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Abstract. The construction of J-variate distribution functions, introducing dependences among
J random variables and keeping fixed the J marginal distribution functions, is important in the
development of theoretical and empirical statistical analysis. Here, a method for generating such
distribution functions is developed. Characteristics of the resulting distribution functions are
discussed. An application to discrete regression models is presented. The latter is specialized to
model choice of mode od transportation by travelers.
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1. Introduction

In the development of probabilistic model and statistical analysis, the postulation
of a joint cumulative distribution function (JCDF), keeping fixed some marginal cu-
mulative distributions (MCDF), is often required (Yadlin, 1991; Long and Kryszto-
fowicz, 1995). Some examples follow.

In survival models, it is usually assumed that the duration D of a component
has an exponential distribution. If there are J components functioning in parallel,
the formulation of a JCDF for the Dj , J = 1, . . . , J, with exponential MCDF, that
becomes the product of these MCDF under restrictions, may be convenient (Sarkar,
1987).

Here, we want to model the survival function Pr
[
∩Jj=1(Dj ≥ dj)

]
. where the Dj

are not necessarily independent.
In dosage-response models, it is assumed that there exists a random tolerance

function Tr, r = 1, . . . , R, underlying each of the R possible response (Berkson,
1953). Examples are the response of an individual to some stimuli or the reaction
of an insect to an insecticide. If there are J ≥ 2 stimuli, hence J tolerance functions,
T

(1)
r , T

(2)
r , . . . , T

(J)
r associated to the rth response, a JCDF, with Logistic MCDF for

the T (j)
r , which becomes the product of these marginal Logistics under restrictions

may be established. Here we want to model the probability that the response under
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dosages x(1), . . . , x(j) is the rth response, that is,

Pr
[
∩r−1
k=1(T (1)

k > x(1), . . . , T
(J)
k > x(J), ) ∩ (T (1)

r ≤ x(1), . . . , (T (J)
r ≤ x(J))

]
,

where the T (J)
r may or may nor be independent.

In discrete decision models (DDM), it is assumed that there exists a radom utility
functions Um = i = 1, . . . , J, underlying each of the J possible decisions, for each
sujects n = 1, . . . , N. Here Uin = Vin + εin, where Vin is non stochastic and εin
is a random perturbation. Examples are the decision by a high-school graduate
about a career, the selection by a family of a vacation resort and the choice by a
user of mode of transportation. Assuming that ε1n, . . . , εJn are iid Extreme Value
(EV) yields the prevailing methodology, which is the Multinomial Logit Model
(MLM), which exhibits analytical and computational simplicity, but disregards in-
terrelations among the J possible choices. A Nesting MLM, that overcomes the
latter drawback, can be obtained by constructing a Nesting EV JCDF that keeps
the J MCDF as EV. This Nesting MLM is also consistent with the principle of
utility maximization, exhibits a closed functional form manageable for theoretical
and empirical investigations, and allows for the introduction of relations among
alternatives through the inclusion of a dependence parameter. Moreover, the Nest-
ing MLM constitutes a parametric generalization of the MLM, in the sense that,
under restrictions, the Nesting EV distribution becomes the product of J EV dis-
tributions, while the Nesting MLM reduces to the original MLM, so that classical
testing procedures can be applied to decide between them. We will return to this
example is Section 3.

Thus, the purpose is to build a JDCF for X1, . . . , XJ such that: 1. The arbitrary
MCDF of the Xj are mantained. 2. Patterns of dependences are parametrized
through a parameter α ∈ A ⊂ RL with 0 ∈ A. 3. The JCDF reduces to the product
of the J marginals when α = 0. 4. Parametric generalizations of statistical models,
with analytical and computational tractability, are accomplished.

Schematically, let Fj be the MCDF of Xj , FI be P Jj=1Fj ,MI be model under
FI , F be the generalized JCDF of X1, . . . , XJ , and M be the model under F Then
we have (X1, . . . , XJ) ∼ FI ; if and only if the true model is M1; if and only if α = 0
versus (X1, . . . , XJ) ∼ F ; if and only if the model is M ; if and only if α ∈ A. Thus,
since MI ⊂M ; likelihood methods can be applied to test MI versus M.

