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The Lorentz transformation is extended to the decaying states in a relativistic model of
interacting fields. The nonlocal action is defined beyond the Hilbert space. This shows
that irreversible extensions of dynamics of Poincaré nonintegrable systems are compatible
with relativity.

1. Introduction

The dynamical laws of physics in their conventional formulation are time reversible. The
description of irreversible phenomena was always thought to be incompatible with the
dynamical laws. We have recently discussed [1, 2, 3, 9, 10, 11, 12] the origin of irreversible
behaviour due to resonances in various Poincaré nonintegrable quantum systems. The
analytic extension of the Hamiltonian or Liouvillian in such systems leads to new so-
lutions describing unstable states, which evolve irreversibly. Such states defined in the
wave function space are usually called Gamow vectors [4, 6]. Thus it was shown that the
presence of resonance leads to intrinsic irreversibility of dynamical systems. Therefore,
irreversibility is compatible with dynamics.

The aim of the present paper is to show that the irreversible description is compatible
with relativistic invariance as well. To consider this question clear is very important, in
view of recent publications on this topic, for example, [8].

In order to demonstrate this compatibility, we study the relativistic transformation
of decaying unstable Gamow modes using a relativistic invariant model of two interact-
ing fields introduced in [2]. We suggest that the transformation of the Gamow states is
induced by the Lorentz transformation of field modes which are eigenstates of the four-
dimensional energy momentum of the system. The formal application of the Lorentz
boost to the Gamow state leads to a complex value of the momentum k′ after the trans-
formation [2]. However, we can keep real the transformed momentum if we consider
this transformation at the level of wave packets. Our arguments are based on the fact
that the Gamow state |ΨG(k)〉 with momentum k is obtained as pole contribution from
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the incoming eigenstate of the energy momentum |Ψin(E,k)〉 using analytic continua-
tion to the complex plane of the energy E for fixed momentum k. Wave packets observed
experimentally in scattering experiments are superpositions of the energy-momentum
eigenstates |Ψin(E,k)〉. The analytic extension to the complex energy plane isolates the
contribution of the exponentially decaying Gamow modes to the wave packet. All these
Gamow modes have real momenta. The same wave packets will be seen by some moving
observer as transformed by proper Lorentz boost. The corresponding analytic extension
for the transformed wave packet will isolate other Gamow modes with again real mo-
menta, thus determining the relativistic transformation of the Gamow modes preserving
the reality of the momentum.

We consider this construction as a quite natural one because from our point of view the
Gamow modes are not independent entities but those contributions to the wave packet
that obey purely exponential decay laws.

The novelty of our approach is that the vector (z(k),k) is not a four-vector, because
the Lorentz transformation is not implementable in complex energy-momentum space.
A representation of the Poincaré group including Gamow states can also be found in
[5, 7].

In Section 2, we present the model and the exact solution obtained in [2]. In Section 3,
we introduce decaying Gamow modes. In Section 4, we obtain the Lorentz transforma-
tion of exponentially decaying states. In Section 5, we present our conclusions.

2. Exact results for the model of two interacting fields

In this section, we present the results, which we obtained earlier in [2] for the local scalar
boson field φ(x) interacting with a bilocal scalar boson field ψ(x,q) in four-dimensional
Minkowski space. The four-dimensional vector x ≡ (t,x) has a space component rep-
resented by three-dimensional vector x and a time component t. The metrics of the
Minkowski space is chosen (+,−,−,−) such that in the units where � = c = 1 the scalar
product is defined as

(x,x′)≡ tt′ − (x,x′). (2.1)

The local field is given by

φ(x)=
∫

d3k
(2π)32ω(k)

[
a†(k)ei(ω(k)t−kx) + a(k)e−i(ω(k)t−kx)], (2.2)

where d3k/(2π)32ω(k) is relativistic invariant measure. The energy (frequency) of the
field modes ω(k) is determined by the momentum k and the mass of the particle M
according to the dispersion relation

