformly adaptive adjustment, where

γ− = 1−min
i

{
2

1− σ +
(
σ + |σ|)εi

}
. (4.3)

(ii) If the inequality (1− εi)σ − 1 > εi|σ| holds for all i= 1,2, . . . ,n, there always exists a
Γ+ = [1,γ+) such that the local stability of the generic fixed point of (4.1) can be guaranteed
for γ ∈ Γ+ under uniformly adaptive adjustment, where

γ+ = 1 + min
i

{
2

σ + εi|σ|− σεi− 1

}
. (4.4)

Proof. With an implementation of uniformly adaptive adjustment defined by (4.1), the
Jacobian matrix of F̃, evaluated at X̄ and denoted by J̃ = [̃i j]n×n, is thus given by

J̃ =




J11 (1− γ)α1σ 0 ··· (1− γ)β1σ
...

. . . ··· ··· ...
··· (1− γ)αiσ Jii (1− γ)βiσ ···

... ··· ··· . . .
...

(1− γ)βnσ 0 ··· (1− γ)αnσ Jnn




, (4.5)

where Jii = (1− γ)
(
1−αi−βi

)
σ + γ.

The stability of X̄ can be guaranteed if
∑n

j=1 |̃i j| < 1 holds for all i, that is,

∣∣(1− γ)
(
1−αi−βi

)
σ+γ

∣∣+
∣∣(1− γ)αiσ

∣∣+
∣∣(1− γ)βiσ

∣∣ < 1 (4.6)

for i= 1,2, . . . ,n.
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Figure 4.1. Illustration of existence of ∆−i : (a) δ−i > 1 and ∆−i = [0,1], (b) δ−i < 1 and ∆−i = [0,δ−i ].

At first, consider the case in which the adjustment is restricted to the conventional
range, that is, 0≤ γ < 1. We can define γ = 1− δ, with 1≥ δ ≥ 0.

Let

gi(δ)= 1− εiδ|σ|,
hi(δ)= ∣∣1− δ

[
1− (1− εi)σ]∣∣,

(4.7)

where εi is defined by (4.2).
Condition (4.6) holds for a particular i if there exists a segment ∆−i = (0,δ−i ) ⊂ [0,1]

such that gi(δ) > hi(δ) for δ ∈ ∆−i . As illustrated in Figure 4.1, this is only possible when

(
1− εi

)
σ < 1, (4.8)

1− (1− εi)σ > εi|σ|. (4.9)

However, due to the positiveness of εi, inequality (4.8) is also met whenever (4.9)
is met.

Let δ−i be the solution of gi(δ−i )= hi(δ−i ), that is,

1− εi|σ|δ = δ
[
1− (1− εi)σ]− 1, (4.10)

which yields

δ−i =
2

1− σ +
(
σ + |σ|)εi . (4.11)

Next, we examine the generalized adjustment range, that is, γ > 1. We can similarly
define γ = 1 + δ, with δ ≥ 0.

With gi(δ)= 1− εiδ|σ|, we redefine

hi(δ)= ∣∣1− δ
[(

1− εi
)
σ − 1

]∣∣. (4.12)
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By a similar reasoning, condition (4.6) holds for a particular i if there exists a segment
∆+
i = (1,δ+

i )⊂ [1,∞) such that gi(δ) > hi(δ) for δ ∈ ∆+
i , which is only possible when

(
1− εi

)
σ − 1 > εi|σ|. (4.13)

Let δ+
i be the solution of gi(δ+

i )= hi(δ+
i ). Then it can be verified that

δ+
i =

2
σ + εi|σ|− σεi− 1

. (4.14)

We also notice that the restriction that δ+
i > 0 is guaranteed when condition (4.13) is

satisfied.
Denote γ−i = 1− δ−i and γ+

i = 1 + δ+
i . So long as either one of conditions (4.9) and

(4.13) is met, the local stability of the generic fixed point can be easily guaranteed with
γ > maxi γ−i or γ < mini γ

+
i , respectively. �

5. Uniformly internally coupled map lattice systems

For a uniformly internally coupled map lattice with εi = ε for all i, Theorem 4.1 can be
simplified to the following theorem.

Theorem 5.1. For a uniformly internally coupled map lattice, a set of sufficient conditions
for the local stability of a generic fixed point X̄ with the implementation of uniformly adaptive
adjustment is as follows:

(i) ε < ε∗ = (1/2)((σ − 1)/σ),
(ii) γ > γ∗ = (σ + 1)/(σ − 1).

Remark 5.2. (i) The set of sufficient conditions stated in Theorem 5.1 is independent of
the size n of the coupled map lattice. Moreover, the conditions depend only on the sum
of α and β instead of their individual values.

(ii) As long as the condition ε < ε∗ holds, which is generally true for weak coupling,
the range of adaptive adjustment parameter that guarantees the local stability is indepen-
dent of ε.

(iii) In particular, as depicted in Figure 5.1, stabilization regimes can be classified on a
(σ ,ε)-plane with

(a) original stable regime � formed by |σ| < 1,
(b) regime �+ formed by σ > 1 and ε < ε∗, in which the stability can be guaranteed

for γ∗ > γ > 1,
(c) regime �− formed by σ <−1 and ε < ε∗, in which the stability can be guaranteed

for 1 > γ > γ∗.

