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We consider the nonlocal boundary value problem for difference equations (uk −uk−1)/τ
+Auk = ϕk, 1 ≤ k ≤ N , Nτ = 1, and u0 = u[λ/τ] + ϕ, 0 < λ ≤ 1, in an arbitrary Banach
space E with the strongly positive operatorA. The well-posedness of this nonlocal bound-
ary value problem for difference equations in various Banach spaces is studied. In appli-
cations, the stability and coercive stability estimates in Hölder norms for the solutions
of the difference scheme of the mixed-type boundary value problems for the parabolic
equations are obtained. Some results of numerical experiments are given.

1. Introduction

In [6], the coercive stability estimates in Hölder norms for the solution of the nonlocal
boundary value problem

v′(t) +Av(t)= f (t), 0≤ t ≤ 1, v(0)= v(λ) +ϕ, 0 < λ≤ 1, (1.1)

in arbitrary Banach space E with the strongly positive operator A were proved. The exact
Shauder’s estimates in Hölder norms of solution of the boundary value problem on the
range {0≤ t ≤ 1, x ∈ Rn} for 2m-order multidimensional parabolic equations were ob-
tained. In [5], the convergence estimates for the solution of first-order accuracy implicit
Rothe difference scheme

uk −uk−1

τ
+Auk = ϕk, ϕk = f

(
tk
)
, 1≤ k ≤N , Nτ = 1,

u0 = u[λ/τ] +ϕ,
(1.2)

for approximate solution of this boundary value problem were obtained. We are inter-
ested in studying the well-posedness of this difference nonlocal boundary value problem
(1.2) in various Banach spaces.

Applying the method of [9, 11, 14], the well-posedness of difference problem (1.2) in
various Banach spaces is studied. In applications, the stability and coercive stability es-
timates in Hölder norms for the solutions of the difference schemes of the mixed-type
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boundary value problems for the parabolic equations are obtained. Some results of nu-
merical experiments are given. Finally, notice that the well-posedness of differential and
difference equations of the parabolic type has been developed extensively, see, for in-
stance, [4, 10, 12].

2. The estimate of stability

Assume that A is the strongly positive operator, that is, −A is the generator of the an-
alytic semigroup exp{−tA} (t ≥ 0) of the linear bounded operators with exponentially
decreasing norm.

Let Fτ(E) be the linear space of mesh functions ϕτ = {ϕk}N1 with values in the Banach
space E. Next, on Fτ(E) we denote Cτ(E)- and Cατ (E)-Banach spaces with the norms

∥∥ϕτ∥∥Cτ (E) = max
1≤k≤N

∥∥ϕk∥∥E,

∥∥ϕτ∥∥Cατ (E) =
∥∥ϕτ∥∥Cτ (E) + max

1≤k<k+r≤N
∥∥ϕk+r −ϕk

∥∥
E

(kτ)α

(rτ)α
.

(2.1)

The nonlocal boundary value problem (1.2) is said to be stable in Fτ(E) if we have the
inequality

∥∥uτ∥∥Fτ (E) ≤M
[‖ϕ‖E +

∥∥ϕτ∥∥Fτ (E)

]
, (2.2)

where M is independent not only of ϕ, ϕτ but also of τ.

Theorem 2.1. Let τ be a sufficiently small number. Then the boundary value problem (1.2)
is stable in Cτ(E) and Cατ (E).

Proof. The stability of the boundary value problem (1.2) in Cτ(E) was obtained in [5].
The proof of this result is based on the stability in Cτ(E) of the initial value problem for
difference equations

uk −uk−1

τ
+Auk = ϕk, 1≤ k ≤N , Nτ = 1, (2.3)

u0 is given and also the estimate

∥∥u0
∥∥
E ≤M

[‖ϕ‖E +
∥∥ϕτ∥∥Cτ (E)

]
(2.4)

for solutions of the boundary value problem (2.3), when τ is a sufficiently small number.
If τ is a sufficiently small number, then from the last estimate for solutions of the bound-
ary value problem (2.3) it follows that

∥∥u0
∥∥
E ≤M

[‖ϕ‖E +
∥∥ϕτ∥∥Cατ (E)

