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This article extends the slaving principle of synergetics to processes with discrete time
steps. Starting point is a set of nonlinear difference equations which contain multiplica-
tive noise and which refer to multidimensional state vectors. The system depends on a
control parameter. When its value is changed beyond a critical value, an instability of
the solution occurs. The stability analysis allows us to divide the system into stable and
unstable modes. The original equations can be transformed to a set of difference equa-
tions for the unstable and stable modes. The extension of the slaving principle to the
time-discrete case then states that all the stable modes can be explicitly expressed by
the unstable modes or so-called order-parameters.
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1 INTRODUCTION

When we look at the various scientific disciplines,
quite generally speaking we can observe the fol-
lowing main trends:

1. Instead of describing and studying states of a

system, science is more and more interested in
their temporal evolution, or, in other words, in
their dynamics.

2. There is a tendency of an ever increasing
mathematization of disciplines.

3. So-called linear laws must be replaced by non-
linear laws. In most cases the dynamics of sys-
tems has been studied in the frame of
evolution equations that in one way or an-
other were modeled in analogy to basic laws
of physics, which describe the temporal evolu-

tion of the state of a system, for instance of its
electro-magnetic fields. In physics, space, time
and (classical) variables are usually treated as
continuous quantities.

When we treat realistic cases in population dy-
namics, economy, ecology, biology, and many
other fields, the continuous approach to space
and time and to the state variables becomes,
however, questionable, at least in a number of
cases. But even in physics it can become desirable
(or necessary) to look for discrete approaches. In
classical physics we are confronted with discrete
maps when we think of the Poincar6 cross-
section. Let us assume that we can define the
trajectories in a multidimensional space whereby
the trajectories develop in the course of continu-
ous time t. In order to reduce the dimensionality
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of the system, one may introduce a hyperplane.
Then the cross-sections of the trajectories with
that hyperplane can be denoted by xi and a rela-
tionship between subsequent cross-sections xl+l
and x be established. In this way, a continuous
transformation is replaced by a discrete map. In-
stead of deriving the law that connects x+l with

x from the original dynamics, one may establish
such laws also in the form of models. An exam-
ple, where continuous state variables must be re-
placed by discrete ones, is provided by quantum
mechanics. For instance, the continuous states of
planetary orbits have to be replaced by discrete
quantum states in atoms that are labeled by the
quantum numbers n,l,m. Studying this case
further leads to the question in how far processes
can be found in quantum systems that carry
signatures of chaos. Quantum states play a fun-
damental role also in quantum chemistry. In ad-
dition here we are dealing with discrete numbers
of molecules. Modern techniques in chemistry
and biochemistry are concerned with the detec-
tion of single molecules by appropriate statistical
methods of observation. I just refer to Rigler’s
and Eigen’s work. Biology abounds with pro-
cesses that occur in discrete time or space, or are
connected with discrete variables. Just think of
the discrete firing of neurons in the brain, sen-
sory processes, for instance absorption of indivi-
dual photons in the retina, the formation of
discrete cells, or discrete bone sections, such as in
the skeleton. Regional planning abounds with
discrete processes in space and time, for instance
pircellation of land, and so on.

Quite evidently, this list is inexhaustible and
may reach from rather trivial cases to very so-
phisticated problems in which discreteness plays
a fundamental role. Discreteness can give rise to
instabilities that are otherwise not present, as is,
for instance, well known from the numerical so-
lution of partial differential equations. Thus,
there is certainly a big demand for the develop-
ment of concepts and mathematical methods that
deal with discrete systems. The discreteness may
be in space, where space is not distributed con-

tinuously but divided into individual cells. A ty-
pical example of this approach is the cellular
automaton. The dynamics need not proceed in
continuous time, for instance observations may
be done at discrete time, or the discreteness of
time is inherent in the system. Finally the vari-
ables describing a system may be discrete.
While in earlier times it has been quite often

believed that the transition from a discrete de-
scription in either of these cases to a continuous
description does not lead to qualitative differ-
ences, it is now well established that quite deci-
sive differences in the behavior of a system may
occur. The probably most famous example of
this kind is the logistic equation, whose solutions
show a very rich chaotic behavior depending on
a single parameter value [1], whereas the corre-
sponding continuous case shows just one kind of
simple solution. There is still another more for-
mal reason for studying discrete systems, namely
the use of digital computers. Here both time and
the state variables must be described as discrete
variables. The question arises whether we can re-
formulate hitherto known concepts and mathe-
matical approaches so to cope with discrete
variables or whether entirely new methods will be
needed. This is quite obviously a vast field to be
explored. In my paper I want to address the
question of how the slaving principle of syner-
getics [2] can be transferred from the continuous
to the discrete time case.