2. Generating Method

Considering the JCDF for X1, . . . , XJ , when the Xj are grouped into subvectors
Xj : j ∈ Bm),m = 1, . . . ,M, with |Bm| ≥ 2. Bm ⊂ {1, . . . , J} and UMm=1Bm =
{1, . . . , J}, leads to the following reformulation of a method designed by Johnson
and Kotz (1975)

F (x1, . . . , xj) =
J∏
j=1

Fj(xj)

{
1 +

M∑
m=1

αm
∏
k∈Bm

[1− Fk(xk)]

}
, (1)
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where αm represents dependences among the Xj , j ∈ Bm. If the marginal densities
fj exist, the joint density is given by

f(x1, . . . , xJ) =
J∏
j=1

fj(xj)

{
1 +

M∑
m=1

αm
∏
k∈Bm

[1− 2Fk(xk)]

}
. (2)

Whatever the values of the αm, the MCDF and be marginal densities are Fj and
fj , respectively. Also, whatever the values of the αm, F has all the properties of a
JCDF, except that it may assign negative probabilities to some rectangles in RJ .
Similarly, f integrates to 1, but it may take negative values. Thus, 2M restrictions
are required

1 +
M∑
m=1

Cmαm ≥ 0, Cm = ±1. (3)

Hence, A is determined by (3).
It is clear that if B ⊂ C is the union of some of the Bm, B = USs=1Bls, where
{l1, . . . , lS} ⊂ {1, . . . ,M}, then the JCDF of {Xj ; j ∈ B} belongs to the same family
(1). Here the Xj , j ∈ B are grouped into S subsets {Xj ; j ∈ Bls}, s = 1, . . . , S.

The moment generating functions of (X1, . . . , XJ) is derived as
M(s1, . . . , sJ) = E(

∏J
j=1 e

sjXj )

=
∫
. . .
∫ {∏J

j=1 e
sjtjfj(tj)

{
1 +

∑M
m=1 αm

∏
k∈Bm [1− 2Fk(sk)]

}
dt1, . . . , dtJ

}
=
∏J
j=1Mj(Sj)+

+
∑M
m=1 αm

∏
k∈Bm

[
Mk(sk)− 2

∫
esktkFk(tk)fk(tk)dtk

]∏
j 6∈BmMj(sj).

Thus,

M(s1, . . . , sJ) =
J∏
j=1

Mj(sj) +
M∑
m=1

αm
∏
k∈Bm

{
Mk(sk)− 2E

[
eskXkFk(Xk)

]}
×

×
∏
j∈Bm

Mj(sj),(4)

where Mj is the moment generating function of XJ .
Formulae (1), (2) and (4) reduce to the formulae corresponding to indepedence

when αm = 0,m = 1, . . . ,M.
From (4), we can compute correlation (Xi, , Xl) for any {i, l} ⊂ {1, . . . , J}. Setting

αil be the dependence parameter associated to {Xi, Xl} we have
E(XiXl) = ∂2

∂si∂sl
M(s1, . . . , sJ)|s1 = . . . = sJ = 0
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= ∂2

∂si∂sl

{
Mi(si)Ml(sl) + αil

{
Mi(si)− 2E

[
esiXiF (Xi)

]}
×

×
{
Ml(sl)− 2E

[
eslXlFl(Xl)

]}
|si = sl = 0

= E(Xi)E(Xl) + αil {E(Xi)− 2E [XiFi(Xi)]} {E(Xl)− 2E [XlFl(Xl)]}

= E(Xi)E(Xl) + αil 4 Covariance (Xi, Fi(Xi)) Covariance (Xl, Fl(Xl)).
Since Fl(Xj) follows a Uniform (0,1) distribution, we get

Correlation(Xi, Xl) = αil Correlation (Xi, Fi(Xi)) Correlation (Xl, Fl(Xl)).
(5)

Hence, the correlation between Xi and Xl is zero whenever the dependence pa-
rameter αil is zero.