]
. (2.5)
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Finally, from the last estimate for solutions of the boundary value problem (2.3) and the
stability in Cατ (E) of the initial value problem (2.3), the stability in Cατ (E) of the boundary
value problem (1.2) follows. Theorem 2.1 is proved. �

The nonlocal boundary value problem (1.2) is said to be coercively stable (well posed)
in Fτ(E) if we have the coercive inequality

∥∥∥{τ−1(uk −uk−1
)}N

1

∥∥∥
Fτ (E)

+
∥∥∥{Auk}N1

∥∥∥
Fτ(E)

≤M
[
‖Aϕ‖E +

∥∥ϕτ∥∥Fτ(E)

]
, (2.6)

where M is independent not only of ϕ, ϕτ but also of τ.
Since the nonlocal boundary value problem (1.1) in the space C(E) of continuous

functions defined on [0,1] and with values in E is not well posed for the general positive
operator A and space E, then the well-posedness of the difference boundary value prob-
lem (1.2) in Cτ(E)-norm does not take place uniformly with respect to τ > 0. This means
that the coercive norm

∥∥∥{τ−1(uk −uk−1
)}N

1

∥∥∥
Fτ(E)

+
∥∥∥{Auk}N1

∥∥∥
Fτ(E)

(2.7)

tends to ∞ as τ → 0+. The investigation of the difference problem (1.2) permits us to
establish the order of growth of this norm to∞.

Theorem 2.2. Let τ be a sufficiently small number. Then, for solution of the difference
problem (1.2), obey the almost coercive inequality

∥∥uτ∥∥Kτ (E) ≤M
[

min
{

ln
1
τ

,1 +
∣∣ ln‖A‖E→E

∣∣}]∥∥ϕτ∥∥Cτ (E) +‖Aϕ‖E. (2.8)

Proof. The almost coercive stability

∥∥uτ∥∥Kτ (E) ≤Mmin
{

ln
1
τ

,1 +
∣∣ ln‖A‖E→E

∣∣∥∥ϕτ∥∥Cτ (E) +
∥∥Au0

∥∥
E

}
(2.9)

for the solution of the initial value problem for difference (2.3) was obtained in [14].
Therefore, the proof of Theorem 2.2 is based on the estimate

∥∥Au0
∥∥
E ≤M

[
‖Aϕ‖E + min

{
ln

1
τ

,1 +
∣∣ ln‖A‖E→E

∣∣}∥∥ϕτ∥∥Cτ (E)

]
(2.10)

for the solution of the boundary value problem for difference (1.2), when τ is a sufficiently
small number. From the strong positivity A, it follows that

u0 = T



[λ/τ]∑
j=1

R[λ/τ]− j+1ϕjτ +ϕ


 (2.11)
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for the solution of the boundary value problem for difference (2.3). Here,

T = (I −R[λ/τ])−1
, R= (I + τA)−1. (2.12)

Let τ be a sufficiently small number. Then, using the estimates

∥∥(kτA)αRk
∥∥
E→E ≤M, 0≤ α≤ 1, k ≥ 1, (2.13)

and the identity

T = (I − exp{−λA}−1)(I −R[λ/τ])−1

×
∫ 1

0
(I + τsA)−[λ/τ]−1

((
λ−

[
λ

τ

]
τ
)
A+ λsA2

)
exp

{− λ(1− s)A}ds, (2.14)

we obtain the estimate

‖T‖E→E ≤M. (2.15)

Now, using formula (2.11) and the estimate (2.15), we obtain the estimate

∥∥Au0
∥∥
E ≤ ‖T‖E→E




[λ/τ]∑
j=1

∥∥AR[λ/τ]− j+1
∥∥
E→E

∥∥ϕj∥∥E +‖Aϕ‖E



≤M1


[λ/τ]∑

j=1

∥∥AR[λ/τ]− j+1
∥∥
E→E

∥∥ϕτ∥∥Cτ (E) +‖Aϕ‖E

 .