ω(k)=
√

k2 + M2. (2.3)

The creation and annihilation operators of the field modes a†(k) and a(k) satisfy the
boson commutation relations:

[
a(k),a†(k′)

]= (2π)32ω(k)δ3(k−k′). (2.4)
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The Hamiltonian of the free scalar field is

HM =
∫

d3k
(2π)32ω(k)

ω(k)a†(k)a(k). (2.5)

The bilocal scalar field ψ(x,q) has an additional internal degree of freedom q which
is one dimensional. We consider ψ(x,q) satisfying the property ψ(x,q)= ψ(x,−q). Then
ψ(x,q) is determined by the equation

(
�−M2)ψ(x,q)= 0, M2 ≡ 4m2− ∂2

∂q2
, (2.6)

where � is the usual d’Alemlert operator and the quantum field ψ(x,q) is given by

ψ(x,q)=
∫
d3k

∫∞
E0(k)

dE
cos
(
κ(E,k)q

)
(2π)4κ(E,k)

[
b†(E,k)ei(ω(k)t−kx) + b(E,k)e−i(ω(k)t−kx)].

(2.7)

The dispersion relation for ψ(x,q) reads as

κ(E,k)= (E2−k2− 4m2)1/2
, (2.8)

where m is the mass of the particle ψ. Therefore, the lower boundary of the integral over
the energy E in (2.7) is

E0(k)= (4m2 + k2)1/2
. (2.9)

The annihilation and creation operators of the field modes b†(E,k) and b(E,k) satisfy the
boson commutation relation:

[
b(E,k),b†(E′,k′)

]= (2π)4k(E,k)δ(E−E′)δ3(k−k′). (2.10)

The Hamiltonian of the free bilocal field is

Hm =
∫
d3k

∫∞
E0(k)

dE

(2π)4k(E,k)
Eb†(E,k),b(E,k). (2.11)

The commutation relations (2.4) and (2.10) induce an algebra of the Poincaré group
generators. Free fields φ(x), ψ(x,q) are scalars invariant with respect to the transforma-
tions of the Poincaré group.
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When we introduce interaction, we have to take care that the whole theory keeps this
invariance. The simplest quadratic interaction, satisfying this requirement is (up to the
coupling constant)

V =−
∫
d3x

∫∞
−∞

dqψ(x,q) f (q)φ(x), (2.12)

where f (q) plays the role of the form factor introduced in order to avoid divergences.
This is a scalar function with good asymptotic behavior, which will be specified below.

Then the Hamiltonian is the zero component of the four-momentum [2, 13]

P0 =H =HM +Hm + λV , (2.13)

where

V =
∫
d3k

∫∞
E0(k)

dEα
(
k(E,k)

)
(2π)32ω(k)k(E,k)

(
a†(k) + a(−k)

)(
b†(E,k) + b(E,−k)

)
. (2.14)

The generator of three-dimensional translations is

P=
∫
d3k

∫∞
E0(k)

dE

(2π)4k(E,k)
kb†(E,k)b(E,k) +

∫
d3k

(2π)32ω(k)
ka†(k)a(k). (2.15)

The generators of three-dimensional rotations do not include interaction as usual:

Ji j =−i
∫
d3k

∫∞
E0(k)

dE

(2π)4κ(E,k)
b†(E,k)

(
kj

∂

∂kj
− kj ∂

∂ki

)
b(E,k)

− i
∫

d3k
(2π)32ω(k)

a†(k)
(
kj

∂

∂kj
− kj ∂

∂ki

)
a(k),

(2.16)

where indexes i, j mark coordinates ki, kj of three-dimensional vector k. The Lorentz
boost generators are

J0i = i
∫
d3k

∫∞
E0(k)

dE

(2π)4κ(E,k)
b†(E,k)

(
E
∂

∂kj
+ ki

∂

∂E

)
b(E,k)

+ i
∫

d3k
(2π)32ω(k)

a†(k)
(
ω(k)

∂

∂kj

)
a(k)

+ i
∫
d3k

∫∞
E0(k)

dE

(2π)32ω(k)
λα
(
κ(E,k)

)
κ(E,k)

1
E

(
E
∂

∂kj
+ ki

∂

∂E

)

× [b(E,k) + b†(E,−k)
][
a(−k) + a†(k)

]
.

