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Delay discrete inequalities with more than one nonlinear term are discussed, which generalize
some known results and can be used in the analysis of various problems in the theory of certain
classes of discrete equations. Application examples to show boundedness and uniqueness of
solutions of a Volterra type difference equation are also given.

1. Introduction

Gronwall-Bellman inequalities and their various linear and nonlinear generalizations play
very important roles in the discussion of existence, uniqueness, continuation, boundedness,
and stability properties of solutions of differential equations and difference equations. The
literature on such inequalities and their applications is vast. For example, see [1–12] for
continuous cases, and [13–20] for discrete cases. In particular, the book [21] written by
Pachpatte considered three types of discrete inequalities:

u(n) ≤ a(n) +
n−1∑

s=0

f(s)w(u(s)),

u2(n) ≤ a(n) + 2
n−1∑

s=0

f(s)u(s),

u2(n) ≤ a(n) +
n−1∑

s=0

f(s)w(u(s)).

(1.1)
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In this paper, we consider a delay discrete inequality

u(n) ≤ a(n) +
m∑

i=1

bi(n−1)∑

s=bi(0)

fi(n, s)wi(u(s)), n ∈ N0 (1.2)

which has m nonlinear terms where N0 = {0, 1, 2, . . .}. We will show that many discrete
inequalities like (1.1) can be reduced to this form. Our main result can be applied to analyze
properties of solutions of discrete equations. We also give examples to show boundedness
and uniqueness of solutions of a Volterra type difference equation.

2. Main Results

Assume that

(C1) a(n) is nonnegative for n ∈ N0 and a(0) > 0;

(C2) bi(n) (i = 1, . . . , m) are nondecreasing for n ∈ N0, the range of each bi belongs toN0,
and bi(n) ≤ n;

(C3) all fi(n, j) (i = 1, . . . , m) are nonnegative for n, j ∈ N0;

(C4) all wi (i = 1, . . . , m) are continuous and nondecreasing functions on [0,∞) and are
positive on (0,∞). They satisfy the relationshipw1 ∝ w2 ∝ · · · ∝ wm wherewi ∝ wi+1

means that (wi+1)/wi is nondecreasing on (0,∞) (see [10]).

Let Wi(u) =
∫u
ui
(dz/wi(z)) for u ≥ ui where ui > 0 is a given constant. Then, Wi is strictly

increasing so its inverseW−1
i is well defined, continuous, and increasing in its corresponding

domain. Define bi(−1) = −1, Δu(n) = u(n + 1) − u(n) and Δ2r(n, j) = r(n, j + 1) − r(n, j).

Theorem 2.1. Suppose that (C1)–(C4) hold and u(n) is a nonnegative function for n ∈ N0 satisfying
(1.2). Then

u(n) ≤W−1
m

⎡

⎣Wm(ã(0)) +
bm(n−1)∑

s=bm(0)

f̃m(n, s) +
n−1∑

s=0

Δ2rm(n, s)
φm

(
W−1

m−1(rm(0, s))
)

⎤

⎦, n ≤N1, (2.1)

where ã(n) = max0≤τ≤n,τ∈N0a(τ), f̃i(n, j) = max0≤τ≤n,τ∈N0fi(τ, j), rm(n, j) is determined recursively
by

r1
(
n, j

)
= ã

(
j
)
,

ri+1
(
n, j

)
=Wi(r1(n, 0)) +

bi(j−1)∑

s=bi(0)

f̃i(n, s) +
j−1∑

s=0

Δ2ri(n, s)
φi
(
W−1

i−1(ri(0, s))
) , i = 1, . . . , m − 1,

(2.2)

φi(u) = wi(u)/wi−1(u), φ1(u) = w1(u), W0 = I (Identity), and N1 is the largest positive integer
such that

Wi(ã(0)) +
bi(N1−1)∑

s=bi(0)

f̃i(N1, s) +
N1−1∑

s=0

Δ2ri(N1, s)
φi
(
W−1

i−1(ri(0, s))
) ≤

∫∞

ui

dz

wi(z)
, i = 1, . . . , m. (2.3)
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Remark 2.2. (1) N1 is defined by (2.3) and N1 = ∞ when all wi (i = 1, . . . , m) satisfy∫∞
ui
(dz/wi(z)) = ∞. Different choices of ui inWi do not affect our results (see [2]).