In view of the tremendous number of different
systems including model systems in the different
scientific disciplines and the great variety of phe-
nomena they show, it might seem to be an idle
question whether there are general basic laws or
features underlying the behavior of such systems.
We are here mainly thinking of the so-called
complex systems that are composed of many in-
dividual parts. Over the past decades, it has be-
come more and more transparent that in spite of
the diversity of such systems a number of general
principles and laws can be found provided we
focus our attention on situations in which the
system’s behavior changes qualitatively on a
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macroscopic scale. As was shown in the continu-
ous time case [2], in situations, where the macro-
scopic qualitative behavior of a system changes,
the dynamics of the system is governed by few
variables, the so-called order parameters. Once
these variables are identified, one may deduce the
behavior of the individual parts of a system via
the slaving principle, which has a number of spe-
cial cases, such as the center manifold theorem.
The resulting order parameter equations can be
grouped into classes each of which shows typical
behavior. An example for such a class is the
Ginzburg-Landau equation, other classes can be
identified by suitable generalizations of these
equations. Another example is provided by the
nonlinear Schr6dinger equation. It is by now well
known that quite different systems in a variety of
disciplines obey again and again the same kind
of nonlinear equations. In this way one can draw
conclusions from one field to another one. As was

pointed out by Mikhailov [3], synergetics can be
considered as a bag of model equations that can
be applied to a variety of fields. Thus the
strength of the synergetic approach consists in
drawing analogies between quite different com-

plex systems so that we get more and more ac-
quainted with the behavior of such systems
irrespective of their material nature. The question
arises, of course, whether the research strategy of
synergetics can be transferred to the case of dis-
crete dynamics. Equations that describe the evo-
lution of a system with discrete time steps
are quite often also called maps. The study of
such maps has become a modern most lively
branch of mathematics but also of other disci-
plines.

In the following I wish to give an explicit ex-
ample of how the slaving principle can be trans-
ferred to discrete noisy maps, i.e. the discrete
time evolution. Thus this example may indicate
how research on discrete processes may occur in
the future. But to be sure, here we are standing
at the beginning of an enormously wide field of
research which will provide us with many surpris-
ing results.

2 DISCRETE NOISY MAPS

Let us consider a dynamical system described by
a state vector ql, which is defined at a discrete
and equidistant time sequence 1. Actually the re-

quirement of equidistancy is not necessary; we

just have to relabel the time sequence by tl. The
evolution of the system from one discrete time
to the next + is described by an equation of
the geneal form

qt+l f(qt, 1) + G(q, 1). (1)

Here f and G are nonlinear functions ofq and may
depend on the index explicitly. The first part on the
r.h.s, of (1) describes a deterministic process, while
the second part of the right-hand side describes
random events. In the second part 7 is a random
vector, whose probability distribution may-but
need not- depend on the index l. The first steps of
our analysis are entirely analogous to those in the
case where time proceeds continuously. We assume
that for a control parameter a0 a solution- that is
time-independent- is known

ao:q. (2)

Without loss of generality, we may assume

qO =0. (3)

In order to check the stability of the solution (2),
(3), when the control parameter value is changed
to a new one, a, we keep only the linear terms of
Eq. (1) and neglect the fluctuating part

ql+l Lqz. (4)

Making the hypothesis

qt= Vt, (5)

where V is a matrix, we can cast (4) into the form

l+1 -/, (6)

with

L- V-ILV. (7)
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We can choose V in such a way that/, is brought
into Jordan’s normal form. Depending on the size
of the eigenvalues of [,,

[A] _> 1, (8)

This equation can be solved by

Sl+ (1 + As dm)’-mdP(um, Um-1,..., m),

(13)

[A < 1, (9)

we may distinguish between unstable modes u and
stable modes s, respectively. In terms of these new
mode amplitudes, the original equations (1) can be
cast into the form

and

ul+l ut Auuldl + dQ(u, s, l)

st+ st Asdl + dP(u, s, 1).

(10)

We assume As in Jordan’s normal form with
negative diagonal elements. For simplicity, we also
assume that Au is diagonal and of smallness 6, but
the procedure can easily be extended to a more

general Au.
Note that dQ, dP may contain u and s also at

retarded times u, so that they are functions of
ut, ut-1... From our result it will transpire that
we can also allow for a dependence of dQ and
dP on future times, i.e., for instance, on Ut+l.
Our purpose is to devise a procedure by which
we can express s in a unique and well-defined
fashion by u and alone. Let us therefore assume
that such a replacement can be made. This allows
us to establish a number of formal relations used
later on.

as can be checked by inserting (13) into (12). As
transpires from (13), st+l is represented by a sum
that contains Um,... at all former times. On the
other hand, in the case of continuous time, the
slaving principle allows one to express s as a
function of u at the same time. Therefore we seek
a formalism that allows us to express st+l by as
little past time steps of u as possible. In order to
achieve this goal we first establish several formal
relations. We introduce the abbreviation