(2.17)
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As we have shown in [2], when M > 2m, the system becomes Poincaré nonintegrable.
In this case, for E ≥ E0(k), the solution of the eigenvalue problem

[
H ,B†(E,k)

]= EB†(E,k)
[
H ,B(E,k)

]=−EB(E,k) (2.18)

(where [·,·] is a commutator) is given by the creation and annihilation operators
B†in

out
(E,k) and B in

out
(E,k):

B†in
out

(E,k)= b†(E,k) + 2πλα
(
k(E,k)

)
G±(E,k)

×
{∫∞

E0(k)
dE′

λα
(
k(E′,k)

)
k(E′,k)

(
b†(E′,k)
E′ −E∓ i0 −

b(E′,−k)
E′ +E

)

−
(
E+ω(k)

)
a†(k) +

(
E−ω(k)

)
a(−k)

2ω(k)

}
,

(2.19)

B in
out

(E,k)= b(E,k) + 2πλα
(
k(E,k)

)
G∓(E,k)

×
{∫∞

E0(k)
dE′

λα
(
k(E′,k)

)
k(E′,k)

(
b(E′,k)

E′ −E± i0 −
b†(E′,−k)
E′ +E

)

−
(
E+ω(k)

)
a(k) +

(
E−ω(k)

)
a†(−k)

2ω(k)

}
.

(2.20)

The “in” and “out” solutions correspond to the boundary values G±(E,k)= G(E± i0,k)
of the Green function

G(z,k)=
(
ω(k)2− z2−

∫∞
E0(k)

dE′2
2πλ2α2

(
k(E′,k)

)
k(E′,k)

1
E′2− z2

)−1

. (2.21)

In the unstable case, which we discuss here, the Green function G(z,k) is analytic in the z
complex plane except for the cut on the real line: (−∞,−E0(k)]

⋃
[E0(k),+∞). The jump

on the cut is

G+(E,k)−G−(E,k)= i4π
2λ2α2

(
k(E,k)

)
k(E,k)

∣∣G(E,k)
∣∣2

, E > E0(k),

G+(E,k)−G−(E,k)=−i4π
2λ2α2

(
k(E,k)

)
k(E,k)

∣∣G(E,k)
∣∣2

, E <−E0(k),

(2.22)

where |G(E,k)|2 ≡G(E+ i0,k)G(E− i0,k).
The Green function G(E,k) satisfies the dispersion relation

G(E,k)=
∫∞
E0(k)

dE′2
2πλ2α2

(
k(E′,k)

)
k(E′,k)

∣∣G(E′,k)
∣∣2

E′2−E2
(2.23)

which is the Källen-Lehman representation for the propagator [2].
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The operators (2.19), (2.20) satisfy the boson commutation relations

[
B in

out
(E,k),B†in

out
(E′,k′)

]
= (2π)4κ(E,k)δ(E−E′)δ3(k−k′),

[
Bout(E,k),B†in(E′,k′)

]= (2π)4κ(E,k)δ(E−E′)δ3(k−k′)
G+(E,k)
G−(E,k)

,

[
Bin(E,k),B†out(E

′,k′)
]= (2π)4κ(E,k)δ(E−E′)δ3(k−k′)

G−(E,k)
G+(E,k)

.