(2) If bi(n) = n for i = 1, . . . , m, then (2.1) gives the estimate of the following inequality:

u(n) ≤ a(n) +
m∑

i=1

n−1∑

s=0

fi(n, s)wi(u(s)), n ∈ N0 (2.4)

by replacing bm(n − 1), bm(0), bi(j − 1), bi(0), and bi(N1 − 1) with n − 1, 0, j − 1, 0 andN1 − 1,
respectively. Especially, if b1(n) = n and f1(n, s) = f(s), then (1.2) form = 1 becomes the first
inequality of (1.1). Equation (2.1) shows the same estimate given by (b1) of Theorem 4.2.3 in
the book [21].

Lemma 2.3. Δ2ri(n, j) is nonnegative and nondecreasing in n, and ri(n, j) is nonnegative and
nondecreasing in n and j for i = 1, . . . , m.

Proof. By the definitions of ã(n) and f̃i(n, j), it is easy to check that they are nonnegative and
nondecreasing in n, and ã(n) ≥ a(n) and f̃i(n, j) ≥ fi(n, j) for each fixed j where i = 1, . . . , m.
a(0) > 0 in (C1) implies that ã(n) > 0 for all n ≤N1. Clearly,

Δ2r1
(
n + 1, j

) −Δ2r1
(
n, j

)
= 0,

Δ2r2
(
n + 1, j

) −Δ2r2
(
n, j

)
= f̃1

(
n + 1, b1

(
j
)) − f̃1

(
n, b1

(
j
))

+
Δ2r1

(
n + 1, j

) −Δ2r1
(
n, j

)

w1
(
r1
(
0, j

)) ≥ 0,

(2.5)

where r1(0, j) = ã(j) > 0 is used, which yields thatΔ2r1(n, j) andΔ2r2(n, j) are nondecreasing
in n. Assume that Δ2rl(n, j) is nondecreasing in n. Then

Δ2rl+1
(
n + 1, j

) −Δ2rl+1
(
n, j

)
= f̃l

(
n + 1, bl

(
j
)) − f̃l

(
n, bl

(
j
))

+
Δ2rl

(
n + 1, j

) −Δ2rl
(
n, j

)

φl
(
W−1

l−1
(
rl
(
0, j

))) ≥ 0,

(2.6)

which implies that Δ2rl+1(n, j) is nondecreasing in n. By induction, Δ2ri(n, j) (i = 1, . . . , m)
are nondecreasing in n. Similarly, we can prove that they are nonnegative by induction again.
Then ri(n, j) (i = 1, . . . , m) are nonnegative and nondecreasing in n and j.

Proof of Theorem 2.1. Take any arbitrary positive integer ñ ≤ N1 and consider the auxiliary
inequality

u(n) ≤ r1(ñ, n) +
m∑

i=1

bi(n−1)∑

s=bi(0)

f̃i(ñ, s)wi(u(s)), n ≤ ñ. (2.7)
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Claim that u(n) in (2.7) satisfies

u(n) ≤W−1
m

⎡

⎣Wm(r1(ñ, 0)) +
bm(n−1)∑

s=bm(0)

f̃m(ñ, s) +
n−1∑

s=0

Δ2rm(ñ, s)
φm

(
W−1

m−1(rm(0, s))
)

⎤

⎦ (2.8)

for n ≤ {ñ,N2}whereN2 is the largest positive integer such that

Wi(r1(ñ, 0)) +
bi(N2−1)∑

s=bi(0)

f̃i(ñ, s) +
N2−1∑

s=0

Δ2ri(ñ, s)
φi
(
W−1

i−1(ri(0, s))
) ≤

∫∞

ui

dz

wi(z)
, (2.9)

i = 1, . . . , m.
Before we prove (2.8), notice thatN1 ≤ N2. In fact, ri(ñ, n), Δ2ri(ñ, n), and f̃i(ñ, n) are

nondecreasing in ñ by Lemma 2.3. Thus,N2 satisfying (2.9) gets smaller as ñ is chosen larger.
In particular,N2 satisfies the same (2.3) asN1 for ñ =N1 if r1(ñ, 0) = ã(0) is applied.

