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Abstract. Three approaches in obtaining the closed-form solution of the Vasicek bond
pricing problem are discussed in this exposition. A derivation based solely on the distri-
bution of the short rate process is reviewed. Solving the bond price partial differential
equation (PDE) is another method. In this paper, this PDE is derived via a martingale
approach and the bond price is determined by integrating ordinary differential equations.
The bond pricing problem is further considered within the Heath-Jarrow-Morton (HJM)
framework in which the analytic solution follows directly from the short rate dynamics
under the forward measure.
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1. Introduction

Vasicek’s pioneering work (1977) is the first account of a bond pricing model
that incorporates stochastic interest rate. The short rate dynamics is mod-
eled as a diffusion process with constant parameters. When the bond price
is based on this assumption, it has the feature that on a given date, the
ratio of expected excess return per unit of volatility (the market price of
risk) is the same, regardless of bond’s maturity. Vasicek’s model is a spe-
cial version of Ornstein-Uhlenbeck (O-U) process, with constant volatility.
This implies that the short rate is both Gaussian and Markovian. The
model also exhibits mean-reversion and is therefore able to capture mon-
etary authority’s behavior of setting target rates. Furthermore, historical
experience of interest rates justifies the O-U specification.

Given the pedagogical value of the Vasicek model in stochastic term struc-
ture modeling, the purpose of this paper is to present alternative derivation
of the bond price solution. From the bond price the entire yield curve can
be constructed at any given time. Thus, in turn, the term structure dy-
namics is characterized by the evolution of the short rate.
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Vasicek model’s tractability property in bond pricing and the model’s
interesting stochastic characteristics make this classical model quite pop-
ular. In this paper a review of short rate’s stochastic properties relevant
to the derivation of the closed-form solution of the bond price within the
Vasicek framework is presented. These properties become the basis for the
first method examined in section 2. Under this technique, the bond price is
derived from the implications of the interest rate’s probability distribution.
The development of the theory under this set-up follows from the outline
of Lamberton and Lapeyre (1995).

The orginal derivation of the explicit formula for the bond price was
based on solving the PDE that must be satisfied by the bond price. This is
done by constructing a locally riskless portfolio and using the no-arbitrage
arguments. Duffie and Kan (1996) provide a further characterization of
this PDE. They prove that, if some Ricatti equations have solutions to the
required maturity, the bond price has an exponential affine form. Vasicek’s
model belongs to this exponential affine class because the specification of
its drift and volatility gives rise to a solvable set of equations in accordance
with the Duffie-Kan descriptions. The second approach discussed in sec-
tion 3 relies on the solution of the bond price PDE. However, unlike the
traditional approach, this paper presents a martingale-oriented derivation
of this PDE. This is motivated by the equivalence of the no-arbitrage pric-
ing technique and the risk-neutral valuation which is a martingale-based
method. Recently, Elliott and Van der Hoek (2001) offer a new method
of solving the problem studied by Duffie and Kan. In their paper, it is
shown that, when the short rate process is given by Gaussian dynamics
or square root processes, the bond price is an exponential affine function.
Their technique determines the bond price by integrating linear ODE and
Ricatti equations are not needed. A similar idea is applied here to provide
a solution to the bond pricing problem in the Vasicek model.

Section 4 presents a third alternative that considers the Heath-Jarrow-
Morton (HJM) pricing paradigm. The equivalence between the forward
rate and the conditional expectation of the short rate under the forward
measure is discussed. Elaborating on the work of Geman, El Karoui and
Rochet (1995) using the bond price as a numéraire, the short rate’s dy-
namics is obtained under the forward measure. Consequently, the Vasicek
forward rate dynamics is explicitly determined and therefore the analytic
bond price follows immediately from the HJM bond pricing formula.
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2. Bond Price Implied by the Short Rate Distribution

