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We review some ideas and concepts on the irreversibility of deterministic dynamical sys-
tems that have been discussed during several years of collaboration with Ilya Prigogine
and B. Misra.

1. Introduction

The irreversibility problem has an outstanding status in science. The strong debates raised
by the dichotomy of the reversible microscopic dynamics and the irreversible macro-
scopic physics have not succeeded to solve definitively the main important conceptual
problems. They are nowadays so open that, according to Uhlenbeck, “even their formu-
lation is often still controversial.” Many physicists believe that there is a generally admitted
solution. We may be persuaded by the opposite if we read the debate between Pierels and
Uhlenbeck [15, page 511].

A definition of “good” nonequilibrium statistical Gibbs ensemble and a dynamical sys-
tem theory of the approach to equilibrium with an entropy increase law are still lacking.
The kinetic theory, even in moderately dense fluids along the Boltzmann-type equation,
faces many open problems [2]. On the other hand, the stochastic models, like the urn
Ehrenfest model, solved by Kac [8], provide best models of the monotonic approach to
equilibrium. They result from phenomenological Chapman-Kolmogorov equation and
Markovian assumption (or more generally, from the property of Markov semigroup of
operators). The Kac ring model [8] illustrates the nature of the probabilistic assumptions
added to deterministic dynamics in order to obtain the Markovian description. Until
now, the “standard” derivations of a time monotonic increase of entropy from the Li-
ouville equation come through Markovian limits assumptions (many references contain
such methods, among them are the books of Résibois and De Leener [11], and Spohn
[14]).

The Gibbs ideas on the approach to equilibrium as a mixing dynamical system gave
new impetus to Ergodic theory. Gibbs promoted a new statistical theory of the approach
to equilibrium in terms of nonstationary ensembles (i.e., probability distributions on the
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phase space Γ of the macroscopic system) which can be summarized as follows. Let St be a
smooth transformation on a manifold Γ (i.e., the Hamiltonian flow on the phase space of
the energy surface) and let µ be an invariant probability measure on the phase space (i.e.,
the equilibrium microcanonical ensemble). Out of equilibrium, the system is described
by a probability measure ν0 = ν which is noninvariant under the flow St and given at time
t by

νt(A)= ν
(
S−tA

)
(1.1)

for any measurable subset A of Γ. Let Ut be the group of operators defined by

Utν(A)= ν
(
S−tA

)
. (1.2)

If ν has square integrable density, then Ut reduces to the Koopman operator on L2(Γ,dµ)
given by

Utρ(x)= ρ
(
S−t(x)

)
, (1.3)

which transforms a probability density into a probability density. The system will ap-
proach equilibrium if for any typical initial noninvariant distribution ν, νt tends to µ as
t →∞. There are many ways to define this convergence. One of them is suitable to the
case of compact phase space and is defined by

∫
Γ
ϕ(x)dνt(x)−→

∫
Γ
ϕ(x)dµ(x) (1.4)

as t→∞, for all continuous functions ϕ on Γ. This is sufficient to our presentation. Ac-
cording to Gibbs, the shape of any subset A will change boldly under the action of the
flow, although conserving a constant volume µ(A), winding as a twisted filament filling Γ
in such a way that its fraction in any subset B will be equal to the fraction of A in Γ:

µ
(
S−tA∩B

)−→ µ(A)µ(B) (1.5)

for t→∞. This mixing property implies the approach to equilibrium for any distributions
ν having a density ρ with respect to µ.

The problem of irreversibility has been raised by Loschmidt and has to be distin-
guished from the problem of the approach to equilibrium. It is formulated in the fol-
lowing terms. The Hamiltonian dynamics admits a time inversion operation (i.e., the
velocity inversion) which is a one-to-one µ-preserving transformation I such that

(i) I2 = 1, that is, I = I−1,
(ii) IStI = (St)−1.