(2.24)

The generators of the Poincaré group are diagonal in the representation of B†in
out

(E,k),

B in
out

(E,k):

Pµ =
∫∫∞
E0(k)

d3kdE
(2π)4κ(E,k)

kµB
†
in

out
(E,k)B in

out
(E,k), (2.25)

where P0 =H up to a constant, due to operator ordering, k0 = ω(k), and (k1,k2,k3)= k.
Three-dimensional rotations do not involve interaction terms (2.16) and therefore

present no difficulties.
The commutation rules of the new operators with the Lorentz boosts are

[
J0i,B

†
in

out
(E,k)

]
= i
(
E
∂

∂kj
+ ki

∂

∂ki

)
B†in

out
(E,k). (2.26)

In the original representation, the Fock space of states is spanned by the results of the
action of the old operators on the bare vacuum state |0〉 defined as

a(k)|0〉 = b(E,k)|0〉 = 0, ∀E,k. (2.27)

However, due to virtual transitions, this is no more the vacuum state for the whole system
because for the new operators, we have

B in
out

(E,k)|0〉 �= 0. (2.28)

The new relativistic invariant vacuum state |Ω〉 satisfying

B in
out

(E,k)|Ω〉 = 0 (2.29)

has the form

|Ω〉 = C0e
Vvac|0〉, (2.30)
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where C0 is the normalization factor. The transformation operator

Vvac =
∫

d3k
(2π)32

(
ω(k) + ξ(k)

)
×
{∫∞

E0(k)
dE

λα
(
κ(E,k)

)
κ(E,k)

γ(E,k)b†(E,k)a†(−k)− ξ(k)
2ω(k)

a†(k)a†(−k)

+
∫∞
E0(k)

dEdE′
λ2α
(
κ(E,k)

)
α
(
κ(E′,k)

)
κ(E,k)κ(E′,k)

γ(E,k)γ(E′,k)

×
(

1
2

+
ω(k) + ξ(k)
E+E′

)
b†(E,k)b†(E,−k)

}
(2.31)

is determined with the help of the factorization of the Green function [2]

G(E,k)= γ(E,k)γ(−E,k). (2.32)

The problem of the factorization of Green’s functions often arises in theoretical and math-
ematical physics. In our case, as it was shown in [2], this is a well-posed problem provided
by the asymptote of G(E,k),

G(E,k)= 1
ω2(k)−E2

+O
1
E4
. (2.33)

The natural asymptotic condition is imposed on γ(E,k),

γ(E,k)−1 =−E− (ω(k) + 2ξ(k)
)

+O
1
E

, (2.34)

where ξ(k) is a finite λ2 correction to the term of the order O(1) in the variable E. As the
result γ(E,k) has a cut (−∞;−E0(k)] and the following properties [2]:

γ(E,k)−1 +E+ω(k) + 2ξ(k) +
∫∞
E0(k)

dE′
2πλ2α2

(
κ(E′,k)

)
γ(E′,k)

κ(E′,k)(E′ +E)
= 0,

∫∞
E0(k)

dE′
2πλ2α2

(
κ(E′,k)

)
κ(E′,k)

γ(E′,k)= 2ξ(k)
(
ω(k) + ξ(k)

)
,

(
E
∂

∂kj
+ ki

∂

∂ki

)
γ(E,k) + γ(E,k)

∂

∂ki

(
ω(k) + ξ(k)

)= 0,

(2.35)

the new creation operators B in
out

(E,k) acting on the new vacuum state |Ω〉 define new

Fock spaces. The expression for the one-particle state in terms of the old operators may
be obtained if we insert the explicit formulae for B†in(E,k) (2.19) and for |Ω〉 (2.30) and
(2.31) into

∣∣Ψin(E,k)
〉= B†in(E,k)|Ω〉. (2.36)
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Then using the commutation relations (2.4) and (2.10), we eliminate the old annihilation
operators and obtain finally the expression for the one-particle eigenstate of the total
Hamiltonian in the form

∣∣Ψin(E,k)
〉=

{
b†(E,k) +

πλα
(
κ(E,k)

)
ω(k) + ξ(k)

γ(−E− i0,k)

×
[∫∞

E0(k)
dE′

λα
(
κ(E′,k)

)
κ(E′,k)

γ(E′,k)

×
(

1 +
2
(
ω(k) + ξ(k)

)
E′ −E− i0

)
b†(E′,k) + a†(k)

]}
|Ω〉.