In modeling the uncertainty of interest rates, assume that there is an un-
derlying probability space (92, F, P) equipped with a standard filtration
{F:}. Under the risk-neutral measure P, the short rate dynamics is given
by

d’l"t = a(b*Tt)dt*FO'th (1)

where a, b and o are all positive constants.
It can be verified using It6’s formula that

t t
rp=e [ro + / abe® du + 0/ ea"qu}
0 0

is a solution to the stochastic differential equation (SDE) in (1). Note
further that

¢
re = e ™ [ro +b(e™ —1) +/ ae‘“‘qu]
0

¢
= Nt‘FU/ e =D aw,,
0

where p; is a deterministic function. Clearly, E[r:] = u;.
Observe further that r; is a Gaussian random variable. This follows from

the definition of the stochastic integral term, which is \HIEO Z?:_ol e(ui—t) (W —
W.,) and the increment (Wy,,, — Wy,) ~ N(0,u;11 — u;). In general, if 6
is deterministic (i.e., a function only of ¢), fg §(u)dW,, is Gaussian.

While the expectation follows immediately from the solution for r; given
above, E[r¢] can be determined without necessarily solving explicitly the

SDE. Consider the integral form of (1). That is,

t
re =10+ / (a(b —ry)du + odWy,).
0

Hence,
t
pei= Bl =ro+ [ oo~ Elru])du. 2)
0
From (2),
L 11y = alb— )
dtlLLt =a st ),

which is a linear ordinary differential equation (ODE). Consequently, using
the integrating factor e

Elr = e "[ro +b(e™ = 1)] = p. (3)
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In this model, b is some kind of level r is trying to attain. We call this
the mean-reverting level. Similarly, define

o?: = Var[r]] = E [(06‘“‘ /Ot e““qu)2>]

t
= gl 2E [/ e2‘wdu} by Itd’s isometry
0

- (1‘2) | (4)

Therefore, r; ~ N(u,0?) with mean and variance given in (3) and (4),
respectively.

Since normal random variables can become negative with positive prob-
ability, this is considered to be the weakness of the Vasicek model. Never-
theless, the simplicity and tractability of the model validate its discussion.

Using the risk-neutral valuation framework, the price of a zero-coupon
bond with maturity T at time ¢ is

ft] |

T
erp (—/ rudu>
t

X(u) =7, —b. (5)

B(t,T)=E

Write

Here, X (u) is the solution of the Ornstein-Uhlenbeck equation
dX(t) = —aX(t) + odW; (6)

with X (0) = r¢o — b. Applying It6’s lemma, the X (u) process is given by

X(u) =e ™ (X(O) + /O ' ae‘”dWs> . (7)

Clearly, X (u) is a Gaussian process with continuous sample paths. If
X (u) is Gaussian then fot X (u)du is also Gaussian. Using (7), we obtain

E[X (u)] = X (0)e~a".

Thus, ,
E [/0 X(u)du} = &0)(1 — e, (8)

a
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Similarly,

t u
Cov[X(t), X(u)] = o?e ¢ HE [ / e dW, / e“deS]
0 0

uAt 2
0,26—a(u+t) / eQast _ ie—a(u-i-t) (62a(u/\t) _ 1)
0 2a

Consequently,

Var { / tX(u)du} ~ Cov [ / ' X(u)d, /0 tX(s)ds}

_EK/X du— E UX duD(/OtX(s)ds—EUOtX(s)dsm

-[ / EI(X(w) - EX ())(X(s) ~ EX(s))lduds

2

23

(2at — 3 + 4e™ 2 — e727t),

From (5), we have

E [— /Ot rudu] _E {— /Ot(X(u)—i—b)du} .

Therefore, together with equation (8)

’I"t—b

B|- / Trudu] _ b ey _yr—gy. (10)

a

Furthermore,

/tTrudu] = Var /tTX(u)du]

2
%(%(T —t) = 3+ de T — 72T

Var

by the result from (9).
From the It6 integral representation of r;, we also note that the defining

process for the short rate is also Markov. For proof, see Karatzas and
Shreve, p. 355.

