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C. Coposu Blvd. No. 4, 300223 Timişoara, Romania
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The aim of this paper is to obtain new necessary and sufficient conditions for the uniform
exponential stability of variational difference equations with applications to robustness problems.
We prove characterizations for exponential stability of variational difference equations using
translation invariant sequence spaces and emphasize the importance of each hypothesis. We
introduce a new concept of stability radius rstab(A;B,C) for a variational system of difference
equations (A) with respect to a perturbation structure (B,C) and deduce a very general estimate
for the lower bound of rstab(A;B,C). All the results are obtainedwithout any restriction concerning
the coefficients, being applicable for any system of variational difference equations.

1. Introduction

In the last decades an increasing interest was focused on the asymptotic properties of the
most general class of evolution equations—the variational systems and a number of open
questions were answered, increasing the applicability area not only to partial differential
equations but also to systems arising from the linearization of nonlinear equations (see [1–10]
and the references therein). In this context a special attention was devoted to the general case
of variational systems of difference equations of the form:

x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ Θ × N, (A)

where {A(θ)}θ∈Θ is a family of bounded linear operators on a Banach space X and σ is a
flow on a metric space Θ. The interest is motivated by several notable advantages related
with the system (A): the obtained results are applicable to a large class of systems; since
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no measurability or continuity conditions are needed, this system often models the families
of equations proceeding from the linearization of nonlinear equations and also extends
the nonautonomous case in infinite-dimensional spaces (see [1, 2, 4–10] and the references
therein).

In recent years a notable progress was made in the study of the qualitative properties
of various classes of difference equations (see [4–8, 11–32]). The input-output methods or
the so-called “theorems of Perron type” have proved to be important tools in the study of
the asymptotic behavior of difference equations like stability (see [27, 29, 30]), expansiveness
(see [6]), dichotomy (see [1, 5, 8, 15, 17, 19, 20, 32]), and trichotomy as well (see [7, 18, 20]).
A distinct method for the study of exponential stability relies on the convergence of some
associated series and this was used in [28] for difference equations and in [4] for variational
difference equations. The exponential stability of difference equations with several variable
delays and variable coefficients was studied in [16], where the authors obtained interesting
conditions for global exponential stability using new computational formulas with respect to
the coefficients. The uniform asymptotic stability of positive Volterra difference equations
was recently studied in [25], the authors proving the equivalence between the uniform
asymptotic stability of the zero solution, the summability of the fundamental solution, and
the invertibility of an associated operator outside the unit disk. A very efficient method in
the study of the stability of difference equations is represented by the so-called “freezing
technique,” which was used in [22] for the study of absolute stability of discrete-time
systems with delay and also in [23] in order to deduce explicit conditions for global feedback
exponential stabilizability of discrete-time control systems with multiple state delays. In the
study of the asymptotic behavior of discrete-time systems, there is an increasing interest in
finding methods arising from control theory (see [5–8, 21–27, 29–32]). This is motivated by
the fact that besides their large applicability area, the control-type techniques can be also
applied to the analysis of the robustness of diverse properties in the presence of perturbations
(see [5, 25, 26, 30, 32, 33]). In this context it is natural to extend the study to the variational
case. Thus, two main questions arise: which is the most general framework for the study
of the stability of variational difference equations using control type methods and how one
may apply the new techniques in order to determine the behavior of the initial system in
the presence of perturbations. In what follows, our attention will focus in order to provide
complete answers to these open questions.

In this paper we propose a new study concerning the stability of variational difference
equations and the robustness of this property. We associate with the system (A) a family
of control systems (SA) = {Sθ}θ∈Θ and we attack the subject from the perspective of
the solvability of (SA) between two Banach sequence spaces invariant under translations.
We split the class of Banach sequence spaces which are invariant under translations into
two central subclasses and deduce necessary and sufficient conditions for uniform and
exponential stability with respect to the solvability of the control system (SA) when the
input sequences belong to a space from a subclass or the solution lies in a space from the
other subclass (see Theorem 3.8). By an example we show that the stability result is the most
general in the topic and that the assumptions on the underlying sequence spaces cannot be
removed. As particular cases of the stability results we deduce many interesting situations;
among them we mention some direct generalizations at the variational case of the theorems
from [27, 29, 30]. We also mention that the associated control system is distinct compared
with those considered in the study of dichotomy and trichotomy (see [7, 8, 32, 34]), the
input-output conditions are different, the Banach sequence norm is more flexible, and the
underlying classes of sequence spaces are the largest and with more permissive properties.
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Next, we apply the stability results and we propose a new approach for stability
robustness of variational difference equations. We study the stable behavior of the system
(A) in the presence of a general perturbation structure (B,C) with B ∈ �∞(Θ,L(U,X)),
C ∈ �∞(Θ,L(X,Y )), by means of the stability radius rstab(A;B,C) (see Definition 4.3).
Our target is to obtain a lower bound for the stability radius of variational systems of
difference equations as well as to determine the largest class of Banach sequence spaces
within the robustness properties hold. With this purpose we associate with the system
(A) an input-output control system (SA) = {Sθ}θ∈Θ and consider W(N) the general
class of all Banach sequence spaces W with the property that if there is M > 0 such
that |s · χ{0,...,n}|W ≤ M, for all n ∈ N, then s ∈ W and |s|W ≤ M. For every
Banach sequence space W ∈ W(N), we introduce the index λW(A;B,C) := supθ∈Θ‖Λθ

W‖,
where {Λθ

W}θ∈Θ is the family of input-output operators associated with the system (SA)
and we obtain a lower bound for rstab(A;B,C) in terms of λW(A;B,C). Thus, we point
out an interesting connection between the family of input-output operators and the size
of the smallest perturbation in the presence of which the perturbed system loses its
exponential stability. The variational case requires a special analysis and the methods are
substantially more complicated compared to those used in the nonautonomous case (see
[30, 33]). We note that the study is done without any restriction or assumption on the
coefficients, the obtained results being applicable for any system of variational difference
equations.

2. Banach Sequence Spaces

In this section, for the sake of clarity, we will recall some basic definitions and properties
of Banach sequences spaces. Let Z denote the set of the integers, let N denote the set of all
non negative integers, let R denote the set of all real numbers, and let S(N,R) be the linear
space of all sequences s : N → R. Let N

∗ = N \ {0}. For every set A ⊂ N we denote by
χA the characteristic function of the set A. For every s ∈ S(N,R) we consider the sequence
s+ : N → R defined by s+(0) = 0 and s+(n) = s(n − 1), for all n ∈ N

∗.