We divide the proof of (2.8) into two steps by using induction.

Step 1 (m = 1). Let z(n) =
∑b1(n−1)

s=b1(0)
f̃1(ñ, s)w1(u(s)) for n ≤ ñ and z(0) = 0. It is clear that z(n)

is nonnegative and nondecreasing. Observe that (2.7) is equivalent to u(n) ≤ r1(ñ, n) + z(n)
for n ≤ ñ and by assumptions (C2) and (C4) and Lemma 2.3,

Δz(n) = f̃1(ñ, b1(n))w1(u(b1(n))) ≤ f̃1(ñ, b1(n))w1(r1(ñ, b1(n)) + z(b1(n)))

≤ f̃1(ñ, b1(n))w1(r1(ñ, n) + z(n)).
(2.10)

Since w1 is nondecreasing and r1(ñ, n) = ã(n) > 0, we have

Δz(n) + Δ2r1(ñ, n)
w1(r1(ñ, n) + z(n))

≤ f̃1(ñ, b1(n)) + Δ2r1(ñ, n)
w1(r1(ñ, n) + z(n))

≤ f̃1(ñ, b1(n)) + Δ2r1(ñ, n)
w1(r1(0, n))

.

(2.11)

Then

∫z(n+1)+r1(ñ,n+1)

z(n)+r1(ñ,n)

dτ

w1(τ)
≤
∫z(n+1)+r1(ñ,n+1)

z(n)+r1(ñ,n)

dτ

w1(z(n) + r1(ñ, n))

≤ Δz(n) + Δ2r1(ñ, n)
w1(z(n) + r1(ñ, n))

≤ f̃1(ñ, b1(n)) + Δ2r1(ñ, n)
w1(r1(0, n))

,

(2.12)
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and so

∫z(n)+r1(ñ,n)

z(0)+r1(ñ,0)

dτ

w1(τ)
=

n−1∑

s=0

∫z(s+1)+r1(ñ,s+1)

z(s)+r1(ñ,s)

dτ

w1(τ)

≤
n−1∑

s=0

f̃1(ñ, b1(s)) +
n−1∑

s=0

Δ2r1(ñ, s)
w1(r1(0, s))

=
b1(n−1)∑

s=b1(0)

f̃1(ñ, s) +
n−1∑

s=0

Δ2r1(ñ, s)
w1(r1(0, s))

.

(2.13)

The definition ofW1 in Theorem 2.1 and z(0) = 0 show

W1(z(n) + r1(ñ, n)) ≤W1(r1(ñ, 0)) +
b1(n−1)∑

s=b1(0)

f̃1(ñ, s) +
n−1∑

s=0

Δ2r1(ñ, s)
w1(r1(0, s))

, n ≤ ñ. (2.14)

Equation (2.9) shows that the right side of (2.14) is in the domain ofW−1
1 for all n ≤ ñ. Thus

the monotonicity ofW−1
1 implies

u(n) ≤ z(n) + r1(ñ, n) ≤W−1
1

⎡

⎣W1(r1(ñ, 0)) +
b1(n−1)∑

s=b1(0)

f̃1(ñ, s) +
n−1∑

s=0

Δ2r1(ñ, s)
w1(r1(0, s))

⎤

⎦ (2.15)

for n ≤ ñ; that is, (2.8) is true form = 1.

Step 2 (m = k + 1). Assume that (2.8) is true form = k. Consider

u(n) ≤ r1(ñ, n) +
k+1∑

i=1

bi(n−1)∑

s=bi(0)

f̃i(ñ, s)wi(u(s)), n ≤ ñ. (2.16)

Let z(n) =
∑k+1

i=1
∑bi(n−1)

s=bi(0)
f̃i(ñ, s)wi(u(s)) and z(0) = 0. Then z(n) is nonnegative and

nondecreasing and satisfies u(n) ≤ r1(ñ, n) + z(n) for n ≤ ñ. Moreover, we have

Δz(n) =
k+1∑

i=1

f̃i(ñ, bi(n))wi(u(bi(n))) ≤
k+1∑

i=1

f̃i(ñ, bi(n))wi(r1(ñ, bi(n)) + z(bi(n))). (2.17)
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Since wi and r1 are nondecreasing in their arguments and r1(ñ, n) > 0, we have by the
assumption bi(n) ≤ n