(2.16)

Finally, using the estimate (see [14])

[λ/τ]∑
j=1

∥∥AR[λ/τ]− j+1
∥∥
E→E ≤Mmin

{
ln

1
τ

,1 +
∣∣ ln‖A‖E→E

∣∣}, (2.17)

we obtain the estimate (2.10). Theorem 2.2 is proved. �

We denote Eα = Eα(A,E) as the fractional spaces consisting of all v ∈ E for which the
following norm is finite:

‖v‖Eα = sup
λ>0

λα
∥∥A(λ+A)−1v

∥∥
E. (2.18)



A. Ashyralyev et al. 277

Theorem 2.3. Let τ be a sufficiently small number. Then the coercivity inequality holds:

∥∥∥∥∥
{
uk −uk−1

τ

}N
1

∥∥∥∥∥
Cτ (Eα)

+
∥∥Auτ∥∥Cτ (Eα) ≤

M

α(1−α)

∥∥ϕτ∥∥Cτ (Eα) +‖Aϕ‖Eα , (2.19)

where M does not depend on ϕ, ϕk, 1≤ k ≤N , α, and τ.

Proof. The proof of this theorem is based on the abstract theorem on the well-posedness
Cτ(Eα) of the initial value difference problem (2.3) of [9] and on the estimate

∥∥Au0
∥∥
Eα
≤ M

α(1−α)

∥∥ϕτ∥∥Cτ (Eα) +‖Aϕ‖Eα (2.20)

for the solution of problem (1.2), when τ is a sufficiently small number. By formula (2.11),

Au0 = T
[λ/τ]∑
j=1

AR[λ/τ]− j+1ϕjτ +TAϕ=Av0 +TAϕ. (2.21)

We estimate the norm of each term. Using the estimate (2.15), we obtain

‖TAϕ‖Eα ≤ ‖T‖E→E‖Aϕ‖Eα ≤M‖Aϕ‖Eα . (2.22)

To estimate Av0 in the norm of Eα, we use the following Cauchy-Riesz representation
formula for the operator A(λ+A)−1R[λ/τ]− j+1 (see, e.g., [11]):

λαA(λ+A)−1AR[λ/τ]− j+1ϕj = 1
2πi

∫
S1∪S2

zλα

(1 + z)[λ/τ]− j+1

τ

λτ + z
A(z− τA)−1ϕj , (2.23)

where S1 = {ρeiψ , 0≤ ρ <∞} and S2 = {ρeiψ , 0≤ ρ <∞}, 0≤ ψ < π/2. We obtain

Av0 = T

2πi

∫
S1∪S2

[λ/τ]∑
j=1

zλα

(1 + z)[λ/τ]− j+1

τ

λτ + z
A(z− τA)−1ϕjτ. (2.24)

Since z = ρeiψ , with |ψ| < π/2, from the strong positivity of A, it follows that

(
z

τ

)α∥∥∥∥∥A
(
z

τ
−A

)−1

ϕj

∥∥∥∥∥
E

≤M
(
ρ

τ

)α∥∥∥∥∥A
(
ρ

τ
+A

)−1

ϕj

∥∥∥∥∥
E

,

1
|λτ + z| ≤

M

λτ + ρ
.

(2.25)
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Hence,

∥∥λαA(λ+A)−1Av0
∥∥
E

≤M‖T‖E→E
∫∞

0

[λ/τ]∑
j=1

ρ1−α(
1 + 2ρcosψ + ρ2

)([λ/τ]− j+1)/2

(τλ)α

λτ + ρ
dρ
∥∥ϕτ∥∥Cτ (Eα).

(2.26)

Summing the geometric progression and using the estimate (2.15), we get

∥∥λαA(λ+A)−1Av0
∥∥
E

≤M1

∫∞
0

ρ1−α(
1 + 2ρcosψ + ρ2

)1/2

[
1− 1(

1 + 2ρcosψ + ρ2
)1/2

]
(τλ)α

λτ + ρ
dρ
∥∥ϕτ∥∥Cτ (Eα)

≤ M1

cosψ

∫∞
0

(τλ)α

ρα(λτ + ρ)
dρ
∥∥ϕτ∥∥Cτ (Eα) ≤

M(ψ)
α(1−α)

∥∥ϕτ∥∥Cτ (Eα).

(2.27)

Finally, using the triangle inequality, the last estimate, and (2.22), we obtain the estimate
(2.20). Theorem 2.3 is proved. �

Theorem 2.4. Let τ be a sufficiently small number. Then the boundary value problem (1.2)
is coercive stable in Cατ (E).