/ Cov[X (u), X duds-// —aluts) (g20(uhs) _ 1) duds
o Jo o Jo 2‘1

9)
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Thus,
T T
B(t,T)=FE | exp (—/ rudu> Fi| =FE |exp (—/ rudu> rt].
t t
We write
T
B(t,T,r) :=E | exp (—/ rudu> r| =F
t

T
exp —/ ro(re)du | | .
t
That is, r, is a function of 7.

Combining (10) and (11), the bond price is given by

T
1
B(t,T,r) = exp <E —/ ro(re)du | + §Var
t

— exp (H(l ) W ¥
a
2

— /tT ru(rt)du] )

g ) —a(T—t) _ ,—2a(T—t)
+ 103 (2a(T —t) — 3+ 4e e )) (12)
_ ,—a(T-t) _ ,—a(T-t)
= exp [— <1e> Tt—i-b(u—(T—t))
a a
o2 1— e—a(T—t) o2 o2 /1— 2e—a(T—t) + e—2a(T—t)
‘2< )+W<T‘t>‘@< 22 )}
2
= exp [—A(mT)n + DA T) = b(T — ) — ~ A(t, T)
+0—2(T t) — U—QA(t T)?| = exp(—A(t,T)ry + D(t,T)) (13)
2@2 4a ’ - P ) t ) )
where
1— e—a(T—t)
AtT) = —% — and (14)
a
2 2A T 2
D, T) = (b - 2"a2> (A, T) — (T — 1)) - ALY

15
™ (15)
Since for all ¢, the yield —

log B(t,T,r¢)
T—t

obtained from (13) is affine in ry,
equation (13) is called an affine term structure model or an exponential
affine bond price.
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3. Solution via Bond Price PDE

Under this approach, the derivation is based on the fact that the r, process
is Markov. In other words, to determine how r, evolves from t we need
know only the value of r;, u > t. Thus,

’I"t‘|

exp <— /tT ru(rt)du>

O {rt + b(e“(“_t) —1)+ a/ ea(”_t)de} )

t

B(t,T,r) = E

and

With r; as a parameter,

Ory(re) — p—alu—t)
3rt '

T T
/ 8m(ﬁ)du _ / e a(ut) gy — }(1 e,
f ory ¢ a

which is deterministic.
Also,

ot _ (1) ()
exp (— / ) Tu(m)duﬂ

1
—=(1- e~ TR

= 7A(t7 T)B(ta Ta Tt)a

where A(t,T) is given as in (14).
Thus, gT]i = —AB. So,
B(ta Ta Tt) = O(ta T)exp(_A(t7 T)rt)7
for some function C' independent of r;.
Consider

exp (— /Ot ru(rt)du) B(t,T,r) =E

T
exrp —/ rudu
0

ft] |
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Note that this is a P—martingale by the tower property. By Ito’s lemma,
we obtain

exp(—:étnxrﬁdu)lﬂtﬂﬂn)

t u
= B(0,T,ro) —|—/ —TWeTP —/ rvdv> B(u, T, ry)du
0 0

t U
—|—/0 exp (—/0 rvdv> %B(U,T,ru)du

t u
+ / exp (— / rvdv> iB(u, T, ry)(a(b—ry)du + odWy,)
0 0 8Tu

I v 9?
+§/0 exp (—/0 rvdv> a—raB(u,T,ru)anu.

Since this is a martingale, all the du terms must sum to zero. So,

0 0
—TtB(t, T, Tt) + &B(t,T7 ’f't) + ainB(t,T, Tt)(a(b — T‘t))

o? 02
2 Or?
Equation (16) is the PDE for the bond price in the Vasicek model. More-
over, this is a backward parabolic equation with B(T,T,r;) = 1 for every
Tt.

So far we know

+ B(t,T,r) = 0. (16)

B(t,T,r) = C(t, T)exp(—A(t, T)re).

Therefore, we get the following partial derivatives.