Definition 2.1. A linear space B ⊂ S(N,R) is called a normed sequence space if there is a mapping
| · |B : B → R+ such that

(i) |s|B = 0 if and only if s = 0;

(ii) |αs|B = |α||s|B, for all (α, s) ∈ R × B;

(iii) |s + γ |B ≤ |s|B + |γ |B, for all s, γ ∈ B;

(iv) if s, γ ∈ S(N,R) have the property that |s(j)| ≤ |γ(j)|, for all j ∈ N and γ ∈ B, then
s ∈ B and |s|B ≤ |γ |B.

If, moreover, (B, | · |B) is complete, then B is called Banach sequence space.

Definition 2.2. A Banach sequence space (B, | · |B) is called invariant under translations if for
every s ∈ B the sequence s+belongs to B and |s+|B = |s|B.

Notation. We denote by Q(N) the class of all Banach sequence spaces B which are invariant
under translations and χ{0} ∈ B.
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Example 2.3 (Orlicz sequence spaces). Let ϕ : R+ → [0,∞] be a nondecreasing left continuous
function which is not identically 0 or ∞ on (0,∞). The Young function associated with ϕ is
Yϕ(t) =

∫ t
0ϕ(s)ds, for all t ≥ 0. For every s ∈ S(N,R), let Mϕ(s) :=

∑∞
k=0 Yϕ(|s(k)|). Then

�ϕ(N,R) := {s ∈ S(N,R) : ∃c > 0 such that Mϕ(cs) < ∞} is a Banach space with respect to
the norm |s|ϕ := inf{c > 0 : Mϕ(s/c) ≤ 1}. The space �ϕ(N,R) is called theOrlicz sequence space
associated to ϕ. It is easy to see that

(i) the space �ϕ(N,R) belongs to the class Q(N);

(ii) if p ∈ [1,∞), then �p(N,R) with respect to the norm ‖s‖p = (
∑∞

k=0 ‖s(k)‖p)1/p is an
Orlicz space, obtained for ϕ(t) = ptp−1;

(iii) �∞(N,R), with respect to the norm ‖s‖∞ = supn∈N
|s(n)|, is also an Orlicz space

corresponding to the function ϕ(t) = 0, for t ∈ [0, 1] and ϕ(t) = ∞, for t > 1.

Example 2.4. The space c0(N,R) := {s ∈ S(N,R) : limn→∞s(n) = 0} with respect to the norm
‖s‖∞ = supn∈N

|s(n)| belongs to the class Q(N).

Remark 2.5. If B ∈ Q(N), then the following properties hold:

(i) for every A ⊂ N, χA ∈ B;

(ii) for every s ∈ B and every j ∈ N the sequence

sj : N −→ R, sj(n) =

⎧
⎨

⎩

s
(
n − j

)
, n ≥ j,

0, n < j
(2.1)

belongs to B and |sj |B = |s|B,
(iii) �1(N,R) ⊂ B ⊂ �∞(N,R) (see, e.g., [30, Lemma2.1]);

(iv) if s ∈ B, then the sequence |s| : N → R+, |s|(k) = |s(k)| also belongs to B and
||s||B = |s|B.

Definition 2.6. If (B, | · |B) is a Banach sequence space with B ∈ Q(N) then FB : N
∗ →

R+, FB(n) = |χ{0,...,n−1}|B is called the fundamental function of B.

Lemma 2.7. If B ∈ Q(N) and sn → s in B, then sn → s pointwise.

Proof. Let j ∈ N. From |sn(j) − s(j)|χ{j}(k) ≤ |sn(k) − s(k)|, for all k ∈ N and all n ∈ N we
deduce that |sn(j) − s(j)|FB(1) ≤ |sn − s|B, for all n ∈ N and the proof is complete.

Notations. We denote by V(N) the class of all Banach sequence spaces B ∈ Q(N) with the
property that supn∈N

FB(n) = ∞ and byU(N) the class of all Banach sequence spaces B ∈ Q(N)
with the property that �1(N,R) � B.

Lemma 2.8. If B ∈ Q(N), then B ∈ Q(N) \ V(N) if and only if c0(N,R) ⊂ B.

Proof. Necessity. If B ∈ Q(N) \ V(N), then λB := supn∈N
FB(n) < ∞. Let s ∈ c0(N,R). Then there

is a strictly increasing sequence (kn) such that |s(j)| ≤ 1/(n + 1), for all j ≥ kn and all n ∈ N.
Setting sn = sχ{0,...,kn} we deduce that |sn+p − sn|B ≤ λB/(n + 1), for all n ∈ N and all p ∈ N

∗.
It follows that (sn) is a Cauchy sequence in B; so this is convergent. Let u ∈ B be such that
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sn → u in B. According to Lemma 2.7 we deduce that u = s, and so s ∈ B. This implies that
c0(N,R) ⊂ B.

Sufficiency. If c0(N,R) ⊂ B, then there is c > 0 such that |s|B ≤ c‖s‖∞, for all s ∈ c0(N,R).
Then, we obtain that FB(n) = |χ{0,...,n−1}|B ≤ c‖χ{0,...,n−1}‖∞ = c, for all n ∈ N

∗, and so λB < ∞. It
follows that B ∈ Q(N) \ V(N).

Remark 2.9. From Remark 2.5 and Lemma 2.8 we have that B ∈ Q(N) \ V(N) if and only if
c0(N,R) ⊂ B ⊂ �∞(N,R).

Another interesting property of the class V(N) is the following.

Lemma 2.10. Let �ϕ(N,R) be an Orlicz space. Then either �ϕ(N,R) ∈ V(N) or �ϕ(N,R) =
�∞(N,R).

Proof. Suppose that �ϕ(N,R)/∈V(N); so λϕ := supn∈N
F�ϕ(n) < ∞. Then (n + 1)Yϕ(1/λϕ) =

Mϕ(χ{0,...,n}/λϕ) ≤ 1, for all n ∈ N. This implies that Yϕ(1/λϕ) = 0. Let s ∈ �∞(N,R) and let
u := s/[λϕ(1 + ‖s‖∞)]. Then |u(k)| < 1/λϕ, for every k ∈ N. Since Yϕ is nondecreasing, this
yields Yϕ(|u(k)|) = 0, for every k ∈ N, so Mϕ(u) = 0. It follows that u ∈ �ϕ(N,R); so s ∈
�ϕ(N,R). Hence �∞(N,R) ⊂ �ϕ(N,R) and using Remark 2.5(iii) we obtain the conclusion.