Proof. The proof of this theorem is based on the abstract theorem on the well-posedness
in Cατ (E) of the initial value difference problem (2.3) of [14] and on the estimate

∥∥Au0
∥∥
E ≤

M

α(1−α)

∥∥ϕτ∥∥Cατ (E) +M‖Aϕ‖E (2.28)

for the solution of problem (1.2), when τ is a sufficiently small number. By formula (2.21),
we have

Au0 = Av0 +TAϕ, (2.29)

where

Av0 = T



[λ/τ]∑
j=1

AR[λ/τ]− j+1(ϕj −ϕ[λ/τ]
)
τ


+ϕ[λ/τ]. (2.30)

We estimate the norm of each term. Using the estimate (2.15), we obtain

‖TAϕ‖E ≤ ‖T‖E→E‖Aϕ‖E ≤M‖Aϕ‖E. (2.31)
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Using the estimates (2.13) and (2.15), we obtain

∥∥Av0
∥∥
E ≤ ‖T‖E→E




[λ/τ]∑
j=1

∥∥AR[λ/τ]− j+1
∥∥
E→E

∥∥ϕj −ϕ[κ/τ]
∥∥
Eτ


+

∥∥ϕ[λ/τ]
∥∥
E

≤M



[λ/τ]∑
j=1

τ((
[λ/τ]− j + 1

)
τ
)1−α

( jτ)α
+ 1


∥∥ϕτ∥∥Cατ (E)

≤ M1

α(1−α)

∥∥ϕτ∥∥Cατ (E).

(2.32)

Finally, using the triangle inequality, the last estimate, and (2.30), we obtain the estimate
(2.28). Theorem 2.4 is proved. �

Remark 2.5. By passing to the limit for τ → 0, we obtain the well-posedness of the bound-
ary value problem (1.1) in the spaces of smooth functions.

Remark 2.6. Applying the method of the present paper and of [3], we can obtain similar
results for solutions of the difference scheme of the second-order accuracy

uk −uk−1

τ
+A

(
I +

τA

2

)
uk =

(
I +

τA

2

)
ϕk, ϕk = f

(
tk − τ

2

)
, 1≤ k ≤N ,

u0 =
(
I −

(
λ−

[
λ

τ

]
τ
)
A
)
u[λ/τ] +ϕ+

(
λ−

[
λ

τ

]
τ
)
ϕ[λ/τ],

(2.33)

for approximate solution of problem (1.1).

Remark 2.7. Using this approach, we can obtain the same results for solutions of first-
order accuracy implicit Rothe difference scheme

uk −uk−1

τ
+Auk = ϕk, ϕk = f

(
tk
)
, 1≤ k ≤N , Nτ = 1,

u0 =
p∑
i=1

ciu[λi/τ] +ϕ,
(2.34)

for approximate solutions of the general boundary value problem

v′(t) +Av(t)= f (t), 0≤ t ≤ 1, v(0)=
p∑
i=1

civ
(
λi
)

+ϕ, (2.35)

where 0 < λ1 < λ2 < ··· < λp ≤ 1, if the operator

I −
p∑
i=1

cie
−λiA (2.36)

has a bounded inverse in E.
Finally, we consider the applications of these results to the parabolic equations.
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3. Applications

First, we consider the nonlocal boundary value problem for heat equations

∂u

∂t
− a(x)

∂2u

∂x2
+ δu= f (t,x), 0 < t < 1, 0 < x < 1,

u(0,x)= u(λ,x) +ϕ(x), 0≤ x ≤ 1, 0 < λ≤ 1,

u(t,0)= u(t,1), ux(t,0)= ux(t,1), 0≤ t ≤ 1,

(3.1)

where a(x), f (t,x) are given sufficiently smooth functions, δ = const > 0, and a(x) > 0.
We associate with the nonlocal boundary value problem (3.1) the corresponding dif-

ference problem

1
τ

(
unk −unk−1

)− an 1
h2

(
un+1
k − 2unk +un−1

k

)
+ δunk = ϕnk ,

ϕnk = f
(
tk,xn

)
, an = a(xn), tk = kτ,

xn = nh, 1≤ k ≤N , 1≤ n≤M− 1, Nτ = 1, Mh= 1,

un0 = un[λ/τ] +ϕn, 0≤ n≤M,

unk = uMk , u1
k −u0

k = uMk −uM−1
k , 0≤ k ≤N.