OB aC 0A
E = Eezp(—A(t,T)T’t) —Cartezp(_A(th)Tt)
g% = —ACexp(—A(t, T)r,)
9B
W = AQCexp(—A(t,T)’I"t)
t

So, substituting to the PDE in (16) we have

—riCexp(—Ary) + %exp(—/lrt) — C%nemp(—/lrt)

2
—ACewp(—Ary)(alb— 1)) + T-A*Ceap(~Ar,) = 0.
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Therefore,
oC 0A o’ 5
—rC + ot OE” — AC(a(b—1)) + ?A ¢=0.
Now, B(t,T,0) = C(¢t,T) and by putting r; = 0 we get
oC o?
— —abA —A%C =0.
Y abAC + 5 C=0

Noting again that we are solving a backward ODE with C(T,T) = 1, we
get

ab [T o2 [T
O(t,T) = exp 7;/t (]_ 76*G(T7u))du+ T./Q\/t (1 7670,(T7u))2du

(T—1)

- b(T by ematrt)y , O
= exp |—b( _t)'i‘g( —€ )+@
2

2
g —2a(T—t g —a(T—t)
+oal—e ( >)_$(1_e )].

Write

D(t,T) :=1og C(t,T).

We see that this reconciles with the second to the last terms of equation
(12) and hence with the expression of equation (15). Under this approach,
we have

B(t,T,r) = exp(—A(t, T)r: + D(t,T))

where A(t,T') is given by (14).

4. Bond Pricing by HIM Methodology

Following the terminology and notation of Heath, Jarrow and Morton
(1992), this pricing paradigm is based on the concept of forward rate. The
instantaneous forward rate at time ¢ for date T' > t is defined by

_ dlog B(t, )

o a7)

f(th) =

t'=T>t

This refers to the rate of interest that must be paid between t’ and T'. It
is known at time ¢ and therefore Fi—measurable. Solving the differential
equation in (17), yields

T
B(t,T) = eap (-/t f(t,u)du). (18)
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The short rate at time t, r;, is the instantaneous rate at time t, i.e.,
ry = f(t,t) for every ¢t € [0,T]. From equation (18), it is clear that once
f(t,T) is completely determined the bond price immediately follows. The
dynamics of the forward rate and that of the short rate are related via the
forward measure. Invoking the insights of Geman, El Karoui and Rochet
(1995), the forward measure PT' is defined on Fr by setting

dpT _ - exp(— fOT rodu)
P |z, B(0,T, o)

Consider the Radon-Nikodym process

exp(— fot rudu)B(t,T)

Ar == E[Ar|F)] = ey

, te[0,T].

For any Fr—measurable random variable X we have
ETIX|F] = ATPE[X - Ar|F]

Xexp (— ftT rudu)
BT

Fi . (19)

Now, the bond price in terms of the short rate is given by

Differentiating with respect to T, we get

B(t,T)=E

dB(t,T)

or ¥

T
—rrexp </ mdu) |-7'—t] = fET[rT|.7-'t]B(t,T), (20)

where the last equality follows from (19) with X = r. The bond price in
terms of the forward rate is given in equation (18). Thus, differentiating

B(t,T) with respect to T, we obtain
OB(t,T)
7 —=B(t,T)f(t,T). (21)

Comparing (20) and (21), in terms of the short rate model, the forward
rate is given by
f(t.T) = E"[rr|F] (22)

where ET denotes the expectation under P7T.
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Invoking the change of probability measures and numéraire technique,
under the forward measure P7, the stochastic dynamics for r; is given by

dry = (ab— A(t,T)o* — ar;)dt + cdW}, (23)
where W/ is the PT— Brownian motion defined by
AWl = dW, + o A(t,T)dt,

and A(t,T) is the function defined in equation (14). See Appendix for the
proof of (23). By It0’s lemma, for ¢ < T, the solution to (23) is given by

— o™=t 4 [y Uj (1 7b(T7t))_|_L2 —a(T—t) —2a(T—t)
e =Tri€ - —e 2a2[6 —€ ]

T
+ a/ e_“(T_“)dWE.
t

Thus,
u —a(u—t) o’ —a(u—t)
E [ru|]:t] = Tté +(b_w> (1—6 )
2
+ 2i?(e—a(u—t) _ e—2a(u—t)>.
So,