As an axample, suppose Xj has an EV distribution. Then

Fj(x) = exp{−e−x}, x ∈ R, (6)

fj(x) = exp{−x− e−x}, x ∈ R, (7)

Mj(s) = Γ(1− s), s < 1, (8)

E(Xj) = 0.577, (9)

V ar(Xj) = 1.645. (10)

Hence,

F (x1, . . . , xJ) =
J∏
j=1

exp
{
−e−xj

}{
1 +

M∑
m=1

αm
∏
k∈Bm

[
1− exp

{
−e−xk

}]}
,

(11)

where αm must satisfy (3),

f(x1, . . . , xJ) =
J∏
j=1

exp
{
−xj − e−xj

}{
1 +

M∑
m=1

αm
∏
k∈Bm

[
1− 2 exp

{
−e−xk

}]}
(12)

We call (11) and (12) Nesting EV distribution and density, respectively.
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Also, substituting (8) in (4)

M(s1, . . . , SJ) =
J∏
j=1

Γ(1− sj)

{
1 +

M∑
m=1

αm
∏
k∈Bm

[1− 2sk ]

}
, sj < 1, (13)

and, from (5)
Correlation (Xi, Xl) = αil Correlation (Xi, exp{e−Xi}) Correlation (Xl, exp{e−Xl}) =

αil(log 2)2/1.645,

Correlation (Xi, Xl) = 0.292 αil. (14)

3. An Application: Generalization of Discrete Decision Models

A DDM serves to explain the probabilities with which a subject will choose one and
only one of J objects (Rust 1988; Yadlin 1991 and 1993). Letting C = {1, . . . , J}
be the choice set, a DDM specifies PnB(i), the probability that subject n will choose
i from B, for all choice subsets B ⊂ C and all i ∈ B, on the basis of the principle of
utility maximization. In this way, a DDM postulates that individuals’ preferences
can be expressed by means of a vector valued random utility function on C. It is
assumed that subject n associates to alternative a random value Uin, and them he
chooses so as to maximize this value.

Thus,
PnB(i) = Pr(Uin > Ujn;∀j ∈ B − {i}).

Uin can be decomposed into a deterministic part Vin and a random perturbation
εin,

Uin = Vin + εin,

Hence,
PnB(i) = Pr(εjn − εin < Vin − Vjn;∀j ∈ B − {i}).

Conditioning on εin, we get

PnB(i) =
∫ [

∂Pr(εjn < tj ;∀j ∈ B)
∂ti

|tj=Vin−Vjn+t

]
dt. (15)

Thus, the functional form of a DDM is determined by F, the JCDF of ε1n, . . . , εjn.
In particular, under independence

PnB(i) =
∫
fi(t)

∏
j∈B−{i}

Fj(Vin − Vjn + t)dt

It is usually assumed that
Vin = βTZin,

where β is a vector of unknown parameters and Zin is a vector of observable exo-
geneous variables.
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In what follows, we omit n and concentrate on PC(i), denoted by P (i), for short-
ness. No loss of generality is induced, because of the comment under (16) below.

It is clear that we can generalize any DDM based on independence of the εj using
(1). We obtain a model that embeds the independence model in a simple way, and
whose decision probabilities are derived via (15) and are formulated in terms of the
Fj as

P (i) =
∫ fi(xi) ∏

j∈C−{i}

Fi(xi)

{
1 +

M∑
m=1

αm
∏
k∈Bm

[1− Fk(xk)]− Fi(xi)×

×
∑

{m:i∈Bm}

αm
∏
k∈Bm

[1− Fk(xk)]

 |xj = Vi − Vj + t

 dt.

Thus,

P (i) =

∫ fi(xi) ∏
j∈C−{i}

Fj(Vi − Vj + t)

{
1 +

M∑
m=1

αm

}

− 2
∑

{m:i∈Bm}

αmFi(t) +
∑

{m:i∈Bm}

αm

Bm−1∏
k=1

(−1)k

∑
j1<...<jk,jl 6=i

Fj1(Vi − Vj1 + t) . . . Fjk (Vi − Vjk + t) (16)

− 2Fi(t)
∑

{m:i∈Bm}

αm

|Bm|−1∑
k=1

(−1)k
∑

j1<...<jk,jl 6=i

Fj1(Vi − Vj1 + t) . . . Fjk (Vi − Vjk + t)

+
∑

{m:i/∈Bm}

αm

Bm|−1∑
k=1

(−1)k
∑

j1<...<jk,jl 6=i

Fj1(Vi − Vj1 + t) . . . Fjk (Vi − Vjk + t)

 dt.