This operation allows the system to go back in time whatever the initial condition is. It
induces a transformation onto the probability distributions ν→Vν defined by

Vν(A)= ν(IA). (1.6)

Definition 1.1. The intrinsic irreversibility of a dynamical system means that there exists
a class C+ of initial distributions that tend to equilibrium for t→ +∞ but not for t→−∞,
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that is, C+ ∩VC+ = φ. Moreover, there exists a monotonically increasing entropy S(νt)
which tends, as t→ +∞, to its maximum, reached only at equilibrium.

The above condition means that the set of all initial distributions that converge to
equilibrium, denoted by D+, is not invariant under the time reversal V , for it includes
the asymmetric subset C+.

The class of the dynamical systems for which this programm can be realized is not
empty. How big is it? This is still an unsolved difficult problem. Here we explain how it
was considered for the Hyperbolic and K-systems.

2. Irreversibility in hyperbolic and K-systems

The Lorentz gas in two dimensions is a system of noninteracting particles moving with
constant velocity and being elastically reflected from periodically distributed scatterers.
The scatterers are supposed to be fixed disks. Each particle of the billiard is described as
follows. Let Q denote the subset of R2 of all disjoint disks; the one particle phase space
is the set of (q,v) ∈ (R2 −Q)× S1 with the Lebesgue measure λQ. A special representa-
tion of the flow (a Poincaré section) is given by the successive colliding arrows, where
a colliding arrow represents the state of the colliding particle on the obstacle, x = (r,θ),
r being the curvilinear abscissa of its impact point on the disk, and θ its impact angle
with the outer normal. Sinaı̆ [12] has shown that the mapping T , which associates to
each colliding arrow x = (r,θ) the next one Tx, is a hyperbolic K-system with respect to
the invariant Lebesgue measure (Gallavotti and Ornstein [6] proved that the system is a
Bernoulli scheme). This implies mixing and the approach to equilibrium. It is possible to
find the intrinsic irreversibility property as resulting from its hyperbolic structure.

We recall some basic definitions on hyperbolic systems.
The uniformly hyperbolic (Anosov) systems have a geometrical structure similar to

the ergodic automorphism of the torus T2 (the famous Arnold “cat map”). Let S be a
smooth transformation on a manifold Γ such that for each point x ∈ Γ, there is a splitting
of the tangent space TxΓ into two linear subspaces Es

x and Eun
x :

TxΓ= Es
x +Eun

x , Es
x +Eun

x =m. (2.1)

Let DxS denote the derivative of S at point x. The above splitting is invariant in the fol-
lowing sense:

Es
Sx =

(
DxS

)
Es
x, Eun

Sx =DxS
(
Es
x

)
. (2.2)

The phase space of a hyperbolic system is decomposed into a family of contracting man-
ifolds Σs(x):

Σs(x)= {y | d(St y,Stx
)≤ cλtd(y,x)

}
. (2.3)

Here St denotes the tth power of S. Dilating manifolds Σun(x) can be defined similarly.
Smooth pieces of these manifolds yield two partitions of Γ denoted by ξc and ξd, respec-
tively. The system is said to be reversible when there is a one-to-one transformation I as
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above. We will consider the case where I maps contracting fibers onto dilating fibers and
conversely.