(2.37)

Like in the nonrelativistic Friedrichs model [1, 3, 10], the expression for the one-particle
eigenstate of the total Hamiltonian contains the partial resolvent. Its role is now played by
γ(E,k), which has a cut on the positive semiaxes of the energy plane [E(k),∞) and shares
some of possible poles with the Green function G(E,k).

3. Decaying Gamow modes

We first remark that in the stable case when M < 2m, there exist additional solutions
A†(k), A(k) of (2.18) corresponding to the simple pole of γ(−E,k) on the real line out
of the cut. Together with the operators B†in

out
(E,k), B in

out
(E,k), they form a complete set in

the whole space which is related to the original complete set of a†(k), a(k), b†(E,k), and
b(E,k) through the Bogolubov transformation. This transformation establishes one-to-
one correspondence between the two complete sets.

In the unstable case, there is no pole of the Green functionG(z,k) in the physical sheet
of the complex energy plane (the first Riemann sheet in the variable z). Therefore, the
only solutions of (2.18) are B†in

out
(E,k) and B in

out
(E,k) operators. Although the Bogolubov

transformation relating the old and new operators exists as well, in this case, this trans-
formation is no more unitary because there is no one-to-one correspondence between
the old and new operators.

In the unstable case, the Green functionG(E,k) possesses poles in the second Riemann
sheet of the complex plane. We denote by

µ2
c = µ2− iµΓ (3.1)

the pole of G(E,k) as a function of the Lorentz invariant variable E2−k2 which is analyt-
ically continued through the cut from above in the right half-plane. As we will see below,
µc may be considered as the complex mass of the Gamow state corresponding to this pole.

The corresponding poles of G(E,k) as a function of E analytically continued through
the cut from above in the right half-plane and from below in the left half-plane are then
±z(k) such that

z(k)= (k2 +µ2
c

)1/2 = ω̃(k)− iγ(k), (3.2)
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where

ω̃(k)=
{[(

k2 +µ2
)2

+µ2Γ2
]1/2

+
(

k2 +µ2
)

2

}1/2

, (3.3)

γ(k)=
{[(

k2 +µ2
)2

+µ2Γ2
]1/2− (k2 +µ2

)
2

}1/2

= µΓ

2ω̃(k)
. (3.4)

We see that the imaginary part of the pole γ(k), which is responsible for the life time of
the field mode, depends now on the momentum k.

For the weak coupling case, we can obtain from (3.4) and (2.21) the usually supposed
expression

γ(k)= MΓ

2ω(k)
(3.5)

which is valid only approximately up to the λ4 terms.
In the vicinity of the pole z(k), the Green function G+(E,k) has the following be-

haviour:

G+(E,k)= γ+(E,k)γ+(−E,k)= R(k)(
µ2
c −k2

)−E2
+ regular part, (3.6)

where R(k) is the residue ofG(E,k) in the pole. Therefore the solution of the factorization
problem in the vicinity of the pole has the form

γ+(E,k)=−
√
R(k)

E+
(
µ2
c + k2

)1/2 + regular part,

γ+(−E,k)=
√
R(k)

E− (µ2
c + k2

)1/2 + regular part.