The above remarks can be made clearer by noticing the similarity between Figures 3.1
and 5.1.



Weihong Huang 353

−3

−2

−1

1

2

3

σ

S+

Stable regime S

1/2 3/4 1
ε

ε1 ε∗ ε2

S−

Figure 5.1. Stability regimes for xi,t+1 =G((1− ε)xi,t +αxi+1,t +βxi−1,t), where ε = α+β.

6. Numerical simulations

Example 6.1 (internally coupled logistic system). Consider a case of uniformly internally
coupled map lattice system with the most studied logistic equation

G(x)= 4x(1− x) (6.1)

as a coupling map. We simulate a coupled map lattice with a system size n = 100 and
α= β = ε/2;

xi,t+1 = fi
(

Xt
)=G

(
(1− ε)xi,t +

ε
2
xi+1,t +

ε
2
xi−1,t

)

= 4
(

(1− ε)xi,t +
ε
2
xi+1,t +

ε
2
xi−1,t

)(
1− xi,t + εxi,t − ε2xi+1,t − ε2xi−1,t

)

= (2(1− ε)xi,t + ε
(
xi+1,t + xi−1,t

))(
2
(
1− xi,t

)− ε(− 2xi,t + xi+1,t + xi−1,t
))

= 4(1− ε)xi,t
(
1− xi,t

)
+ 2ε

(
1− xi,t

)(
xi+1,t + xi−1,t

)

− 2ε(1− ε)xi,t
(− 2xi,t + xi+1,t + xi−1,t

)− ε2(xi+1,t + xi−1,t
)(− 2xi,t + xi+1,t + xi−1,t

)
,

(6.2)

G(x) has a unique nontrivial fixed point x̄ = 3/4, at which the derivative is given by σ =
G′(x̄)=−2.
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Figure 6.1. Simulations for a weakly coupled map lattice system (ε1 = 1/5	 ε∗): (a) ε = 1/5, γ =
0.35, (b) ε = 1/5, γ = 0.15. The adaptive adjustment is trigged at 101th step. Initial states are given
randomly around 0.3333.
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Figure 6.2. Simulations for a coupled map lattice system at critical coupling value ε∗: (a) ε = 3/4,
γ = 0.35, (b) ε = 3/4, γ = 0.15. The adaptive adjustment is trigged at 101th step. Initial states are
given randomly around 0.3333.

By referring to Figure 5.1, it can be seen that when ε < ε∗ = 3/4, a uniformly adaptive
adjustment with a parameter range γ ∈ [γ∗,1] would stabilize the system to the generic
fixed point given by X̄= (3/4,3/4, . . . ,3/4), where γ∗ = (−2 + 1)/(−2− 1)= 1/3.

Computer simulations for several (ε,γ) combinations are presented in Figures 6.1, 6.2,
and 6.3, where the first 100 iterations are carried out without adaptive adjustments and
the adjustments are implemented after the 100th step.
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Figure 6.3. Simulations for a strongly coupled map lattice system (ε2 = 4/5 > ε∗): (a) ε = 4/5, γ =
0.35, (b) ε = 4/5, γ = 0.15. The adaptive adjustment is trigged at 101th step. Initial states are given
randomly around 0.3333.

The case depicted in Figure 6.1 is assumed with a relatively weak coupling (ε1 = 1/4 <
ε∗). When γ = 0.35, the system converges to the generic fixed point just in a few itera-
tions. When γ = 0.15, significantly smaller than the lower bound γ∗, the trajectory con-
verges to a stable periodic cycle instead.

Figure 6.2 depicts the case in which the system is coupled at the critical boundary
of stabilization regime: ε = 3/4 = ε∗. Nevertheless, the convergence to the generic fixed
point is still achieved for γ = 0.35. Again, the system converges to a stable periodic orbit
for γ = 1/4.

To demonstrate the effectiveness and efficiency, we present a case of a very strong cou-
pling (ε2 = 4/5 > ε∗). Even though this case is beyond the stability regimes guaranteed
in Figure 5.1, an implementation of uniformly adaptive adjustment with γ = 0.35 still
successfully forces the system to converge to a fixed point. The fixed point converged,
however, is not generic. Figure 6.3(a) plots three nearby trajectories: x49,t, x50,t, and x51,t.
Again, when γ = 0.15, a typical trajectory converges to a periodic cycle, which is depicted
in Figure 6.3(b) (this periodic orbit may not be generic in the sense that it is also a peri-
odic orbit of map G. However, the same technique can be applied to stabilize an internally
coupled map lattice to a periodic orbit. Due to the limited scope of this paper, the simu-
lations are omitted upon the request of the editor).

7. Conclusion

We have proved in a theory that a uniformly adaptive adjustment can be utilized to sta-
bilize an internally coupled map lattice system to its generic fixed point and/or periodic
orbits. Simulations conducted by us have shown that such stabilization turns out to be
very effective and efficient. Convergence is usually achieved soon after adaptive adjust-
ment is triggered.
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