Lemma 2.11. Let B ∈ Q(N) and let ν > 0. Then, for every s ∈ B the sequence

αs : N −→ R, αs(n) =

⎧
⎪⎨

⎪⎩

n∑

k=1

e−ν(n−k)s(k − 1), n ∈ N
∗,

0, n = 0
(2.2)

belongs to B. Moreover

|αs|B ≤ 1
1 − e−ν

|s|B, ∀s ∈ B. (2.3)

Proof. Let s ∈ B. Then the sequence s+ belongs to B and |s+|B = |s|B. Using the notations from
Remark 2.5(ii) we deduce that

|αs(n)| =
∣∣∣∣∣

n∑

k=0

e−ν(n−k)s+(k)

∣∣∣∣∣
≤

n∑

k=0

e−ν(n−k)|s+(k)| =
n∑

j=0

e−νj
∣∣sj+1(n)

∣∣

≤
∞∑

j=0

e−νj
∣∣sj+1(n)

∣∣, ∀n ∈ N.

(2.4)

From Remark 2.5(ii)we obtain that αs ∈ B and that relation (2.3) holds.

Notation. We denote by W(N) the class of all Banach sequence spaces B ∈ Q(N) with the
property that if s ∈ S(N,R) and there is M > 0 such that |s · χ{0,...,n}|B ≤ M, for all n ∈ N, then
s ∈ B and |s|B ≤ M.

Example 2.12. Any Orlicz sequence space Oϕ belongs to the class W(N). Consequently,
�p(N,R) ∈ W(N), for every p ∈ [1,∞].
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Remark 2.13. The class W(N) will play a fundamental role for a new study of the robustness
of uniform exponential stability presented in Section 4.

Notation. Let (X, ‖ · ‖) be a real or complex Banach space. For every Banach sequence space
B ∈ Q(N) we denote by B(N, X) the space of all sequences s : N → X with the property that
the mapping Ns : N → R+, Ns(m) = ‖s(m)‖ belongs to B. B(N, X) is a Banach space with
respect to the norm ‖s‖B(N,X) := |Ns|B.

3. Stability of Variational Difference Equations

Let X be a real or complex Banach space and let L(X) be the Banach algebra of all bounded
linear operators on X. Throughout this paper the norm on X will be denoted by ‖ · ‖. For
every T ∈ L(X), the norm of T is defined by

‖T‖ := inf{M > 0 : ‖T(x)‖ ≤ M‖x‖, ∀x ∈ X} = sup
‖x‖≤1

‖T(x)‖. (3.1)

We denote by Δ(N, X) the linear space of all sequences s : N → X with the property that the
set {j ∈ N : s(j)/= 0} is finite and by Id the identity operator on X.

Let (Θ, d) be a metric space and let E = X ×Θ. Let σ : Θ ×Z → Θ be a discrete flow on
Θ, that is, σ(θ, 0) = θ and σ(θ,m + n) = σ(σ(θ,m), n), for all (θ,m, n) ∈ Θ × Z

2.
Let {A(θ)}θ∈Θ ⊂ L(X). We consider the variational system of variational difference

equations (A). We note that in the particular case when Θ = N and σ(θ, n) = θ + n we
obtain the case of difference equations. There are several distinct directions of generalizing
the case of difference equations. One of the most interesting methods is to consider them
in the general framework of dynamic equations on time scales (see [35, 36]), having a
wide potential for applications in the study of population dynamics. Another method
is to consider them as particular cases of variational difference equations, which often
proceed from the linearization of nonlinear equations (see [2, 10] and the references therein).
It is also interesting to note that the exponential stability of a variational equation is
equivalent with the exponential stability of the variational difference equation associated
with it. Therefore, concerning the stability of variational equations it is recommended
to study the discrete-time case, because no measurability or continuity conditions are
required.

The discrete cocycle associated with the system (A) is

Φ : Θ × N −→ L(X), Φ(θ, n) =

⎧
⎨

⎩

A(σ(θ, n − 1)) · · ·A(θ), n ∈ N
∗,

Id, n = 0.
(3.2)

Remark 3.1. The discrete cocycle satisfiesΦ(θ,m+n) = Φ(σ(θ, n), m)Φ(θ, n), for all (θ,m, n) ∈
Θ × N

2 (the evolution property).
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Definition 3.2. The system (A) is said to be

(i) uniformly stable if there is K > 0 such that ‖Φ(θ, n)‖ ≤ K, for all (θ, n) ∈ Θ × N;

(ii) uniformly exponentially stable if there are K, ν > 0 such that ‖Φ(θ, n)‖ ≤ Ke−νn, for all
(θ, n) ∈ Θ × N.

We associate with the system (A) the input-output system (SA) = {Sθ}θ∈Θ, where for
every θ ∈ Θ,

xθ(n + 1) = A(σ(θ, n))xθ(n) + s(n), n ∈ N,

xθ(0) = 0.
(Sθ)

Remark 3.3. For every (θ, s) ∈ Θ ×Δ(N, X), the solution of (2.1) has the form:

xθ,s(n) =
n∑

k=1

Φ(σ(θ, k), n − k)s(k − 1), ∀n ∈ N
∗. (3.3)

Definition 3.4. LetU,V be two Banach sequence spaces withU,V ∈ Q(N). The system (SA) is
said to be (U(N, X), V (N, X))- stable if the following assertions hold:

(i) for every s ∈ Δ(N, X) and θ ∈ Θ the solution xθ,sbelongs to V (N, X);

(ii) there is L > 0 such that ‖xθ,s‖V (N,X) ≤ L‖s‖U(N,X), for all (θ, s) ∈ Θ ×Δ(N, X).

U(N, X) is called the input space and V (N, X) is called the output space.

Our first result provides a sufficient condition for uniform stability and is given by the
following.

Theorem 3.5. Let U,V ∈ Q(N). If the system (SA) is (U(N, X), V (N, X))-stable, then the system
(A) is uniformly stable.

Proof. Let L > 0 be given by Definition 3.4. Let θ ∈ Θ and let x ∈ X. We consider the sequence

s : N −→ X, s(n) = χ{0}(n)x. (3.4)

Then, s ∈ Δ(N, X) and ‖s‖U(N,X) = FU(1)‖x‖. We observe that xθ,s(n) = Φ(σ(θ, 1), n − 1)x, for
all n ∈ N

∗. Let p ∈ N. Then from

∥∥Φ
(
σ(θ, 1), p

)
x
∥∥χ{p+1}(k) ≤ ‖xθ,s(k)‖, ∀k ∈ N, (3.5)

we obtain that

∥∥Φ
(
σ(θ, 1), p

)
x
∥∥FV (1) ≤ ‖xθ,s‖V (N,X) ≤ L‖s‖U(N,X) = LFU(1)‖x‖. (3.6)
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Setting K = (LFU(1))/FV (1) it follows that

‖Φ(σ(θ, 1), n)x‖ ≤ K‖x‖, ∀n ∈ N. (3.7)

Taking into account that K does not depend on θ or x, from (3.7) we have that

‖Φ(σ(θ, 1), n)‖ ≤ K, ∀n ∈ N, ∀θ ∈ Θ. (3.8)

Let θ ∈ Θ. By applying relation (3.8) for θ̃ = σ(θ,−1), we deduce that ‖Φ(θ, n)‖ ≤ K, for all
n ∈ N and thus the proof is complete.