(3.7)

Using this fact, we can write (2.37) as

∣∣Ψin(E,k)
〉= 1

E− z(k)

∣∣ΦG(E,k)
〉

+ regular part, (3.8)

where |ΦG(E,k)〉 is the Gamow vector associated with the resonance pole z(k). These
vectors acquire meaning in the extended space where the Gamow kets are considered as
distributions acting on the test functions represented by the bra vectors

〈ψ| =
∫
d3k

∫∞
E0(k)

dE

(2π)4κ(E,k)
ψ(E,k)〈Ω|Bout(E,k). (3.9)

Using commutation relations (2.4) and (2.10), we compute the bracket of (2.37) and
(3.9) as

〈
ψ|Ψin(E,k)

〉= ψ(E,k)
γ+(−E)
γ−(−E)

. (3.10)
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Note that the bra vectors (3.9) are chosen as the wave packets of the bra modes deter-
mined by the operator Bout(E,k) including the function G+(E,k), which may be ana-
lytically continued through the cut from above as it is necessary for calculations of the
pole contribution. As a result, in (3.10) the function γ+(−E) being analytically continued
through the cut to the lower half-plane has a pole at z(k) and the analytic continuation
of γ−(−E) to the lower half-plane has neither singularity nor zero at this point. Then re-
stricting the variety of admissible functions ψ(E,k) to a set of appropriate functions with
good properties, we see that 〈ψ(E,k)|Ψin(E,k)〉 admits a meromorphic extension to the
lower half-plane having a pole at z(k). Extracting the pole contribution from (3.10), we
define

ψ
(
z(k),k

) √
R(k)

γ−
(− z(k),k

) ≡ C(k)
〈
ψ|ΦG(k)

〉
, (3.11)

where |ΦG(k)〉 is the Gamow state and C(k) is the normalization constant. Using the fact
that |Ψin(E,k)〉 is an eigenstate of the total Hamiltonian

P0
∣∣Ψin(E,k)

〉= E∣∣Ψin(E,k)
〉

, (3.12)

we conclude that the Gamow state is also an eigenstate of the total Hamiltonian with the
complex eigenvalue [2, 4, 6]

P0
∣∣ΦG(k)

〉= z(k)
∣∣ΦG(k)

〉
. (3.13)

Then for the time evolution of the Gamow state, we have the expression

e−itP0
∣∣ΦG(k)

〉= e−iz(k)t
∣∣ΦG(k)

〉= e−iω̃(k)te−γ(k)t
∣∣ΦG(k)

〉
, (3.14)

which shows the exponential decay of the Gamow mode.

4. Lorentz transformation of decaying states

We here describe how the Lorentz boosts transform the exponentially decaying states.
Our point of view is based on the fact that in scattering experiments, in the laboratory
frame, one observes the wave packets with real momenta. Therefore the Lorentz trans-
formation of the Gamow state should not change the reality of the momentum. This is,
of course, not so if (z(k),k) is a four-vector. Therefore, we take the point of view that the
Lorentz boosts act only on the wave packets without pointwise implementation, that is,

U(α)
∣∣ΦG〉=U(α)

∣∣ΦG(z(k),k
)〉 �= ∣∣ΦG(U−1(α)

(
z(k),k

))〉
. (4.1)

We will now construct Uα. In order to isolate the exponentially decaying state, one has
to perform an analytic extension to the complex energy plane nearby the maximum on
the real line where we expect to find a resonance. We find in this way the contribution of
the Gamow modes into the wave packet. The same procedure applies for the observers in
moving frames. Observing the same wave packet, they have another curve on the real line
transformed from the one in the laboratory frame by the appropriate Lorentz boost. The



I. Antoniou et al. 45

momentum of this packet is real again. Then by analytic extension in the complex energy
plane, one finds the representation of the transformed wave packet through the Gamow
modes. It is the transformation from the Gamow modes giving major contribution to
the wave packet in the laboratory frame “at rest” to the Gamow modes contributing to
the wave packet in the “moving frame” that we identify as the Lorentz transformation of
exponentially decaying states.