If B ⊂ C is the union of some the Bm, the probabilities PB(i), i ∈ B, belong to
the same family (16).

The P (i) in (16) reduce to the model under independence, when αm = 0,m =
1, . . . ,M.

The MLM is the prevailing model in applications of DDM. Denoting P (i) by Q(i),
this model is given by

Q(i) =
eV i∑J
k=1 e

Vk
, (17)
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Besides its great tractability, the MLM presents flexibility for interpreting the
decision probabilities in terms of the relative mean utilities of the alternatives, and
for evaluating the impact of manipulating the decision set C or the exogeneous
variables Zin.

However, the likelihood odds for deciding alternative i over alternative j are con-
stant whatever the set C is, so that these odds are independent of third alternatives
available to the decision maker. In fact writing

Q(i) =
eVi−Vj∑J
k=1 e

Vk−Vj
, (18)

it can be seen that the evaluation of an alternative is based on binary comparisons
only.

To derive the MLM from the principle of utility maximization, it is sufficient to
assume that ε1, . . . , εJ are iid with EV distributions. Thus, replacing in (15) Fj
and fj , by (6) and (7), the following model is obtained

P (i) =
{

1 +
∑M
m=1 αm

}
eVi∑
j∈C

eVj
− 2

∑
{m:i∈Bm} αm

eVi

eVi+
∑

j∈C
eVi

+

+
∑
{m:i∈Bm} αm

∑|Bm|−1
k=1 (−1)k

∑
j1<...<jk,jl 6=i

eVi∑k
l=1 e

Vjl +
∑
j∈C e

Vj
+

−2
∑
{m:i∈Bm} αm

∑|Bm|−1
k=1 (−1)k

∑
j1<...<jk,jl 6=i

eVi

eVi +
∑k
l=1 e

Vjl +
∑
j∈C e

Vj
+

+
∑
{m:i∈Bm} αm

∑|Bm|
k=1 (−1)k

∑
j1<...<jk,jl 6=i

eVi∑K
l=1 e

Vjl +
∑
j∈C e

Vj
.

Upon deviding and multiplying by
∑J
k=1 e

Vk , we obtain

P (i) =

{
1 +

M∑
m=1

αm

}
Q(i)− 2

∑
{m:i∈Bm}

αm
Q(i)

1 +Q(i)
+

+
∑

{m:i∈Bm}

αm

|Bm|−1∑
k=1

(−1)k
∑

j1<...<jk,jl 6=i

Q(i)

1 +
∑k
l=1Q(jl)

+

−2
∑

{m:i∈Bm}

αm

|Bm|−1∑
k=1

(−1)k
∑

j1<...<jk,jl 6=i

Q(i)

1 +Q(i) +
∑k
l=1Q(jl)

+

+
∑

{m:i∈Bm}

αm

|Bm|−1∑
k=1

(−1)k
∑

j1<...<jk,jl 6=i

Q(i)

1 +
∑k
l=1Q(jl)

(19)

The terms in the P (i) involve the MLM probabilities Q(i) and the dependence
parameters αj , so that they consider interrelations among the elements inside each
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subser Bm of the choice set C. The generalized probabilities in (19) constitute the
Nesting EV Model. Unlike other generalizations of the MLM (Hausman and Wise,
1978; Small, 1994), the probabilities of the Nesting EV Model constitute simple
functions of the probabilities of the MLM.

When the dependence parameters αm are zero for m = 1, . . . ,M, the P (i) reduce
to the Q(i). In this way, we have constructed a parametric generalization of the
MLM, allowing us to test whether we can maintain the advantages of the MLM in
any practical situation. In the event that the null hypothesis that all αm are zero,
that is, the MLM is the true model, is rejected, we are still left with a manageable
model, that takes into account relationship among the J possible decisions.

In the remainder of this section, an empirical illustration (Yadlin, 1991) is de-
scribed. This illustration deals with the choice of mode of transportation by users
who travel between two places. This problem has been usually approach with dis-
crete regression models. Thus, the analysis of these models play an important
role in the evaluation of transportation models, becoming fundamental to detect
whether the simplest model provides an adequate fit to the available data.

Here we consider individuals who move from their homes to their working or
studying place in Santiago.