A_SI+I S/+l Sl (14)

by which we can express st by means of

st-- (1 A_)St+l. (15)

This allows us to write (12) in the form

(A_ A dl(1 A_))S/+l dP(ut, l). (16)

The reader is reminded that dP may be a function
of u at various time indices l, 1- 1,

dP(ut, 1) dP(ut, U/-1, ,/). (17)

The formal solution of (16) reads

S/+ (A_(1 + Ad/) Asd/)- dP(ut,/). (18)

3 SOME FORMAL RELATIONS

in a first step of our analysis we shall assume
that s can be expressed by a function of u and
alone. This allows us to consider dP in (11) as a
function of u and alone

S/+l Sl Asst dl + dP(ut, ut-, ,1). (12)

A comparison of this solution with the former
solution (13) yields

(A_(1 + Ad/) A d/)-ldP(ut,/)

Z (1 + As dm)l-mdV(um, m). (19)
m=-o

In the following we wish to evaluate the 1.h.s. of
(19) in a way that in the continuous time case
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would correspond to a partial integration and thus
allows us to reduce the recurrency operation. We
now introduce the decomposition

A_ A(1) + A(u) T (I) (20)

where m (l)_ A (u)_ T(l)_ operate as follows:

(21)

A(_U)f(ut, 1) f(ut, l) f(ut-1,1), (22)

T(_l)f(til, l) =f(u,, l- 1). (23)

Using some little algebra, one readily estab-
lishes the following identity:

{A_(1 + asdl) A, dl}-’
{A)(1 + Asdl) Asdl}-1

{A_(1 + A, dl)- Asdl}-. [...], (24)

where the square bracket represents an abbrevia-
tion defined by

[-..1 =(1 + Asd/) x A()T(J)

x {A(J)(1 + Asdl) Asdl}-’. (25)

Z (1 +Asdm)l+l-m

m-1

X (1 / A dm)m-l-m’{.. "}m,m’, (27)

where the brace is defined by

{’" "}m, m’ A-h(tim, Iim-1, .)dg(m’). (28)

The essence of (27) can be expressed as follows.
While 1.h.s. contains u at all previous times, the first
term on r.h.s, contains u only at those earlier times
which are initially present in h(ul, u1-1,...). Thus,
instead ofan infinite regression we have only a finite
regression. From a comparison of (24) with (27) we
may derive the following definition:

[A(t)(1 + As d/) As d/]-I dP(u,, u,-l,..., l)

Z (1 + As dm)‘-m dP(u/, u/-1,..., m), (29)

where on r.h.s., uz, Ill_l, etc., are kept fixed and the
summation runs only over m. Eq. (24) with (25) may
be iterated, giving

Because of (19), we may expect that the curly
brackets in (25) possess an analog to the explicit
form of r.h.s, of (19). This is indeed the case.

Let us assume for the moment that we may
decompose dP into a sum of expressions of the
form

h(llm, llm_l, ...)dg(m), (26)

{A_(1 + Asdl) Asdl}-’
{A(_)(1 + A, dl) Asdl}-1. (...),

where the parentheses on r.h.s, are given by

(30)

where h is a function of the variables u alone, but
does not depend explicitly on m, whereas dg is a
vector which depends on m alone. It is then simple
to verify the following relation:

(1 + As dm)l-mh(llm, Ilm-1, ...)dg(m)
m----oo

h(u,, Ul-1, ...) (1 / As dm)l-m dg(m)
m=-oo

and these square brackets are defined in (25).
As already noted, in practical cases one does

not extend the summation to infinity because it is
known from a number of applications that few
terms suffice. Furthermore, the convergence of
the whole series (31) need not hold so that we
are dealing here with semiconvergent series.
Therefore it is important to give an estimate for
the size of the rest term, provided we take only a
finite sum. The rest term for r.h.s, of (30) can be
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derived from the formula The r.h.s, may be written in the form

u=n+ u=0

{...}-1(1 [...])-1 [...]n+l.
(32)

While the operator containing A(j) is defined
by (29), we have still to explain in more detail
how to evaluate the operator A(_u). It has the
following properties:

(1) It acts only on u,ut_,

(2) For any function f of ut it is defined
by (21)

A(u)f(ill) f(u/) f(u/-1 ). (33)

Iff contains variables at several "times", we may
write

A(_U)f({Ul}) --f({u/}) --f({u/-1 }), (34)

where

{ill} --(Ill, Ill-l, ") (35)

denotes the set of variables containing different
indices 1.