Δz(n) + Δ2r1(ñ, n)
w1(z(n) + r1(ñ,n))

≤
∑k+1

i=1 f̃i(ñ, bi(n))wi(z(bi(n)) + r1(ñ, bi(n)))
w1(z(n) + r1(ñ, n))

+
Δ2r1(ñ, n)
w1(r1(ñ, n))

≤ f̃1(ñ, b1(n)) +
k+1∑

i=2

f̃i(ñ, bi(n))
wi(z(bi(n)) + r1(ñ, bi(n)))
w1(z(bi(n)) + r1(ñ, bi(n)))

+
Δ2r1(ñ, n)
w1(r1(0, n))

≤ f̃1(ñ, b1(n)) +
k∑

i=1

f̃i+1(ñ, bi+1(n))φ̃i+1(z(bi+1(n)) + r1(ñ, bi+1(n)))

+
Δ2r1(ñ, n)
w1(r1(0, n))

(2.18)

for n ≤ ñwhere φ̃i+1(u) = wi+1(u)/w1(u) for i = 1, . . . , k, which gives

∫z(n+1)+r1(ñ,n+1)

z(n)+r1(ñ,n)

dτ

w1(τ)
≤
∫z(n+1)+r1(ñ,n+1)

z(n)+r1(ñ,n)

dτ

w1(z(n) + r1(ñ, n))

≤ Δz(n) + Δ2r1(ñ, n)
w1(r1(ñ, n) + z(n))

≤ f̃1(ñ, b1(n)) + Δ2r1(ñ, n)
w1(r1(0, n))

+
k∑

i=1

f̃i+1(ñ, bi+1(n))φ̃i+1(z(bi+1(n)) + r1(ñ, bi+1(n))).

(2.19)

Therefore,

∫z(n)+r1(ñ,n)

z(0)+r1(ñ,0)

dτ

w1(τ)
≤

b1(n−1)∑

s=b1(0)

f̃1(ñ, s) +
n−1∑

s=0

Δ2r1(ñ, s)
w1(r1(0, s))

+
k∑

i=1

n−1∑

s=0

f̃i+1(ñ, bi+1(s))φ̃i+1(z(bi+1(s)) + r1(ñ, bi+1(s))),

(2.20)

that is,

W1(z(n) + r1(ñ, n)) ≤W1(r1(ñ, 0)) +
b1(n−1)∑

s=b1(0)

f̃1(ñ, s) +
n−1∑

s=0

Δ2r1(ñ, s)
w1(r1(0, s))

+
k∑

i=1

bi+1(n−1)∑

s=bi+1(0)

f̃i+1(ñ, s)φ̃i+1(z(s) + r1(ñ, s)),

(2.21)
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or equivalently

ξ(n) ≤ c1(ñ, n) +
k∑

i=1

bi+1(n−1)∑

s=bi+1(0)

f̃i+1(ñ, s)φ̃i+1
(
W−1

1 (ξ(s))
)
, n ≤ ñ, (2.22)

the same as (2.7) form = k where ξ(n) =W1(z(n) + r1(ñ, n)) and

c1(ñ, n) =W1(r1(ñ, 0)) +
b1(n−1)∑

s=b1(0)

f̃1(ñ, s) +
n−1∑

s=0

Δ2r1(ñ, s)
w1(r1(0, s))

. (2.23)

From the assumption (C4), each φ̃i+1(W−1
1 ), i = 1, . . . , k, is continuous and nondecreasing

on [0,∞) and is positive on (0,∞) since W−1
1 is continuous and nondecreasing on [0,∞).