The choice set consists of C = {1 = Metro, 2 = Microbus, 3 = Minibus}. Since
the Microbus andthe Minibus are close substitutes and the Metro is regarded as
unrelated with the former, we let B1 = {1}, B2 = {2, 3}, α2 = α in (19), getting
|α| ≤ 1 by (3), and Correlation (ε2, ε3) = 0.292α by (14).

In order to assess the performance of the MLM, completely known values of
the true probabilities are required. Then, the information about the choices is
simulated. 160 strata of 100 travellers echa are created. The subjects in each strata
are homogeneous with respect to the value of the following exogeneous variables:

Zin1 = Cost of mode i in Chilean money / Per-hour income in Chilean
money of subjects in stratum n(C0/I)

Zin2 = Out-of-vehicle travel (walking plus waiting) time in hours
for mode i and individuals in stratum n (OVT)

Zin3 = In-vehicle travel time for mode i and individuals in stratum n (IVT)
Zin4 = 1 if i = 1 and 0 if i 6= 1. (Relates to the level of comfort of the Metro).

Others variables may have been considered. It was decided to have a very simple
utility function because, the purpose is to evaluate the performance of probabilistic
choice models under misspecification of the CDF F and not of the utility function,
whose form is kept fixed. Thus the objetive is the comparison of the performance
of models MLM and Nesting EV Model in the three-alternative, two-substitute
situation, under misspecification of the probabilistic mechanism (CDF) underlyig
the models, keeping the formulation of the utility function fixed, in the context of
demand for transportation. The main steps of the methodology are the following:

1. Defining the choice set C described above and the target population, whose
members are noncar owners transportation users, who travel from their resi-
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dence to their working or studying place by either of the modes in C at the
morning peak hours.

2. The mean utility function is specified:

Vin =
n∑
k=1

Zinkβk

= (C0/I)inβ1 + (OV T )inβ2 + (IV T )inβ3 + Dummy Metroβ4, (20)
i = 1, 2, 3, n = 1, . . . , 160.

3. The values for the Zink, i = 1, 2, 3, n = 1, . . . , 160, k = 1, 2, 3, 4, are determined,
so that Z2nk is close to Z3nk, while Z1nk differ from the former. In this way,
the attributes of mode 1 are different from those of modes 2 and 3, which are
similar.

4. For each n = 1, . . . , 160, Zink are replicated 100 times, so as to obtain a popu-
lation of 16,000 travellers, composed by 160 strata of size 100 each.

5. A value is assigned to (β1, β2, β3, β4, α) : β1 = 4.4, β2 = 5.6, β3 =
4.8, β4 = 2.0, and α = 0 for the MLM and 1 for the Nesting EV Model.

6. The probabilities Qn(i) of the MLM and Pn(i) of the Nesting EV Model, which
are completely specified, are calculated.

7. Two populations of 16,000 modal decisions each are constructed. This is achieved
by generating one modal selection for each of the 100 travellers in each of the
160 strata, by means of Trinomial simulation, based either on the Qn(i) (MLM
population) or on thePn(i) (Nesting EV population).

8. 25 samples of size 1,600 each are extracted from each of the two populations.
This is accomplished by drawing 25 stratified random samples with 10 observa-
tions per stratum from either of the two populations.

9. The parameters corresponding to both models are estimated by means of Maxi-
mum Likelihood Methods. The asymptotic Likelihood Ratio Test (LRT) statis-
tics is calculated with the data of each of the 25 samples drawn from either
the MLM or the Nesting EV Model populations. The LRT statistics is used
to test the null hypothesis that the MLM is the true model (H0 : α = 0) ver-
sus the alternative hypothesis that the Nesting EV Model is the true model
(H1 : α 6= 0).

When the population of decisions is derived from the Qn(i) (MLM) the null
hypothesis, is accepted in the 25 samples, and when the population of decisions
is derived from the Pn(i) (Nesting EV Model), the null hypothesis is rejected
in the 25 samples.

Thus, the Likelihhod Ratio Test rejects the false model always.
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4. Conclusion

A straightforward method to build parametric generalizations of statistical models,
that hold under independence of certain random variables have been presented.

In this way, a nesting statistical framework for non-separate models, compatible
with likelihood methods is provided.

The importance of these developments becomes apparent in their applications in
DDM.
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