(3.2)

We introduce the Banach spaces Ch, C
β
h of grid functions ϕh(x)= {ϕn}M−1

1 with norms

∥∥ϕh∥∥Ch = max
1≤n≤M−1

∣∣ϕn∣∣,

∥∥ϕh∥∥Cβh = ∥∥ϕh∥∥Ch + max
1≤n<n+r<M

∣∣ϕn+r −ϕn∣∣
(rτ)α

.
(3.3)

It is known (see [7, 8]) that the difference operator

Axhu
x
h =

{− anD2
hu

n + δun
}M−1

1 ,

D2
hu

n = un+1− 2un +un−1

h2
, 1≤ n≤M− 1,

(3.4)

acting on the space of grid functions ϕh(x) = {ϕn}M0 satisfying the conditions ϕ0 = ϕM ,
ϕ1−ϕ0 = ϕM −ϕM−1 is a positive operator. Therefore, we can replace the difference prob-
lem (3.2) by the abstract boundary value problem (1.2). Using the results of [7, 8] and of
Theorems 2.1, 2.2, 2.3, and 2.4, we obtain the following result.
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Theorem 3.1. Let τ be a sufficiently small number. Then, for the solution of the difference
problem (3.2), the following inequalities are valid:

∥∥(uh)τ∥∥
Cατ (C

β
h )
≤M1

[∥∥(ϕh)τ∥∥
Cατ (C

β
h )

+
∥∥ϕh∥∥

C
β
h

]
, 0≤ α < 1, β ≥ 0,∥∥∥∥∥∥

{{
1
τ

(
unk −unk−1

)}M−1

1

}N
1

∥∥∥∥∥∥
Cτ (Ch)

+
∥∥∥∥{{D2

hu
n
k

}M−1
1

}N
1

∥∥∥∥
Cτ (Ch)

≤M1

[
ln

1
τ +h

∥∥(ϕh)τ∥∥Cτ (Ch) +
∥∥∥{D2

hϕ
n
}M−1

1

∥∥∥
Ch

]
,∥∥∥∥∥∥

{{
1
τ

(
unk −unk−1

)}M−1

1

}N
1

∥∥∥∥∥∥
Cτ (C

β
h )

+
∥∥∥∥{{D2

hu
n
k

}M−1
1

}N
1

∥∥∥∥
Cτ (C

β
h )

≤ M1

β(1−β)

[∥∥(ϕh)τ∥∥
Cτ (C

β
h )

+
∥∥∥{D2

hϕ
n
}M−1

1

∥∥∥
C
β
h

]
, 0 < β < 1,

∥∥∥∥∥∥
{{

1
τ

(
unk −unk−1

)}M−1

1

}N
1

∥∥∥∥∥∥
Cατ (C

β
h )

+
∥∥∥∥{{D2

hu
n
k

}M−1
1

}N
1

∥∥∥∥
Cατ (C

β
h )

≤ M1

α(1−α)

[∥∥(ϕh)τ∥∥
Cατ (C

β
h )

+
∥∥∥{D2

hϕ
n
}M−1

1

∥∥∥
C
β
h

]
, 0 < α < 1, β ≥ 0,

(3.5)

where M1 is independent of (ϕh)τ , ϕh, α, and β.

Second, let Ω be the unit open cube in the n-dimensional Euclidean space Rn (0 < xk <
1, 1≤ k ≤ n) with boundary S, Ω=Ω∪ S. In [0,1]×Ω we consider the mixed boundary
value problem for the multidimensional parabolic equation

∂v(t,x)
∂t

−
n∑
r=1

αr(x)
∂2v(t,x)
∂x2

r
+ δv(t,x)= f (t,x),

x = (x1, . . . ,xn
)∈Ω, 0 < t < 1,

v(0,x)= v(λ,x) +ϕ(x), x ∈Ω, 0 < λ≤ 1,

v(t,x)= 0, x ∈ S, 0≤ r ≤ n,

(3.6)

where αr(x) (x ∈Ω) and f (t,x) (t ∈ (0,1), x ∈Ω) are given smooth functions, αr(x) > 0,
and δ > 0 is a sufficiently large number.