Corollary 3.6. The system (A) is uniformly stable if and only if the system (SA) is (�∞(N, X),
�1(N, X))-stable.

Proof. Necessity is immediate via Definition 3.4 and sufficiency follows from Theorem 3.5.

The first main result of this section is the following.

Theorem 3.7. Let U,V ∈ Q(N) be such that either U ∈ U(N) or V ∈ V(N). If the system (SA) is
(U(N, X), V (N, X))-stable, then the system (A) is uniformly exponentially stable.

Proof. Let L > 0 be given by Definition 3.4. From Theorem 3.5 it follows that there is M > 0
such that

‖Φ(θ, n)x‖ ≤ M‖x‖, ∀(θ, n) ∈ Θ × N, ∀x ∈ X. (3.9)

Case 1. If U ∈ U(N) then, according to Remark 2.5(iv) we deduce that there is a sequence
δ : N → R+ with δ ∈ U \ �1(N,R). Let h ∈ N

∗ be such that

h∑

j=0

δ
(
j
) ≥ eLM|δ|U

FV (1)
. (3.10)

Let θ ∈ Θ and let x ∈ X. We consider the sequence

s : N −→ X, s(n) = χ{0,...,h}(n)δ(n)Φ(θ, n + 1)x. (3.11)

We have that s ∈ Δ(N, X) and using (3.9) we obtain that ‖s(n)‖ ≤ M‖x‖δ(n), for all n ∈ N,
which implies that

‖s‖U(N,X) ≤ M‖x‖|δ|U. (3.12)

According to our hypothesis we deduce that

‖xθ,s‖V (N,X) ≤ L‖s‖U(N,X) ≤ LM‖x‖|δ|U. (3.13)
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We observe that

xθ,s(h + 1) =

⎛

⎝
h∑

j=0

δ
(
j
)
⎞

⎠Φ(θ, h + 1)x. (3.14)

Then from

‖xθ,s(h + 1)‖χ{h+1}(n) ≤ ‖xθ,s(n)‖, ∀n ∈ N (3.15)

and using relations (3.13) and (3.14) we obtain that

⎛

⎝
h∑

j=0

δ
(
j
)
⎞

⎠‖Φ(θ, h + 1)x‖FV (1) ≤ ‖xθ,s‖V (N,X) ≤ LM‖x‖|δ|U. (3.16)

From relations (3.10) and (3.16) it follows that ‖Φ(θ, h + 1)x‖ ≤ (1/e)‖x‖. Setting p = h + 1
and taking into account that p does not depend on θ or x we have that

∥∥Φ
(
θ, p

)
x
∥∥ ≤

(
1
e

)
‖x‖, ∀θ ∈ Θ, ∀x ∈ X. (3.17)

Let ν = 1/p and letK = Me. Let θ ∈ Θ and let n ∈ N. Then there are k ∈ N and j ∈ {0, . . . , p−1}
such that n = kp + j. Using relations (3.9) and (3.17) we have that

‖Φ(θ, n)‖ ≤ M
∥∥Φ

(
θ, kp

)∥∥ ≤ Me−k ≤ Ke−νn. (3.18)

Case 2. If V ∈ V(N) then there is p ∈ N
∗ such that

FV

(
p
) ≥ eLM2FU(1). (3.19)

Let θ ∈ Θ and let x ∈ X. We consider the sequence

u : N −→ X, u(n) = χ{0}(n)Φ(θ, 1)x. (3.20)

Then u ∈ Δ(N, X) and according to relation (3.9)we have that

‖u‖U(N,X) ≤ MFU(1)‖x‖. (3.21)

It is easy to see that xθ,u(n) = Φ(θ, n)x, for all n ∈ N
∗. Then, using relation (3.9) we deduce

that

∥∥Φ
(
θ, p

)
x
∥∥χ{1,...,p}(n) ≤ M‖xθ,u(n)‖, ∀n ∈ N (3.22)
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which implies that

∥
∥Φ

(
θ, p

)
x
∥
∥FV

(
p
) ≤ M‖xθ,u‖V (N,X) ≤ LM‖u‖U(N,X) ≤ LM2FU(1)‖x‖. (3.23)

From relations (3.19) and (3.23) it follows that ‖Φ(θ, p)x‖ ≤ (1/e)‖x‖. Taking into account
that p does not depend on θ or x we obtain that ‖Φ(θ, p)x‖ ≤ (1/e)‖x‖, for all θ ∈ Θ and all
x ∈ X. Using similar arguments with those from Case 1, we deduce that the system (A) is
uniformly exponentially stable.

The second main result of this section is the following.

Theorem 3.8. LetU,V ∈ Q(N) be such that eitherU ∈ U(N) or V ∈ V(N). The following assertions
hold:

(i) if the system (SA) is (U(N, X), V (N, X))-stable, then the system (A) is uniformly
exponentially stable;

(ii) if U ⊂ V , then the system (A) is uniformly exponentially stable if and only if the system
(SA) is (U(N, X), V (N, X))-stable.

Proof. (i) This follows from Theorem 3.7.
(ii) Necessity. Let K, ν > 0 be such that ‖Φ(θ, n)‖ ≤ Ke−νn, for all (θ, n) ∈ Θ × N. Let

θ ∈ Θ and let s ∈ Δ(N, X). Then

‖xθ,s(n)‖ ≤ K
n∑

k=1

e−ν(n−k)‖s(k − 1)‖, ∀n ∈ N
∗. (3.24)

Since s ∈ Δ(N, X), in particular s ∈ V (N, X), so ‖s(·)‖ ∈ V (N,R). According to Lemma 2.11,
the sequence

αs : R −→ R, αs(n) =

⎧
⎪⎨

⎪⎩

n∑

k=1

e−ν(n−k)‖s(k − 1)‖, n ∈ N
∗,

0, n = 0
(3.25)

belongs to V (N,R) and

|αs|V ≤ 1
1 − e−ν

‖s‖V (N,X). (3.26)

From relations (3.24) and (3.26) it follows that xθ,s ∈ V (N, X) and

‖xθ,s‖V (N,X) ≤
K

1 − e−ν
‖s‖V (N,X). (3.27)

Since U ⊂ V there is λ > 0 such that |u|V ≤ λ|u|U, for all u ∈ U. Setting L = λK/(1 − e−ν) from
relation (3.27) we deduce that ‖xθ,s‖V (N,X) ≤ L‖s‖U(N,X). Taking into account that L does not
depend on θ or s, it follows that the system (SA) is (U(N, X), V (N, X))-stable.