Moreover, φ̃2(W−1
1 ) ∝ φ̃3(W−1

1 ) ∝ · · · ∝ φ̃k+1(W−1
1 ). By the inductive assumption, we have

ξ(n) ≤ Φ−1
k+1

⎡

⎣Φk+1(c1(ñ, 0)) +
bk+1(n−1)∑

s=bk+1(0)

f̃k+1(ñ, s) +
n−1∑

s=0

Δ2ck(ñ, s)
ψk+1

(
Φ−1
k (ck(0, s))

)

⎤

⎦ (2.24)

for n ≤ min{ñ,N3} where Φi+1(u) =
∫u
ũi+1

(dz/φ̃i+1(W−1
1 (z))), u > 0, Φ1 = I (Identity), ũi+1 =

W1(ui+1), Φ−1
i+1 is the inverse of Φi+1, ψi+1(u) = φ̃i+1(W−1

1 (u))/φ̃i(W−1
1 (u)) = wi+1(W−1

1 (u))/
wi(W−1

1 (u)), i = 1, . . . , k,

ci+1(ñ, n) = Φi+1(c1(ñ, 0)) +
bi+1(n−1)∑

s=bi+1(0)

f̃i+1(ñ, s) +
n−1∑

s=0

Δ2ci(ñ, s)
ψi+1

(
Φ−1
i (ci(0, s))

) , (2.25)

i = 1, . . . , k − 1, andN3 is the largest positive integer such that

Φi+1(c1(ñ, 0)) +
bi+1(N3−1)∑

s=bi+1(0)

f̃i+1(ñ, s) +
N3−1∑

s=0

Δ2ci(ñ, s)
ψi+1

(
Φ−1
i (ci(0, s))

)

≤
∫W1(∞)

ũi+1

dz

φ̃i+1
(
W−1

1 (z)
) , i = 1, . . . , k.

(2.26)
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Note that

Φi(u) =
∫u

ũi

dz

φ̃i
(
W−1

1 (z)
) =

∫u

W1(ui)

w1
(
W−1

1 (z)
)
dz

wi

(
W−1

1 (z)
)

=
∫W−1

1 (u)

ui

dz

wi(z)
=Wi ◦W−1

1 (u), i = 2, . . . , k + 1,

ψi+1
(
Φ−1
i (u)

)
=
wi+1

(
W−1

1

(
Φ−1
i (u)

))

wi

(
W−1

1

(
Φ−1
i (u)

)) =
wi+1

(
W−1

1

(
W1

(
W−1

i (u)
)))

wi

(
W−1

1

(
W1

(
W−1

i (u)
)))

=
wi+1

(
W−1

i (u)
)

wi

(
W−1

i (u)
) = φi+1

(
W−1

i (u)
)
, i = 1, . . . , k + 1.

(2.27)

Thus, we have from (2.24) that

u(n) ≤ r1(ñ, n) + z(n) =W−1
1 (ξ(n))

≤W−1
k+1

⎡

⎣Wk+1

(
W−1

1 (c1(ñ, 0))
)
+
bk+1(n−1)∑

s=bk+1(0)

f̃k+1(ñ, s) +
n−1∑

s=0

Δ2ck(ñ, s)
φk+1

(
W−1

k (ck(0, s))
)

⎤

⎦

≤W−1
k+1

⎡

⎣Wk+1(r1(ñ, 0)) +
bk+1(n−1)∑

s=bk+1(0)

f̃k+1(ñ, s) +
n−1∑

s=0

Δ2ck(ñ, s)
φk+1

(
W−1

k (ck(0, s))
)

⎤

⎦

(2.28)

for n ≤ min{ñ,N3} since c1(ñ, 0) =W1(r1(ñ, 0)).

In the following, we prove that ci(ñ, n) = ri+1(ñ, n) by induction again.
It is clear that c1(ñ, n) = r2(ñ, n) for i = 1. Suppose that cl(ñ, n) = rl+1(ñ, n) for i = l. We

have

cl+1(ñ, n) = Φl+1(c1(ñ, 0)) +
bl+1(n−1)∑

s=bl+1(0)

f̃l+1(ñ, s) +
n−1∑

s=0

Δ2cl(ñ, s)
ψl+1

(
Φ−1
l (cl(0, s))

)