We introduce the Banach spaces C
β
01(Ω) (β = (β1, . . . ,βn), x ∈Ω) obtained by comple-

tion of the space of all continuous functions on Ω in the norm

‖ f ‖
C
β
01(Ω)

=‖ f ‖C(Ω) + sup
x∈Ω

∣∣ f (x1,x2, . . . ,xn
)− f

(
x1 +h1, . . . ,xn +hn

)∣∣

×
n∏
k=1

h
−βk
k x

βk
k

(
1− xk −hk

)βk , (3.7)
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where C(Ω) is the space of the all continuous functions defined on Ω, equipped with the
norm

‖ f ‖C(Ω) =max
x∈Ω

∣∣ f (x)
∣∣. (3.8)

It is known (see [14, 15]) that the differential expression

Axu=−
n∑
r=1

αr(x)
∂2u(x)
∂x2

r
+ δu(x) (3.9)

defines a positive operator Ax acting on C
2+β
01 (Ω) and satisfying the condition u= 0 on S.

We define the grid sets

Ωh =
{
x = xj =

(
h1 j1, . . . ,hn jn

)
, j = ( j1, . . . , jn

)
, 0≤ jr ≤Nr , hrNr = 1, r = 1, . . . ,n

}
,

Ωh =Ωh∩Ω, Sh =Ωh∩ S.
(3.10)

We introduce the Banach spaces C(Ωh), C
β
01(Ωh), Lp(Ωh) of grid functions ϕh(x) =

{ϕ(h1 j1, . . . ,hn jn)} defined on Ωh, equipped with the norms

∥∥ϕh∥∥C(Ωh) =max
x∈Ωh

∣∣ϕh(x)
∣∣,

∥∥ϕh∥∥
C
β
01(Ωh)

= ∥∥ϕh∥∥C(Ωh) + sup
x∈Ωh

0<xjr +∆yjr
∆yjr=mjr hr

1≤r≤n,mjr=1,2,...

∣∣ϕ(xj1 , . . . ,xjn
)−ϕ(xj1 +∆yj1 , . . . ,xjn +∆yjn

)∣∣

×
n∏
r=1

(
∆yjr

)−βr xβrjr (1− xjr −∆yjr
)βr (

0 < βr < 1, 1≤ r ≤ n).
(3.11)

We define the difference operator Axh,

Axhϕ
h(x)=

{
−

n∑
r=1

ar
(
xj1 , . . . ,xjn

)
D2
hr
ϕ
(
xj1 , . . . ,xjn

)
+ δϕ

(
xj1 , . . . ,xjn

)}M−1

1

, (3.12)

where

D2
hr
ϕ
(
xj1 , . . . ,xjn

)= 1
h2
r

(
ϕ
(
xj1 , . . . ,xjr−1 ,xjr+1 ,xjr+1 , . . . ,xjn

)
− 2ϕ

(
xj1 , . . . ,xjr−1 ,xjr ,xjr+1 , . . . ,xjn

)
+ϕ
(
xj1 , . . . ,xjr−1 ,xjr−1 ,xjr+1 , . . . ,xjn

))
,

x = (xj1 , . . . ,xjn
)∈Ωh, 1≤ r ≤ n,

(3.13)

which acts on grid functions ϕh(x)= 0, x ∈ Sh.
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The strong positivity of this elliptic difference operator Axh in the C
β
01(Ωh)-, C(Ωh)-,

Lp(Ωh)-norms was established in [1, 2, 14]. Using (1.2), we have the nonlocal difference
problem

1
τ

[
uhk(x)−uhk−1(x)

]
+Axhu

h
k(x)= ϕhk(x),

ϕhk(x)= f
(
tk,x), x ∈Ωh, 1≤ k ≤N ,

uh0(x)= uh[λ/τ](x) +ϕh(x), x ∈Ωh, 0 < λ≤ 1.