Sufficiency. This follows from (i).
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Inwhat follows, we prove that the result obtained in Theorem 3.8 is themost general in
this topic. Precisely, we will show that ifU/∈U(N) and V /∈V(N), then the (U(N, X), V (N, X))-
stability of the system (SA) does not assure the uniform exponential stability of the system
(A).

Example 3.9. Let Θ = R and let σ : Θ × Z → Θ, σ(θ,m) = θ +m. Then σ is a discrete flow on
Θ. We consider the function

ϕ : R −→ (0,∞), ϕ(t) =

⎧
⎨

⎩

t + 1, t ≥ 0,

et, t < 0.
(3.28)

It is easy to see that ϕ is nondecreasing with limt→∞ϕ(t) = ∞.
Let X be a Banach space. For every θ ∈ Θ, let

A(θ) : X −→ X, A(θ)x =
ϕ(θ)

ϕ(θ + 1)
x. (3.29)

The discrete cocycle associated with the system(A) is

Φ(θ, n)x =
ϕ(θ)

ϕ(θ + n)
x, ∀x ∈ X, ∀(θ, n) ∈ Θ × N. (3.30)

We associate with the system (A) then input-output system (SA) = {Sθ}θ∈Θ.
Using (3.30) it follows that

xθ,s(n) =
n∑

k=1

ϕ(θ + k)
ϕ(θ + n)

s(k − 1), ∀n ∈ N
∗, ∀(θ, s) ∈ Θ ×Δ(N, X). (3.31)

Let U,V ∈ Q(N) with U/∈U(N) and V /∈V(N). Then, from Remark 2.5 we have that U =
�1(N,R) and from Remark 2.9 we obtain that c0(N,R) ⊂ V . Then, there is L > 0 such that

|w|V ≤ L‖w‖∞, ∀w ∈ c0(N,R). (3.32)

We prove that the system (SA) is (U(N, X), V (N, X))-stable. Indeed, let θ ∈ Θ and let s ∈
Δ(N, X). Then, there is h ∈ N

∗ such that s(j) = 0, for j ≥ h. From (3.31) we have that

xθ,s(n) =
1

ϕ(θ + n)

h+1∑

k=1

ϕ(θ + k)s(k − 1), ∀n ≥ h + 1. (3.33)
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Since ϕ(t) → ∞ as t → ∞, we obtain that xθ,s(n) → 0 as n → ∞. This shows that xθ,s ∈
c0(N, X), so xθ,s ∈ V (N, X). Moreover, from

‖xθ,s(n)‖ ≤
n∑

k=1

‖s(k − 1)‖ ≤ ‖s‖�1(N,X), ∀n ∈ N, (3.34)

we have that

‖xθ,s‖c0(N,X) ≤ ‖s‖�1(N,X). (3.35)

From relations (3.32) and (3.35) it follows that

‖xθ,s‖V (N,X) ≤ L‖s‖�1(N,X). (3.36)

Taking into account that L does not depend on θ or s it follows that the system (SA) is
(�1(N, X), V (N, X))-stable. But, for all that, it is easy to verify that there are not K, ν > 0 such
that ‖Φ(θ, n)‖ ≤ Ke−νn, for all (θ, n) ∈ Θ×N, so the system (A) is not uniformly exponentially
stable.

Corollary 3.10. Let p, q ∈ [1,∞] with (p, q)/= (1,∞). The following assertions hold:

(i) if the system (SA) is (�p(N, X), �q(N, X))-stable, then the system (A) is uniformly
exponentially stable;

(ii) if p ≤ q, then the system (A) is uniformly exponentially stable if and only if the system
(SA) is (�p(N, X), �q(N, X))-stable.

Corollary 3.11. Let W ∈ Q(N). The system (A) is uniformly exponentially stable if and only if the
system (SA) is (W(N, X),W(N, X))-stable.

Proof. This follows from Theorem 3.8 observing that if W /∈U(N), then W = �1(N,R), and so
W ∈ V(N).

Definition 3.12. LetU,V ∈ Q(N). The system (SA) is said to be completely (U(N, X), V (N, X))-
stable if the following properties hold:

(i) for every s ∈ U(N, X) and every θ ∈ Θ the solution xθ,sbelongs to V (N, X);

(ii) there is L > 0 such that ‖xθ,s‖V (N,X) ≤ L‖s‖U(N,X), for all (θ, s) ∈ Θ ×U(N, X).

As consequences of Theorem 3.8 we obtain the following.
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Theorem 3.13. Let U,V ∈ Q(N) withU ∈ U(N) or V ∈ V(N). The following assertions hold:

(i) if the system (SA) is completely (U(N, X), V (N, X))-stable, then the system (A) is
uniformly exponentially stable;

(ii) if U ⊂ V , then the system (A) is uniformly exponentially stable if and only if the system
(SA) is completely (U(N, X), V (N, X))-stable.

Corollary 3.14. Let p, q ∈ [1,∞] with (p, q)/= (1,∞). The following assertions hold:

(i) if the system (SA) is completely (�p(N, X), �q(N, X))-stable, then the system (A) is
uniformly exponentially stable;

(ii) if p ≤ q, then the system (A) is uniformly exponentially stable if and only if the system
(SA) is completely (�p(N, X), �q(N, X))-stable.

Corollary 3.15. Let W ∈ Q(N). The system (A) is uniformly exponentially stable if and only if the
system (SA) is completely (W(N, X),W(N, X))-stable.

Remark 3.16. Let W ∈ Q(N). If the system (A) is uniformly exponentially stable, then
according to Corollary 3.15, for every θ ∈ Θ, the operator

Γθ : W(N, X) −→ W(N, X), Γθ(s) = xθ,s (3.37)

is correctly defined and this is a bounded linear operator. Moreover, if L > 0 is given by
Definition 3.12, then we have that supθ∈Θ‖Γθ‖ ≤ L.

Remark 3.17. From the above results it follows that in the study of exponential stability of
variational difference equations using input-output techniques one may work with Banach
sequence spaces which are invariant under translations, such that either the input space
contains at least a sequence whose series is divergent or the output space has unbounded
fundamental function. Moreover, according to Corollary 3.11 we deduce that when the input
space and the output space coincide, then there is no other requirement on the underlying
sequence spaces and it is sufficient to consider any Banach sequence space which is invariant
under translations and contains at least a characteristic function of a singleton.

4. Applications to Robustness of Exponential Stability

In this section, by applying our main results we will study the persistence of the exponential
stability in the presence of variational structured perturbations.