=Wl+1(r1(ñ, 0)) +
bl+1(n−1)∑

s=bl+1(0)

f̃l+1(ñ, s) +
n−1∑

s=0

Δ2rl+1(ñ, s)
φl+1

(
W−1

l (rl+1(0, s))
)

= rl+2(ñ, n),

(2.29)

where c1(ñ, 0) = W1(r1(ñ, 0)) is applied. It implies that it is true for i = l + 1. Thus, ci(ñ, n) =
ri+1(ñ, n) for i = 1, . . . , k.
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Equation (2.26) becomes

Wi+1(r1(ñ, 0)) +
bi+1(N3−1)∑

s=bi+1(0)

f̃i+1(ñ, s) +
N3−1∑

s=0

Δ2ri+1(ñ, s)
φi+1

(
W−1

i (ri+1(0, s))
)

≤
∫W1(∞)

ũi+1

dz

φ̃i+1
(
W−1

1 (z)
) =

∫W1(∞)

ũi+1

w1
(
W−1

1 (z)
)

wi+1
(
W−1

1 (z)
)dz =

∫∞

ui+1

dz

wi+1(z)

(2.30)

for i = 1, . . . , k. It implies thatN2 =N3. Thus, (2.28) becomes

u(n) ≤W−1
k+1

⎡

⎣Wk+1(r1(ñ, 0)) +
bk+1(n−1)∑

s=bk+1(0)

f̃k+1(ñ, s) +
n−1∑

s=0

Δ2rk+1(ñ, s)
φk+1

(
W−1

k (rk+1(0, s))
)

⎤

⎦ (2.31)

for n ≤ ñ. It shows that (2.8) is true form = k + 1. Thus, the claim is proved.
Now we prove (2.1). Replacing n by ñ in (2.8), we have

u(ñ) ≤W−1
m

⎡

⎣Wm(r1(ñ, 0)) +
bm(ñ−1)∑

s=bm(0)

f̃m(ñ, s) +
ñ−1∑

s=0

Δ2rm(ñ, s)
φm

(
W−1

m−1(rm(0, s))
)

⎤

⎦. (2.32)

Since (2.8) is true for any ñ ≤N1, we replace ñ by n and get

u(n) ≤W−1
m

⎡

⎣Wm(r1(n, 0)) +
bm(n−1)∑

s=bm(0)

f̃m(n, s) +
n−1∑

s=0

Δ2rm(n, s)
φm

(
W−1

m−1(rm(0, s))
)

⎤

⎦. (2.33)

This is exactly (2.1) since r1(n, 0) = ã(0). This proves Theorem 2.1.

Remark 2.4. If a(n) = 0 for all n ∈ N0, then ã(0) = 0. Let r1,u1(n, j) := r1(n, j) + u1 where u1 > 0
is given in W1(u) =

∫u
u1
(dz/w1(z)). Using the same arguments as in (2.11) where r1(n, j) is

replaced with the positive r1,u1(n, j), we have Δ2r1,u1(ñ, s) = 0 and (2.14) becomes

W1(z(n) + r1,u1(ñ, n)) ≤W1(r1,u1(ñ, 0)) +
b1(n−1)∑

s=b1(0)

f̃1(ñ, s)

=W1(u1) +
b1(n−1)∑

s=b1(0)

f̃1(ñ, s) =
b1(n−1)∑

s=b1(0)

f̃1(ñ, s),

(2.34)

that is,

u(n) ≤ z(n) + r1,u1(ñ, n) = z(n) + u1

≤W−1
1

⎡

⎣
b1(n−1)∑

s=b1(0)

f̃1(ñ, s)

⎤

⎦, n ≤ ñ,
(2.35)
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which is the same as (2.15) with a complementary definition that W1(0) = 0. From (1) of
Remark 2.2, the estimate of (2.35) is independent of u1. Then we similarly obtain (2.1) and all
ri are defined by the same formula (2.2) where we defineWi(0) = 0 for i = 1, . . . , m.