(3.14)

The abstract result of this paper and [1, 2, 11, 14, 15] permits us to obtain the following
result.

Theorem 3.2. Let τ be a sufficiently small number. Then, for the solution of the difference
problem (3.14), the following stability inequalities are valid:

∥∥∥{ukh(x)
}N

1

∥∥∥
Cατ (C

β
01(Ωh))

≤M1

[∥∥∥{ϕhk(x)
}N

1

∥∥∥
Cατ (C

β
01(Ωh))

+
∥∥ϕh(x)

∥∥
C
β
01(Ωh)

]
,

0≤ α < 1, β = (β1, . . . ,βn
)
, βr ≥ 0, 1≤ r ≤ n,∥∥∥{ukh(x)

}N
1

∥∥∥
Cατ (Lp(Ωh))

≤M1

[∥∥∥{ϕhk(x)
}N

1

∥∥∥
Cατ (Lp(Ωh))

+
∥∥ϕh(x)

∥∥
Lp(Ωh)

]
,

0≤ α < 1, 1≤ p <∞,∥∥∥∥∥
{

1
τ

(
ukh(x)−ukh−1(x)

)}N
1

∥∥∥∥∥
Cτ (C(Ωh))

+
n∑
r=1

∥∥∥{D2
hr
uhk(x)

}N
1

∥∥∥
Cτ (C(Ωh))

≤M1

[
ln

1
τ + |h|

∥∥∥{ϕkh(x)
}N

1

∥∥∥
Cτ (C(Ωh))

+
n∑
r=1

∥∥{D2
hr
ϕh(x)

}∥∥
C(Ωh)

]
,

|h| = h1 + ···+hn,∥∥∥∥∥
{

1
τ

(
uhk(x)−uhk−1(x)

)}N
1

∥∥∥∥∥
Cατ (C

β
01(Ωh))

+
n∑
r=1

∥∥∥{D2
hr
uhk(x)

}N
1

∥∥∥
Cατ (C

β
01(Ωh))

≤M(α,β)
[∥∥∥{ϕhk(x)

}N
1

∥∥∥
Cατ (C

β
01(Ωh))

+
n∑
r=1

∥∥{D2
hr
ϕh(x)

}∥∥
C
β
01(Ωh)

]
,

0 < α < 1, β = (β1, . . . ,βn
)
, βr > 0, 1≤ r ≤ n,

(3.15)

where M1 is independent of {ϕhk(x)}N1 , ϕh(x), α, β, p, and M(α,β) is independent of
{ϕhk(x)}N1 , ϕh(x).

Third, we consider the boundary value problem on the range {0≤ t ≤ 1, x ∈Rn} for
2m-order multidimensional differential equations of parabolic type:

∂v(t,x)
∂t

+
∑
τ=2m

ar(x)
∂|τ|v(t,x)
∂xτ1

1 ···∂xτnn
+ δv(t,x)= f (t,x), 0≤ t ≤ 1,

v(0,x)= v(λ,x) +ϕ(x), 0 < λ≤ 1, x ∈R
n, |τ| = τ1 + ···+ τn,

(3.16)
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where ar(x), f (t,x) are given sufficiently smooth functions and δ > 0 is a sufficiently large
number. We will assume that the symbol

B(ξ)=
∑

|τ|=2m

ar(x)(iξ)r1 ···(iξ)rn (3.17)

of the differential operator of the form

Bx =
∑

|r=2m|
ar(x)

∂|r|

∂xr1
1 ···∂xrnn

(3.18)

acting on functions defined on the space Rn satisfies the inequalities

0 <M1|ξ|2m ≤ (−1)mB(ξ)≤M2|ξ|2m <∞ (3.19)

for ξ 
= 0.
Problem (3.16) has a unique smooth solution. This allows us to reduce the bound-

ary value problem (3.16) to the boundary value problem (1.1) in Banach space E with
a strongly positive operator Ax = Bx + δI defined by (3.18). We define the grid space R

n
h

(0≤ h≤ h0) as the set of all points of the space Rn whose coordinates are given by

xk =mh
k , mk = 0,±1,±2, . . . , 1≤ k ≤ n. (3.20)

We introduce the spaces C(Rn
h), Lp(Rn

h), Cβ(Rn
h) of all grid functions uh(x), defined by

the norms ∥∥uh∥∥C(Rn
h) = sup

x∈R
n
h

∣∣uh(x)
∣∣,

∥∥uh∥∥Lp(Rn
h) =


 ∑
x∈R

n
h

∣∣uh(x)
∣∣phn




1/p

, 1≤ p <∞,

∥∥uh∥∥Cβ(Rn
h) =

∥∥uh∥∥C(Rn
h) + sup

x,y∈R
n
h

x 
=y

∣∣uh(x)−uh(y)
∣∣

|x− y|β , 0≤ β < 1.