We start with the transformation of the eigenstates of the Hamiltonian. Using the com-
mutation relation of the new operators with the Lorentz boost and the Lorentz invariance
of the vacuum state, we have for the eigenstate of the total Hamiltonian |Ψin(E,k)〉 (2.37)

Jo,i
∣∣Ψin(E,k)

〉= i(E ∂

∂kj
+ ki

∂

∂ki

)∣∣Ψin(E,k)
〉
. (4.2)

Then the Lorentz transformation generated by (4.2) is

U(α)= exp
{
iαiJ0i

}
, (4.3)

where αi is a vector with the components

αi = αni, n2 = 1, i= 1,2,3, (4.4)

that acts on |Ψin(E,k)〉 as

U(α)
∣∣Ψin(E,k)

〉= ∣∣Ψin
(
E′α,k′α

)〉
, (4.5)

where

E′α = Ecoshα− (nk)sinhα,

k′α = k−n
(
(kn)coshα−E sinhα

)
.

(4.6)

Extracting the pole contribution (in the complex E plane) from both parts of (4.2), we
come to the formal expression for the Gamow state

U(α)
∣∣ΦG(k)

〉= ∣∣ΦG(k′α
)〉

, (4.7)

where

k′α = k−n
(
(kn)coshα− z(k)sinhα

)
. (4.8)

This leads to the complex momentum k′α of the transformed state. The complex value
of the momentum is not admissible from the physical point of view. Therefore, this pro-
cedure is not justified. In addition to the strange meaning of the complex momentum,
another natural question arises. In the reference frame in which we have obtained the
Gamow state |ΦG(k)〉 as the pole contribution |Ψin(E,k)〉, the momentum k is real. The
same state from the point of view of any observer moving in this reference frame will have
complex momentum. Why the reference frame in which we obtained the Gamow vector
first is so exceptional?
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We suggest to overcome this difficulty by applying the Lorentz boost not to the Gamow
state but to the original eigenstate of the full energy-momentum four-vector, from which
the Gamow state was obtained. Such transformation of the original state in the Hilbert
space corresponds to the change of the reference frame form the initial one to the refer-
ence frame of the moving observer. In the new reference frame, the state |Ψin(E,k)〉 will
have different energy and momentum due to the Lorentz boost. The energy and momen-
tum of the transformed state |Ψin(E′,k′)〉 are obtained according to (4.6). The Gamow
state |ΦG(k)〉 in the initial reference frame is obtained by analytic continuation in the
variable E and the transformed Gamow state |ΦG(k′)〉, that is, the same state but in the
moving reference frame, is obtained by analytic continuation of |Ψ(E′,k′)〉 in the variable
E′ for the fixed value k′.

This procedure, however, has an ambiguity, because when we analytically continue
|Ψin(E,k)〉, we do not fix E as it is the variable, as we use for the analytic continuation.
But in order to fix k′ after the Lorentz transformation of |Ψin(E,k)〉, we have to know
both E and k in the initial state, which is not the case as we do not fix E.

We avoid this apparent ambiguity using the Gamow wave packets, which we define as
follows. We first form a one-particle wave packet from the energy-momentum eigenstates
in the Hilbert space

| f 〉 =
∫
d3k

∫∞
E0(k)

dE

(2π)4κ(E,k)
f (E,k)

∣∣Ψin(E,k)
〉

, (4.9)

where the function f (E,k) determines the shape of the wave packet. When we describe a
particle with energy E0 and the momentum k0, we consider a wave packet localized in the
momentum representation around the values E0 and k0. It is the function f (E,k) that
determines this localization giving appropriate “weight” to the field modes |Ψin(E,k)〉,
thus “shaping” the wave packet around E0 and k0.

Extracting the pole contribution from the integrand of (4.9), we obtain the Gamow
wave packet

∣∣ f G〉=
∫
d3k

f
(
z(k),k

)
(2π)4κ

(
z(k),k

)∣∣ΦG(k)
〉
. (4.10)

The state of the Gamow wave packet is represented now by complex function f (z(k),k).
However, it still shapes the wave packet around some real values of the momentum kG

0 in
the same way as f (E,k).