Ilya Prigogine always believed in the universality of the irreversible processes and in
the fact that their origin is to be found only in some universal properties of the determin-
istic dynamics. In the sixties, Prigogine and his school proposed a general criterion on
the dynamical systems for which an irreversible kinetic equation can be derived from the
Liouville equation of the nonequilibrium probability distributions. This criterion called
“the dissipativity condition” was formulated in terms of the existence of some nonvan-
ishing “collision operator.” This expresses in his spirit the intrinsic irreversibility of these
dynamical systems. With an outstanding group of researchers around him, they went to
propose a general theory of irreversible kinetic equation which is “equivalent” to the Li-
ouville equation. The derivation of this equivalence was so tedious that many physicists
found it too hard to follow. Grécos and others, among them the author, made some con-
tributions to clarify the above condition. In 1978, Misra found a Lyapounov function for
the Liouville equation of theK-systems. Then started the author’s collaboration with him.
The spectral analysis of the time operator in the Baker transform led to surprising results.
Prigogine was very enthusiastic to discover that the “Ergodic theory” which he criticized
in the seventies, as insufficient to explain the irreversible evolution to equilibrium, is able
to illustrate so nicely the above equivalence. In a joint work with him and Misra [10], we
obtained the above equivalence for the baker transformation, which has been extended
successively to all Bernoulli schemes [4] and to all K-systems [7]. The main idea was to
construct a positivity-preserving nonunitary transformation Λ acting on L2(Γ,dµ) which
transforms the probability densities into probability densities and such that

ΛUt =WtΛ (2.4)

for any t ≥ 0, where Wt is a semigroup of Markov operators. This property was called
“intrinsic randomness of the dynamical system.”

In a joint work with Ilya Prigogine, we have shown that the hyperbolic dynamical
systems provide a new model to find the intrinsic irreversibility [3, 5] in terms of insta-
bility. The class C+ of initial distributions that tend to equilibrium for t→ +∞ but not for
t →−∞ are those (singular) probability measures that are concentrated on the dilating
fibers such that their conditional measures on these fibers are absolutely continuous with
respect to the invariant measure µ. Then, the transformation Λ can be defined also for
this class in such a way that the above equivalence holds. The transformed distribution
has a probability density ρ̃t with monotonically increasing entropy

S
(
νt
)=−

∫
ρ̃t(x) log ρ̃t(x)dµ(x). (2.5)

The maximum is only reached at equilibrium.
The discrimination between future-oriented admissible initial distributions (smooth

measures supported by dilating fibers) and their time reversed (smooth measures sup-
ported by the contracting fibers) can be quantified by their entropy content. This entropy
is finite only for the first family. The dynamics acting on these distributions in future will
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converge to equilibrium. Some physical and probabilistic interpretations of the Λ trans-
formation have been discussed in, for example, [1, 9].

We briefly illustrate the exclusion of the singular measures supported by contracting
fibers in the Sinaı̆ billiard. A local dilating fiber passing through a point x = (r,θ) cor-
responds to an ensemble of initial conditions of particles which, after executing an in-
finite number of collisions, will form focusing beam around the trajectory of x. On the
other hand, a local contracting fiber passing through x corresponds to an ensemble of
initial conditions of particles that were in the remote past a focusing beam around x. It
is clear that this dichotomy corresponds to the macroscopically observed time symmetry
breaking.

3. Concluding remarks

The above appealing scheme has two limitations. Although the equivalence theory is pos-
sible for all K-systems, it is not always meaningful as it follows from the fact that an ideal
gas has also a K-system property. Recently, with Kaminski, we introduced a concept of
space-time intrinsic randomness so that it was possible to show that in extended space-
time dynamical systems Zd-actions, K-property is a necessary and sufficient condition
of intrinsic randomness. This leads to a discrimination between the Lorentz gas which
is space-time intrinsically random and the ideal gas which is not. It is to be noted that
the above equivalence is not unique. Recently, Sinaı̆ gave another method to find an H-
theorem in hyperbolic dynamical systems [13]. The second limitation concerns the rather
restricted class of K-systems. K-property is not expected to hold in the more interesting
Hamiltonian systems and in this case, the problems of the approach to equilibrium and
irreversibility are still largely open.

Nevertheless, the many unanswered questions as to applications of the above scheme
deserve more investigations at least in the field of hard spheres which have undergone
during the last decade crucial progress. Until the last period of his life, Ilya Prigogine
continued to believe in the possibility of finding a general semigroup of evolution from
Liouville equation. In my opinion, his support to all efforts in the field of irreversible
processes was very important and he will continue to be for me and for many others our
wonderful teacher.
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