(3) For the product of the functions u and co

we readily obtain

A/_"/ (.({.,})w({.,))))

})m(__U)w({U/})
(36)

In the following we shall assume that the functions

f can be considered as polynomials.
(4) In order to treat (34) still more explicitly,

we use (35) and the following rules:

A(--U)u? u? u?-I (/l+b’2--n- lti71u72-1) A-ul"
(37)

(38)

where the factor and parentheses can be consid-
ered as a symmetrized derivative, which is identi-
cal with the parentheses in (37).

(5) From relations (37), (38), we readily derive
for an arbitrary function off(u) alone

A(_U)f(ut) q50f.(u,) .A(_U)u, (39)Ou

or, more generally,

l=1’

u,,)
v=O

(40)

We may now replace A_ul,+ according to (10) by

A(_U)uz,+, Au d/ut,+ + dq(..., l’ + u 1), (41)

where we abbreviate the r.h.s, by

dO(..., l’+ u). (42)

This gives (40) in its final form

A(_u)f(u/,..., u/,)
1=l’

Zg(u,,..., u,,_)dQ(..., l’ + u).
’:0

(43)

For sake of completeness, we derive a formula
for

A(u) Z x o (44)tim+x+ blm+ 1,

uo+...+Vx=n

which, according to the definition (33), can be
written as

tirn+x+l tim+l tim+x
uo+...+ux=n

(45)
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It can be rearranged to

Um+x "rn+x-1 "Urn (Um+x+l Urn (46)

where the parentheses can be written in the form. u0-1-A A(Um+x+ Um)Um+x+ Um (47)

We therefore find for (44)

ux+ UO (Um+x+ Um)m+x+l "’’Um (48)

where we may write

dFi(u, s, 1) Mi(Ul, Ul-1,... ,Sl, Sl-1, ...)dFo(l),
i--u,s. (52)

We assume that Au in (10) is of the order 5 and that
the functions occurring in (51), can be expressed as

polynomials of u and s with /-dependent coeffi-
cients. The coefficients are either continuous thnc-
tions (contained in Q0 and P0) or quantities
describing a Wiener process [in dF0(/)]. We
assume that the constant terms which are indepen-
dent of u and s are of smallness 52, the coefficients
of the linear terms of smallness 6, while u and s are
of order &fi2, respectively. In order to devise an
iteration procedure, we represent s in the form

(Um+x+l Um) Um+x+l Um+x Um+x
.-.1- Urn+ Um

m-Um+l+u" (49)

The sum in (48) in front of the parentheses can
again be considered as the symmetrized derivative,
while the parentheses in (48) can be expressed by
individual differences Uk+l --uk.

s(u, l) Z C () (u, l), (53)
k=2

where C() is a term which contains expressions of
precisely order k

C(k) c 5k. (54)

Similarly, we introduce the decompositions

THE ITERATION PROCEDURE FOR
THE DISCRETE CASE

Taking all the above formulas together we obtain
again a well-defined procedure for calculating s
as a function of u and l, provided dP is prescrib-
ed as a function of u and alone, in practice,
however, dP depends on s. Therefore we must
devise a procedure by which we may express s by
u and stepwise by an inductive process.
To this end we introduce a smallness para-

meter 5. In general dQ and dP contain a nonsto-
chastic and a stochastic part according to

dQ Q0(u, s,/)d/+ dFu(u, s,/),

dP P0(u, s, 1)dl / dF,(u, s, 1),

(50)

(51)

and

dQ ZdQ() (55)
k=2

dP Z dp(k)"
k=2

We now proceed in two steps. We apply (30) with

(31) and (25) on dP, but on both sides we take only
the term of the order 6.

_(k-k’)Starting from (43), we define g. as a func-
tion which is precisely of order (k-k’ and d0(k’)

as a function being precisely of order k’. We put

x (..., l’+ u), (57)

where for the stochastic part the following decom-
position is assumed:

which is obviously of order 5k. After these pre-
parations the final formula for C(k) is given by
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together with

[" "]kg --(1 -4- As dm)A(u)(k’) T(J

{Aft)(1 + Asd/) A2 d/}-’.

(58)

(59)

retarded time steps. For most practical applica-
tions it is sufficient to limit the sum over k to the
first leading terms. Because of the central role the
slaving principle plays in the continuous time case
we may expect a similar range of applications in
the discrete time case. The next steps may consist
in the discussion of normal forms or of typical
cases of discrete maps of few variables.

We are now in a position to formulate the slaving
principle for discrete (noisy) maps. According to
this principle, we can express s by the sum (53),
where the individual terms of order k are
explicitly given by (58) and (59). Note in particular
that this result involves nl only at afinite number of

References
[1] S. Grossmann and S. Thomae (1977). Z. Naturforschung

32A, 1353.
[2] H. Haken (1987). Advanced Synergetics, 2nd ed., Springer,

Berlin.
[3]A.S. Mikhailov (1990). Foundations of Synergetics I,

Springer, Berlin.