After the extraction of the pole contribution

∣∣ f bg〉= | f 〉−∣∣ f G〉, (4.11)

we have the remaining part, which is usually called “background” and can be written as

∣∣ f bg〉=
∫
d3k

∫
Cz(k)

dE

(2π)4κ(E,k)
f (E,k)

∣∣Ψin(E,k)
〉

, (4.12)
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where the contour of the integration runs along the real line from E0(k) above the cut as
in (4.9) but then on the way it goes to the second Riemann sheet below the cut of γ(−E−
i0,k), which is present in |Ψin(E,k)〉. It makes a loop around the pole z(k), returns to the
first sheet, and continues to∞ along the real line above the cut. Although the background
gives negligible contribution to physically relevant expectation values in the exponential
era of the decay, it has to be taken into account in the discussion of the representations of
the Poincaré group.

In order to obtain the Lorentz transformation of the Gamow wave packet, we start, as
we have suggested, with the transformation of the initial wave packet | f 〉 in the Hilbert
space. This replaces E and k in the variables in |Ψin(E,k)〉 in (4.9) by E′, k′, which are
given by (4.6),

U(α)| f 〉 =
∫
d3k

∫∞
E0(k)

dE

(2π)4κ(E,k)
f (E,k)

∣∣Ψin(E′,k′)
〉
. (4.13)

In order to see the shape of the transformed wave packet, we change the variables in (4.13)
by the transformation, which is inverse to (4.6), and obtain

E = E(E′,k′), k= k(E′,k′). (4.14)

Then using the properties of the Lorentz invariant measure in (4.13), we come to

U(α)| f 〉 =
∫
d3k′

∫∞
E0(k′)

dE′
f
(
E(E′,k′),k(E′,k′)

)
(2π)4κ(E′,k′)

∣∣Ψin(E′,k′)
〉
. (4.15)

The shape of the transformed wave packet is determined by the new function f (E(E′,k′),
k(E′,k′)). This function shapes the wave packet around other values E′0 and k′0. Then we
extract the pole contribution from (4.15) and obtain

U(α)
∣∣ f G〉=

∫
d3k′

f
(
E
(
z(k′),k′

)
,k
(
z(k′),k′

))
(2π)4κ

(
z(k′),k′

) ∣∣ΦG(k′)
〉
. (4.16)

This gives the transformed Gamow wave packet, which will be shaped around the other
fixed value kG

0
′
. The remaining part gives the transformed background

U(α)
∣∣ f bg〉=U(α)| f 〉−U(α)

∣∣ f G〉
=
∫
d3k

∫
Cz(k′)

dE′
f
(
E(E′,k′),k(E′,k′)

)
(2π)4κ(E′,k′)

f (E,k)
∣∣Ψin(E′,k′)

〉
.

(4.17)

Thus, we have constructed a new nonpointwise representation of the Poincaré group.
This representation includes exponentially decaying Gamow states. The obtained trans-
formation of the complex Gamow wave packet leads to a new wave packet which is again
a combination of the Gamow states with real momentum.
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5. Conclusion

We have shown that relativistic transformation of the Gamow modes, which obey strictly
exponential decay law, can be introduced in a consistent way with the help of decay-
ing wave packets observed in experiments. This transformation keeps the momentum of
Gamow modes real. Due to the physical requirement of the reality of the momentum,
(z(k),k) cannot be a four-vector.

We know that the existence of Gamow states manifests intrinsic irreversibility of dy-
namical systems [3]. Therefore, by construction of the consistent Lorentz transformation
for Gamow modes as a part of new representation of the Poincaré group, we show the
compatibility of the notion of irreversibility with relativistic theory. Another representa-
tion of the Poincaré group including Gamow states can also be found in [5, 7].
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