(3.21)

By replacing the differential operator Ax with the difference operator Axh that acts on
the Banach spaces C(Rn

h), Lp(Rn
h), Cβ(Rn

h) and is uniformly strongly positive in h for
0≤ h≤ h0, and using (1.2), we have the nonlocal difference problem

1
τ

[
uhk(x)−uhk−1(x)

]
+Axhu

h
k(x)= ϕhk(x), ϕhk(x)= f

(
tk,x

)
, x ∈R

n
h, 1≤ k ≤N ,

uh0(x)= uh[λ/τ](x) +ϕh(x), x ∈R
n
h, 0 < λ≤ 1.

(3.22)

The abstract result of this paper and of [11, 13] permits us to obtain the stability in
Cατ (Cβ(Rn

h)) (0 ≤ β ≤ 1/2m, 0 ≤ α < 1), Cτ
(
Lp
(
R
n
h

))
(1 ≤ p <∞)-norms, the almost co-

ercive stability in Cτ(C(Rn
h))-norm with the multiplier ln(1/(τ +h)), and the coercive sta-

bility in Cατ (Cβ(Rn
h)) (0 < β < 1/2m, 0 < α < 1)-norm of the nonlocal boundary difference

problem (3.22).
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Table 4.1. The first line is the exact solution, the second line is the solution of Rothe’s difference
scheme, and the third line is the solution of the second-order accuracy difference scheme.

tk\xn 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 0 0 0 0 0

0 −0.0019 −0.0031 −0.0031 −0.0019 0
0 0.0014 0.0023 0.0023 0.0014 0

0.2 0 0.0940 0.1522 0.1522 0.0940 0
0 0.0921 0.1491 0.1491 0.0921 0
0 0.0934 0.1512 0.1512 0.0934 0

0.4 0 0.1411 0.2283 0.2283 0.1411 0
0 0.1392 0.2252 0.2252 0.1392 0
0 0.1408 0.2278 0.2278 0.1408 0

0.6 0 0.1411 0.2283 0.2283 0.1411 0
0 0.1392 0.2252 0.2252 0.1392 0
0 0.1414 0.2278 0.2278 0.1414 0

0.8 0 0.0940 0.1522 0.1522 0.0940 0
0 0.0922 0.1491 0.1491 0.0922 0
0 0.0949 0.1536 0.1536 0.0949 0

1.0 0 0 0 0 0 0
0 −0.0019 −0.0031 −0.0031 −0.0019 0
0 0.0014 0.0023 0.0023 0.0014 0

4. Numerical analysis

We consider the nonlocal boundary value problem

∂u(t,x)
∂t

− ∂2u(t,x)
∂x2

+u(t,x)= [1− 2t+ t(1− t)(π2 + 1
)]

sinπx,

0 < x < 1, 0 < t < 1,

u(0,x)= u(1,x), 0≤ x ≤ 1,

u(t,0)= u(t,1)= 0, 0≤ t ≤ 1

(4.1)

for heat equation. The exact solution is

u(t,x)= t(1− t)sinπx. (4.2)

For approximate solutions of the nonlocal boundary value problem (4.1), we will use
Rothe’s scheme and a second-order accuracy difference scheme with τ = 1/30, h= 1/30.
We have the second-order or fourth-order difference equations with matrix coefficients.
To solve these difference equations, we have applied a procedure of modified Gauss elimi-
nation method for difference equations with matrix coefficients. The exact and numerical
solutions are given in Table 4.1

Thus, the second-order accuracy difference scheme was more accurate compared with
Rothe’s difference scheme.
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