3. Some Corollaries

In this section, we apply Theorem 2.1 and obtain some corollaries.
Assume that ϕ ∈ C(R+,R+) is a strictly increasing function with ϕ(∞) = ∞ where

R+ = [0,∞). Consider the inequality

ϕ(u(n)) ≤ a(n) +
m∑

i=1

bi(n−1)∑

s=bi(0)

fi(n, s)wi(u(s)), n ∈N0. (3.1)

Corollary 3.1. Suppose that (C1)–(C4) hold. If u(n) in(3.1)is nonnegative for n ∈ N0, then

u(n) ≤ ϕ−1

⎡
⎢⎣W̃−1

m

⎛
⎜⎝W̃m(ã(0)) +

bm(n−1)∑

s=bm(0)

f̃m(n, s) +
n−1∑

s=0

Δ2rm(n, s)

φ̂m
(
W̃−1

m−1(rm(0, s))
)

⎞
⎟⎠

⎤
⎥⎦ (3.2)

for n ≤ N1 where W̃i(u) =
∫u
ui
(dz/wi(ϕ−1(z))), W̃−1

i is the inverse of W̃i, W̃0 = I(Identity),

φ̂i(u) = (wi(ϕ−1(u)))/(wi−1(ϕ−1(u))), φ̂1(u) = w1(ϕ−1(u)), and other related functions are defined
as in Theorem 2.1 by replacing wi(u) with wi(ϕ−1(u)).

Proof. Let ξ(n) = ϕ(u(n)). Then (3.1) becomes

ξ(n) ≤ a(n) +
m∑

i=1

bi(n−1)∑

s=bi(0)

fi(n, s)wi

(
ϕ−1(ξ(s))

)
, n ∈ N0. (3.3)

Note that wi(ϕ−1(u)) satisfy (C4) for i = 1, . . . , m. Using Theorem 2.1, we obtain the estimate
about ξ(n) by replacing wi(u) with wi(ϕ−1(u)). Then use the fact that u(n) = ϕ−1(ξ(n)) and
we get Corollary 3.1.

If ϕ(u) = up where p > 0, then (3.1) reads

up(n) ≤ a(n) +
m∑

i=1

bi(n−1)∑

s=bi(0)

fi(n, s)wi(u(s)), n ∈ N0. (3.4)

Directly using Corollary 3.1, we have the following result.

Corollary 3.2. Suppose that (C1)–(C4) hold. If u(n) in (3.4) is nonnegative for n ∈ N0, then

u(n) ≤

⎡
⎢⎣W̃−1

m

⎛
⎜⎝W̃m(ã(0)) +

bm(n−1)∑

s=bm(0)

f̃m(n, s) +
n−1∑

s=0

Δ2rm(n, s)

φ̂m
(
W̃−1

m−1(rm(0, s))
)

⎞
⎟⎠

⎤
⎥⎦

1/p

(3.5)
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for n ≤ N1 where W̃i(u) =
∫u
ui
(dz/wi(z1/p)), W̃i is the inverse of W̃i, W̃0 = I(Identity), φ̂i(u) =

wi(u1/p)/wi−1(u1/p), φ̂1(u) = w1(u1/p), and other related functions are defined as in Theorem 2.1
by replacing wi(u) with wi(u1/p).

If m = 1, p = 2, b1(n) = n, (3.4) becomes the second inequality of (1.1) with f1(n, s) =
2f(s) and w1(u) = u, and the third inequality of (1.1) with f1(n, s) = f(s) and w1(u) = w(u),
which are discussed in the book [21]. Equation (3.5) yields the same estimates of Theorem
4.2.4 in the book [21].

4. Applications to Volterra Type Difference Equations

In this section, we apply Theorem 2.1 to study boundedness and uniqueness of solutions of a
nonlinear delay difference equation of the form

y(n) = β(n) +
b1(n−1)∑

s=b1(0)

F
(
n, s, y(s)

)
+
b2(n−1)∑

s=b2(0)

H
(
n, s, y(s)

)
, n ∈ N0, (4.1)

where y : N0 → R is an unknown function, β maps from N0 to R, F and H map from
N0 ×N0 × R to R, and bi satisfies the assumption (C2) for i = 1, 2.