Notations. If Y,Z are two Banach spaces, we denote by L(Y,Z) the Banach space of all
bounded linear operators T : Y → Z. If Y = Z, we denote L(Y, Y ) = L(Y ). If (Θ, d) is
a metric space, we consider �∞(Θ,L(Y,Z)) := {R : Θ → L(Y,Z) | supθ∈Θ‖R(θ)‖ < ∞},
which is a Banach space with respect to the norm

‖|R|‖ := sup
θ∈Θ

‖R(θ)‖. (4.1)
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Let (Θ, d) be a metric space and let σ : Θ × Z → Θ be a discrete flow on Θ. Let X
be a Banach space and let {A(θ)}θ∈Θ ⊂ L(X). We consider the linear system of variational
difference equations (A). For every D ∈ �∞(Θ,L(X)) we consider the perturbed system

x(θ)(n + 1) = [A(σ(θ, n)) +D(σ(θ, n))]x(θ)(n), (θ, n) ∈ Θ × N. (A +D)

Remark 4.1. IfΦA is the discrete cocycle associated to the system (A) andΦA+D is the discrete
cocycle associated to the system (4.2), then the following perturbation formulas are satisfied:

ΦA+D(θ, n) = ΦA(θ, n) +
n∑

k=1

ΦA(σ(θ, k), n − k)D(σ(θ, k − 1))ΦA+D(θ, k − 1),

ΦA+D(θ, n) = ΦA(θ, n) +
n∑

k=1

ΦA+D(σ(θ, k), n − k)D(σ(θ, k − 1))ΦA(θ, k − 1)

(4.2)

for all (θ, n) ∈ Θ × N
∗.

In what follows we suppose that the system (A) is uniformly exponentially stable.
The main question is how large may be the norm of the perturbation D ∈ �∞(Θ,L(X)) such
that the perturbed system (4.2) remains uniformly exponentially stable. With this purpose
we introduce in the following.

Definition 4.2. The number

rstab(A) := sup{r > 0 : ∀D ∈ �∞(Θ,L(X))

with ‖|D|‖ < r =⇒ (A +D) is uniformly exponentially stable
} (4.3)

is called the stability radius of the system (A).

We note that in the existent literature there is not an explicit computational formula
for the stability radius of systems, only in some sporadic special cases. For linear retarded
systems of differential equations on R

n, some interesting formulas were obtained by Ngoc
and Son in [26, Theorems 3.5 and 3.10], but the estimates are still complicated. For the case
of positive linear retarded systems which are Hurwitz stable, the authors succeeded to
deduce a formula for the stability radius corresponding to multiaffine perturbations (see
Theorem 4.7 and the following example). In [25] Murakami and Nagabuchi obtained an
explicit formula for the stability radius of uniformly asymptotically stable positive Volterra
difference equations on Banach lattices (see [25], Theorem4.3). Generally, in order to analyze
the persistence of the exponential stability in the presence of perturbations, it is interesting
to find a lower bound for the stability radius of systems (see [3, 25, 26, 30, 33]) because
in this manner we estimate the possible size of the disturbance operator under which the
(additively) perturbed system remains exponentially stable.

In what follows, using the results obtained in the previous section we will estimate
a lower bound for the stability radius of the system (A). We will provide a detailed study,
when the system (A) is subject to a very general perturbation structure.

Let U,Y be two Banach spaces. Let B ∈ �∞(Θ,L(U,X)), C ∈ �∞(Θ,L(X,Y )).
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Definition 4.3. The number

rstab(A;B,C) := sup{r > 0 : ∀P ∈ �∞(Θ,L(Y,U))

with ‖|P |‖ < r =⇒ (A + BPC) is uniformly exponentially stable
}

(4.4)

is called the stability radius of the system (A) subject to the perturbation structure (B,C).

Remark 4.4. In particular, if U = Y = X and BI(θ) = CI(θ) = Id, for all θ ∈ Θ, then

rstab(A;BI, CI) = rstab(A). (4.5)

Up to now, there is not an explicit formula for the computation of the stability radius
of variational systems. Based on our stability results, we will deduce a lower bound for
rstab(A;B,C). With this purpose we associate with the system (A) the input-output control
system (SA) = {Sθ}θ∈Θ, where for every θ ∈ Θ,

xθ(n + 1) = A(σ(θ, n))xθ(n) + B(σ(θ, n))u(n), n ∈ N

xθ(0) = 0

yθ(n) = C(σ(θ, n))xθ(n), n ∈ N

(Sθ)

Let W ∈ W(N). Since the system (A) is uniformly exponentially stable, according to
Corollary 3.15 there is L > 0 such that for every (θ, s) ∈ Θ × W(N, X) the corresponding
solution

xθ,s(n) =
n∑

k=1

ΦA(σ(θ, k), n − k)s(k − 1), n ∈ N
∗ (4.6)

has the property

‖xθ,s‖W(N,X) ≤ L‖s‖W(N,X). (4.7)

Let θ ∈ Θ and let u ∈ W(N, U). Then, the sequence

su : N −→ X, su(n) = B(σ(θ, n))u(n) (4.8)

has the property

‖su(n)‖ ≤ ‖|B|‖ ‖u(n)‖, ∀n ∈ N. (4.9)
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This implies that su ∈ W(N, X). According to (4.7) we have that xθ,su ∈ W(N, X) and from
(4.7) and (4.9) it follows that

‖xθ,su‖W(N,X) ≤ L‖|B|‖ ‖u‖W(N,U). (4.10)

Observing that the solution yθ,u of the system (2.2) has the property

yθ,u(n) = C(σ(θ, n))xθ,su(n), ∀n ∈ N (4.11)

and since

∥
∥yθ,u(n)

∥
∥ ≤ ‖|C|‖ ‖xθ,su(n)‖, ∀n ∈ N, (4.12)

we deduce that yθ,u ∈ W(N, Y ) and from (4.10) and (4.12) we have that

∥∥yθ,u

∥∥
W(N,Y ) ≤ λ‖u‖W(N,U), (4.13)

where λ = ‖|C|‖L‖|B|‖. Taking into account that λ does not depend on θ or u it follows that

∥∥yθ,u

∥∥
W(N,Y ) ≤ λ‖u‖W(N,U), ∀(θ, u) ∈ Θ ×W(N, U). (4.14)

In this context, for every θ ∈ Θ, it makes sense to consider the operator

Λθ
W : W(N, U) −→ W(N, Y ), Λθ

W(u) = yθ,u. (4.15)

We have that Λθ
W is a correctly defined and bounded linear operator. Moreover, from (4.14)

we have that

λW(A;B,C) := sup
θ∈Θ

∥∥∥Λθ
W

∥∥∥ < ∞. (4.16)

Remark 4.5. The family {Λθ
W}θ∈Θ is called the family of input-output operators associated to the

system (SA).