T T 2
Tt —a(u— o

E"[r, = L |—emalut) b—— ) (T —t

/t IrulFi]du a [ © L +( 2a >( )

2 —a(T—t 2
(po N (et TN L P atrey
2a? a 2a3

[\~

_@(1 _ e—2a(T—t))
= 1A T) + (b - 2‘;) (T —t) + A(t,T)]

(T2
o2 1—e T=1)
—Q
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Therefore,

T T
B(t,T,r) = exp <—/t f(t,u)du> = exp (—/t E"[ru|ft]du>

= exp(—riA(t,T) + D(t,T))

and the A(t,T) and D(t,T) values are in agreement with that of equations
(14) and (15), respectively.

5. Conclusion

The pedagogical value of the Vasicek model is well-known in stochastic
interest rate modeling. This paper contributes to the development of the
available mathematical techniques in obtaining the closed-form solution of
the bond price under the Vasicek framework. A discussion for each of the
three different methods was provided. The first derivation considers the
distributional properties of the short rate proces r;. The simple Gaussian
structure of r; leads to a closed-form solution of the bond price. The bond
price backward PDE is also derived using a martingale-oriented method-
ology. This PDE together with the Vasicek dynamics is the basis of the
second method which integrates ordinary differential equations to get the
bond price. Turning to the HJM pricing framework, the third approach
employs the dynamics of the forward rate to fully describe the bond price
process. The forward rate is linked to the short rate via the forward mea-
sure. When the short rate dynamics is determined under the forward mea-
sure, the HJM bond price is obtained and this reconciles with the prices
computed from the other two approaches.
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Appendix : Proof of Result in Equation 23
Let P be an equivalent martingale measure (EMM) for the numéraire H;

and Q an EMM for the numéraire J;. Then for any Vr € L?(Q, Fr, P) and
VT S LQ(QafTvQ)

H,
V,:=EP | Vp =L
e [ L

J
}'t] = E° [VTt }'t] .
Jr

Assume that P and @ are equivalent and denote the Radon-Nikodym
derivative of @ with respect to P by I';. We then have

Ji
EQ | vt
{ " r

H,
=EP |Vp=tT
ft:| [ T

ft} .
In particular, I'; = Hﬁfj—; for t < T. Suppose that the process under some
measure P associated with numéraire H; is given by dX; = m(Xy, t)dt +
o (X, t)dWy for some functions m(Xy,t) and o (X, t). We are interested on
the process followed by X; under another measure ) with numéraire J;.

Consider I'y 7 = % . j—; From Girsanov’s theorem, if WtQ is a Wiener

process under Q, W,* = W — [ 0,du where dU; 7 = Ty 707dWE and 6,
can be determined. Moreover, conditional upon F;, I'y 7 is a process in T.
Let H; and J; have dynamics under P given by

dH; = mydt + ogdW} and dJ, = mydt + o ;dWF.

Using these dynamics and noting that I'; is a martingale under P, it can

be verified that T
T 0y OH P
— = == - = | dW+.
I'r ( Jr  Hr ) r
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— 97 _ 0H
SO,gt—Jt H,

Applied to our current situation, suppose P is the EMM under the bank
account numeéraire and @ is the forward measure with bond as the associ-
ated numéraire. For s <t < T

Ji H, B(tT) t
T, =Ty, =2L. 225 = — [ rudu) .
: =, Hy BT /ST “

dB(t,T) _

Under measure P, 5" = rdt + op (t)dW, for some function op(t).
It is a straightforward calculation to show that the process I'y = I'g,
conditional upon Fj, satifies
dry dB(t,T)

Ft = W - Ttdt = O'B(t)th.

This implies that W = WP — fot op(u)du. Hence, if under P we have
the dynamics dX; = m(Xy,t)dt + o(Xy,t)dW}E then the Q—process for X;
is dX; = (m(Xy,t) + op(t)o(Xy, t))dt + o( Xy, t)dWE.

Equation 23 follows from this result with X =, Q = PT, 0(Xy,t) = o,
op(t) = —A(t,T)o and m(X¢, t) = a(b—ry). =