Theorem 4.1. Suppose that β(0)/= 0 and the functions F andH in (4.1) satisfy the conditions

∣∣F
(
n, s, y

)∣∣ ≤ f1(n, s)
√∣∣y

∣∣,
∣∣H

(
n, s, y

)∣∣ ≤ f2(n, s)
∣∣y

∣∣,
(4.2)

where f1, f2 : N0 ×N0 → [0,∞). If y(n) is a solution of (4.1) on N0, then

∣∣y(n)
∣∣ ≤ ã(0) exp

⎡
⎢⎣
b2(n−1)∑

s=b2(0)

f̃2(n, s) +
n−1∑

s=0

f̃1(n, b1(s)) +
(
Δã(s)/

√
ã(s)

)

h(s)

⎤
⎥⎦, (4.3)

where

ã(s) = max
0≤τ≤s,τ∈N0

∣∣β(τ)
∣∣, f̃1(n, s) = max

0≤τ≤n,τ∈N0

f1(τ, s),

f̃2(n, s) = max
0≤τ≤n,τ∈N0

f2(τ, s),

h(n) =
√
ã(0) +

1
2

b1(n−1)∑

s=b1(0)

f̃1(0, s) +
1
2

n−1∑

s=0

Δã(s)
√
ã(s)

.

(4.4)
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Proof. Using (4.1) and (4.2), the solution y(n) satisfies

u(n) ≤ a(n) +
b1(n−1)∑

s=b1(0)

f1(n, s)w1(u(s)) +
b2(n−1)∑

s=b2(0)

f2(n, s)w2(u(s)), n ∈ N0, (4.5)

where

u(n) =
∣∣y(n)

∣∣, a(n) =
∣∣β(n)

∣∣, w1(u) =
√
u, w2(u) = u. (4.6)

Clearly, ã(n) > 0 for all n ∈N0 since β(0)/= 0. For positive constants u1, u2, we have

W1(u) =
∫u

u1

dz

w1(z)
= 2

(√
u − √

u1
)
, W−1

1 (u) =
(u
2
+
√
u1
)2
,

W2(u) =
∫u

u2

dz

w2(z)
= ln

u

u2
, W−1

2 (u) = u2 exp(u),

r1
(
n, j

)
= ã

(
j
)
> 0, r1(n, 0) = ã(0),

r2
(
n, j

)
= 2

(√
ã(0) − √

u1

)
+
b1(j−1)∑

s=b1(0)

f̃1(n, s) +
j−1∑

s=0

Δã(s)
√
ã(s)

,

Δ2r2
(
n, j

)
= f̃1

(
n, b1

(
j
))

+
Δã

(
j
)

√
ã
(
j
) , φ2(u) =

w2(u)
w1(u)

=
√
u.

(4.7)

It is obvious that w1 and w2 satisfy (C4). Applying Theorem 2.1 gives

u(n) ≤ ã(0) exp

⎡
⎢⎣
b2(n−1)∑

s=b2(0)

f̃2(n, s) +
n−1∑

s=0

f̃1(n, b1(s)) +
(
Δã(s)/

√
ã(s)

)

h(s)

⎤
⎥⎦ (4.8)

which implies (4.3).

Theorem 4.2. Suppose that β(0)/= 0 and the functions F andH in (4.1) satisfy the conditions

∣∣F
(
n, s, y1

) − F(n, s, y2
)∣∣ ≤ f1(n, s)

√∣∣y1 − y2
∣∣,

∣∣H
(
n, s, y1

) −H(
n, s, y2

)∣∣ ≤ f2(n, s)
∣∣y1 − y2

∣∣,
(4.9)

where f1, f2 : N0 ×N0 → [0,∞). Then (4.1) has at most one solution on N0.

Proof. Let y1(n) and y2(n) be two solutions of (4.1) on N0. From (4.9), we have

|u(n)| ≤
b1(n−1)∑

s=b1(0)

f1(n, s)w1(u(s)) +
b2(n−1)∑

s=b2(0)

f2(n, s)w2(u(s)), n ∈ N0, (4.10)
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where u(n) = |y1(n) − y2(n)|, a(n) = 0, w1(u) =
√
u and w2(u) = u. Appling Theorem 2.1,

Remark 2.4, and the notationWi(0) = 0 for i = 1, 2, we obtain that u(n) = 0 which implies that
the solution is unique.
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