Remark 4.6. For every (θ, u) ∈ Θ ×W(N, U)we have that

∥∥yθ,u

∥∥
W(N,Y ) ≤ λW(A;B,C)‖u‖W(N,U). (4.17)

In what follows we suppose that there is δ > 0 such that ‖C(θ)x‖ ≥ δ‖x‖, for all
(θ, x) ∈ Θ ×X.

Theorem 4.7. If P ∈ �∞(Θ,B(Y,U)) has the property that

‖|P |‖ <
1

λW(A;B,C)
, (4.18)
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then for every (θ, x) ∈ Θ ×X, the sequence

γθ,x : N −→ X, γθ,x(n) = ΦA+BPC(θ, n)x (4.19)

belongs toW(N, X). Moreover, there isM > 0 such that

∥
∥γθ,x

∥
∥
W(N,X) ≤ M‖x‖, ∀(θ, x) ∈ Θ ×X. (4.20)

Proof. Let K, ν > 0 be such that

‖ΦA(θ, n)‖ ≤ Ke−νn, ∀(θ, n) ∈ Θ × N. (4.21)

Let P ∈ �∞(Θ,B(Y,U)) be such that ‖|P |‖λW(A;B,C) < 1. We set α := ‖|P |‖λW(A;B,C). Let
(θ, x) ∈ Θ ×X. For every n ∈ N

∗ we denote by

γn : N −→ X, γn(k) = χ{0,...,n}(k)γθ,x(k),

qn : N −→ Y, qn(k) = C(σ(θ, k))γn(k),

un : N −→ U, un(k) = P(σ(θ, k))qn(k).

(4.22)

Let n ∈ N
∗. We have that un ∈ Δ(N, U), so un ∈ W(N, U). Since

‖un(k)‖ ≤ ‖P(σ(θ, k))‖∥∥qn(k)
∥∥ ≤ ‖|P |‖∥∥qn(k)

∥∥, ∀k ∈ N, (4.23)

we deduce that ‖un‖W(N,U) ≤ ‖|P |‖ ‖qn‖W(N,Y ). From un ∈ W(N, U), using Remark 4.6 we have
that

∥∥yθ,un

∥∥
W(N,Y ) ≤ λW(A;B,C)‖un‖W(N,U) ≤ λW(A;B,C)‖|P |‖∥∥qn

∥∥
W(N,Y ) = α

∥∥qn
∥∥
W(N,Y ). (4.24)

From Remark 4.1 we obtain that

qn(k) = C(σ(θ, k))ΦA(θ, k)x + yθ,un(k), ∀k ∈ {1, . . . , n}, (4.25)

which via (4.21) implies that

∥∥qn(k)
∥∥ ≤ ‖|C|‖Ke−νk‖x‖ + ∥∥yθ,un(k)

∥∥, ∀k ∈ N
∗. (4.26)

Since ‖qn(0)‖ = ‖C(θ)x‖ ≤ ‖|C|‖‖x‖, using (4.26) we deduce that

∥∥qn(k)
∥∥ ≤ ‖|C|‖K‖x‖eν(k) +

∥∥yθ,un(k)
∥∥, ∀k ∈ N, (4.27)
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where eν : N → R, eν(k) = e−νk. Since eν ∈ �1(N,R), we have that eν ∈ W . Then, setting
m = ‖|C|‖K|eν|W from (4.27) and (4.24) it follows that

∥
∥qn

∥
∥
W(N,Y ) ≤ m‖x‖ + ∥

∥yθ,un

∥
∥
W(N,Y ) ≤ m‖x‖ + α

∥
∥qn

∥
∥
W(N,Y ), (4.28)

which implies that

∥
∥qn

∥
∥
W(N,Y ) ≤

m

1 − α
‖x‖. (4.29)

According to our hypothesis we have that δ‖γn(k)‖ ≤ ‖qn(k)‖, for all k ∈ N, so δ‖γn‖W(N,X) ≤
‖qn‖W(N,Y ). SettingM = m/(δ − αδ), from (4.29)we deduce that ‖γn‖W(N,X) ≤ M‖x‖. SinceM
does not depend on n, θ, or x, we have that

∥∥γθ,xχ{0,...,n}
∥∥
W(N,X) ≤ M‖x‖, ∀n ∈ N, ∀(θ, x) ∈ Θ ×X. (4.30)

Taking into account that W ∈ W(N) from (4.30) it follows that γθ,x ∈ W(N, X), for all (θ, x) ∈
Θ ×X and ‖γθ,x‖W(N,X) ≤ M‖x‖, for all (θ, x) ∈ Θ ×X.

The main result of this section is the following.

Theorem 4.8. The following estimate holds:

rstab(A;B,C) ≥ 1
λW(A;B,C)

. (4.31)

Proof. Since (A) is uniformly exponentially stable, according to Corollary 3.11 we have that
the associated system (SA) = {Sθ}θ∈Θ (see p. 7) is (W(N, X),W(N, X))-stable. So there is
LA > 0 such that

‖xθ,s‖W(N,X) ≤ LA‖s‖W(N,X), ∀(θ, s) ∈ Θ ×Δ(N, X). (4.32)

Let P ∈ �∞(Θ,B(Y,U)) with ‖|P‖|λW(A;B,C) < 1. Denote by α := ‖|P‖|λW(A;B,C). Let
M > 0 be given by Theorem 4.7.

We consider the system (SA+BPC) = {SP
θ }θ∈Θ, where

zθ(n + 1) = [A(σ(θ, n)) + (BPC)(σ(θ, n))]zθ(n) + s(n), n ∈ N,

zθ(0) = 0
(SP

θ
)

associated with the perturbed system (A + BPC). In what follows we shall prove that the
system (SA+BPC) is (W(N, X),W(N, X))-stable.
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Let s ∈ Δ(N, X) and let θ ∈ Θ. Since s ∈ Δ(N, X), there is h ≥ 2 such that s(j) = 0, for
all j ≥ h. Then we observe that

zθ,s(n) =
h∑

k=1

ΦA+BPC(σ(θ, k), n − k)s(k − 1)

= ΦA+BPC(σ(θ, h), n − h)
h∑

k=1

ΦA+BPC(σ(θ, k), h − k)s(k − 1)

= ΦA+BPC(σ(θ, h), n − h)zθ,s(h), ∀n ≥ h.

(4.33)

According to Theorem 4.7 the sequence

γ : N −→ X, γ(n) = ΦA+BPC(σ(θ, h), n)zθ,s(h) (4.34)

belongs toW(N, X) and

∥∥γ
∥∥
W(N,X) ≤ M‖zθ,s(h)‖. (4.35)

Since W is invariant under translations, we have that

γh : N −→ X, γh(n) =

⎧
⎨

⎩

γ(n − h), n ≥ h,

0, n ∈ {0, . . . , h − 1}
(4.36)

belongs toW(N, X) and

∥∥γh
∥∥
W(N,X) =

∥∥γ
∥∥
W(N,X). (4.37)

Then, from

‖zθ,s(n)‖ ≤ χ{0,...,h−1}(n)‖zθ,s(n)‖ +
∥∥γh(n)

∥∥, ∀n ∈ N, (4.38)

we deduce that zθ,s ∈ W(N, X). In what follows, we prove that the second condition from
Definition 3.4 is fulfilled.
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For n ∈ {2, . . . , h} using Remark 4.1 we successively obtain that

zθ,s(n) =
n∑

k=1

ΦA+BPC(σ(θ, k), n − k)s(k − 1)

= xθ,s(n) +
n−1∑

k=1

n−k∑

j=1

ΦA

(
σ
(
θ, k + j

)
, n − k − j

)
(BPC)

(
σ
(
θ, k + j − 1

))

·ΦA+BPC
(
σ(θ, k), j − 1

)
s(k − 1) = xθ,s(n)

+
n−1∑

k=1

n−1∑

i=k

ΦA(σ(θ, i + 1), n − i − 1)(BPC)(σ(θ, i))ΦA+BPC(σ(θ, k), i − k)s(k − 1)

= xθ,s(n) +
n−1∑

i=1

i∑

k=1

ΦA(σ(θ, i + 1), n − i − 1)(BPC)(σ(θ, i))

·ΦA+BPC(σ(θ, k), i − k)s(k − 1) = xθ,s(n)

+
n−1∑

i=1

ΦA(σ(θ, i + 1), n − i − 1)(BPC)(σ(θ, i))zθ,s(i).

(4.39)

Since zθ,s(0) = 0, from the above estimate we have that

zθ,s(n) = xθ,s(n) +
n−1∑

i=0

ΦA(σ(θ, i + 1), n − i − 1)(BPC)(σ(θ, i))zθ,s(i)

= xθ,s(n) +
n∑

ξ=1

ΦA(σ(θ, ξ), n − ξ)(BPC)(σ(θ, ξ − 1))zθ,s(ξ − 1).

(4.40)

Denoting by

u : N −→ U, u(n) = P(σ(θ, n))C(σ(θ, n))zθ,s(n) (4.41)

and taking into account that ‖u(n)‖ ≤ ‖|P |‖ ‖|C|‖ ‖zθ,s(n)‖, for all n ∈ N, we have that u ∈
W(N, U). Then, using (4.40)we deduce that

C(σ(θ, n))zθ,s(n) = C(σ(θ, n))xθ,s(n) +
(
Λθ

Wu
)
(n), ∀n ∈ {2, . . . , h}, (4.42)

which implies that

‖C(σ(θ, n))zθ,s(n)‖ ≤ ‖|C|‖ ‖xθ,s(n)‖ +
∥∥∥Λθ

W

∥∥∥ ‖|P |‖‖C(σ(θ, n))zθ,s(n)‖

≤ ‖|C|‖ ‖xθ,s(n)‖ + λW(A;B,C)‖|P |‖ ‖C(σ(θ, n))zθ,s(n)‖.
(4.43)
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From (4.43) we obtain that

‖C(σ(θ, n))zθ,s(n)‖ ≤ ‖|C|‖
1 − α

‖xθ,s(n)‖. (4.44)

Since ‖C(σ(θ, n))zθ,s(n)‖ ≥ δ‖zθ,s(n)‖, using (4.44) it follows that

‖zθ,s(n)‖ ≤ ‖|C|‖
δ(1 − α)

‖xθ,s(n)‖, ∀n ∈ {2, . . . , h}. (4.45)

We note that zθ,s(0) = xθ,s(0) = 0 and zθ,s(1) = xθ,s(1) = s(0). Then, setting q = max{‖|C‖|/(δ−
αδ), 1} from relation (4.45)we have that

‖zθ,s(n)‖ ≤ q‖xθ,s(n)‖, ∀n ∈ {0, . . . , h}. (4.46)

Then, from relations (4.38) and (4.46) we deduce that

‖zθ,s(n)‖ ≤ q‖xθ,s(n)‖ +
∥∥γh(n)

∥∥, ∀n ∈ N. (4.47)

This implies that

‖zθ,s‖W(N,X) ≤ q‖xθ,s‖W(N,X) +
∥∥γh

∥∥
W(N,X). (4.48)

From relations (4.35), (4.37), and (4.46) we obtain that

∥∥γh
∥∥
W(N,X) ≤ M‖zθ,s(h)‖ ≤ Mq‖xθ,s(h)‖. (4.49)

From

‖xθ,s(h)‖χ{h}(n) ≤ ‖xθ,s(n)‖, ∀n ∈ N (4.50)

using the translation invariance ofW we have that

‖xθ,s(h)‖FW(1) ≤ ‖xθ,s‖W(N,X). (4.51)

Then from relations (4.48)–(4.51) it follows that

‖zθ,s‖W(N,X) ≤ q

(
1 +

M

FW(1)

)
‖xθ,s‖W(N,X). (4.52)

Finally, setting L = qLA[1 + (M/FW(1))], from relations (4.32) and (4.52) we deduce that

‖zθ,s‖W(N,X) ≤ L‖s‖W(N,X). (4.53)
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Taking into account that L does not depend on θ or s it follows that the system (SA+BPC) is
(W(N, X),W(N, X))-stable. By applying Theorem 3.8 we deduce that the system (A + BPC)
is uniformly exponentially stable and the proof is complete.

Remark 4.9. From Theorem 4.8 we deduce that the property of uniform exponential stability
of a system of variational difference equations is preserved in the presence of structured
perturbations, provided that the norm of the perturbation factor is less than 1/λW(A;B,C)
and this estimate holds for any sequence spaceW in the general classW(N). The study points
out an interesting connection between the family of the input-output operators associated
with the control system (SA) and the size of the “largest” perturbation in the presence of
which the perturbed system still remains uniformly exponentially stable.

The central result of this section is the following.

Theorem 4.10. The following estimate holds:

rstab(A;B,C) ≥ sup
W∈W(N)

1
λW(A;B,C)

. (4.54)

As a consequence, we deduce the following.

Corollary 4.11. Setting λp(A;B,C) = λ�p(N,R)(A;B,C) one has that

rstab(A;B,C) ≥ sup
p∈[1,∞]

1
λp(A;B,C)

. (4.55)
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