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We establish some new oscillation criteria for the second-order quasilinear neutral delay dynamic
equations [r(t)(zΔ(t))γ ]Δ + q1(t)xα(τ1(t)) + q2(t)xβ(τ2(t)) = 0 on a time scale T, where z(t) = x(t) +
p(t)x(τ0(t)), 0 < α < γ < β. Our results generalize and improve some known results for oscillation
of second-order nonlinear delay dynamic equations on time scales. Some examples are considered
to illustrate our main results.

1. Introduction

In this paper, we are concerned with oscillation behavior of the second order quasilinear
neutral delay dynamic equations

[
r(t)
(
zΔ(t)

)γ]Δ
+ q1(t)xα(τ1(t)) + q2(t)xβ(τ2(t)) = 0, (1.1)

on an arbitrary time scale T, where z(t) = x(t) + p(t)x(τ0(t)), γ, α, and β are quotient of odd
positive integers such that 0 < α < γ < β, r, p, q1, and q2 are rd-continuous functions on
T, and r, q1, and q2 are positive, −1 < −p0 ≤ p(t) < 1, p0 > 0; the so-called delay functions
τi : T → T satisfy that τi(t) ≤ t for t ∈ T and τi(t) → ∞ as t → ∞, for i = 0, 1, 2, and there
exists a function τ : T → T which satisfies that τ(t) ≤ τ1(t), τ(t) ≤ τ2(t), and τ(t) → ∞ as
t → ∞.

Since we are interested in the oscillatory and asymptotic behavior of solutions near
infinity, we assume that supT = ∞ and define the time scale interval [t0,∞)

T
by [t0,∞)

T
:=

[t0,∞) ∩ T.
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We will also consider the two cases

∫∞

t0

Δt

r1/γ(t)
= ∞, (1.2)

∫∞

t0

Δt

r1/γ(t)
< ∞. (1.3)

Recently, there has been a large number of papers devoted to the delay dynamic
equations on time scales, and we refer the reader to the papers in [1–17].

Agarwal et al. [1], Sahiner [10], Saker [11], Saker et al. [12], and Wu et al. [15] studied
the second-order nonlinear neutral delay dynamic equations on time scales

(
r(t)
((

y(t) + p(t)y(τ(t))
)Δ)γ)Δ + f

(
t, y(δ(t))

)
= 0, t ∈ T, (1.4)

where 0 ≤ p(t) < 1, and (1.2) holds. Bymeans of Riccati transformation technique, the authors
established some sufficient conditions for oscillation of (1.4).

Sun et al. [14] considered (1.1), where rΔ(t) ≥ 0, −1 < −p0 ≤ p(t) ≤ 0, and (1.2) holds.
The authors established some oscillation results of (1.1). To the best of our knowledge, there
are no results regarding the oscillation of the solutions of (1.1)when (1.3) holds.

We note that if T = R, (1.1) becomes the second-order Emden-Fowler neutral delay
differential equation

[
r(t)
(
z′(t)

)γ]′ + q1(t)xα(τ1(t)) + q2(t)xβ(τ2(t)) = 0, t ≥ t0. (1.5)

Chen and Xu [18] as well as Xu and Liu [19] considered (1.5) and obtained some oscillation
criteria for (1.5) when r(t) = 1. Qin et al. [20] found that some results under the case when
−1 < p0 ≤ p(t) ≤ 0 in [18, 19] are incorrect.

The paper is organized as follows. In the next section, by developing a Riccati
transformation technique some sufficient conditions for oscillation of all solutions of (1.1)
on time scales are established. In Section 3, we give some examples to illustrate our main
results.

2. Main Results

In this section, by employing the Riccati transformation technique, we establish some new
oscillation criteria for (1.1). In order to prove our main results, we will use the formula

(xγ(t))Δ = γ

∫1

0
[hxσ(t) + (1 − h)x(t)]γ−1xΔ(t)dh, (2.1)

which is a simple consequence of Keller’s chain rule [21, Theorem1.90]. Also, we need the
following lemmas.
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It will be convenient to make the following notations:

d+(t) := max{0, d(t)}, θ(a, b;u) :=

∫a
uΔs/r1/γ(s)
∫b
uΔs/r1/γ(s)

,

α(t, u) := θ(τ(t), σ(t);u), β(t, u) := θ(t, σ(t);u), ν := min
{
β − α

β − γ
,
β − α

γ − α

}
,

Q1(t) := ν
(
q1(t)

(
1 − p(τ1(t))

)α)(β−γ)/(β−α)(
q2(t)

(
1 − p(τ2(t))

)β)(γ−α)/(β−α)(α(t, T))γ ,

Q2(t) := ν
(
q1(t)

)(β−γ)/(β−α)(
q2(t)

)(γ−α)/(β−α)(α(t, T))γ ,

Q1∗(t) = Q1(t) − ηΔ(t), Q2∗(t) = Q2(t) − ηΔ(t).

(2.2)

Lemma 2.1 (see [3, Lemma2.4]). Assume that there exists T ≥ t0, sufficiently large, such that

x(t) > 0, xΔ(t) > 0,
(
r(t)
(
xΔ(t)

)γ)Δ
< 0, t ≥ T. (2.3)

Then

x(τ(t)) ≥ α(t, T)xσ(t), x(t) ≥ β(t, T)xσ(t), for t ≥ T1 ≥ T. (2.4)

Lemma 2.2. Assume that (1.2) holds; 0 ≤ p(t) < 1. Furthermore, x is an eventually positive solution
of (1.1). Then there exists t1 ≥ t0 such that

z(t) > 0, zΔ(t) > 0,
(
r(t)
(
zΔ(t)

)γ)Δ
< 0, for t ≥ t1. (2.5)

Proof. Let x be an eventually positive solution of (1.1). Then there exists t1 ≥ t0 such that
x(t) > 0, and x(τi(t)) > 0 for t ≥ t1, i = 0, 1, 2. From (1.1), we have

[
r(t)
(
zΔ(t)

)γ]Δ
= −q1(t)xα(τ1(t)) − q2(t)xβ(τ2(t)) < 0 (2.6)

for all t ≥ t1, and so r(t)(zΔ(t))γ is an eventually decreasing function.
We first show that r(t)(zΔ(t))γ is eventually positive. Otherwise, there exists t2 ≥ t1

such that r(t2)(zΔ(t2))
γ = c < 0; then from (2.6) we have r(t)(zΔ(t))γ ≤ r(t2)(zΔ(t2))

γ = c for
t ≥ t2, and so

zΔ(t) ≤ c1/γ
(

1
r(t)

)1/γ

, (2.7)
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which implies by (1.2) that

z(t) ≤ z(t2) + c1/γ
∫ t

t2

(
1

r(s)

)1/γ

Δs −→ −∞ as t −→ ∞, (2.8)

and this contradicts the fact that z(t) ≥ x(t) > 0 for all t ≥ t1. Hence, we have that (2.5) holds
and completes the proof.

Lemma 2.3. Assume that (1.2) holds, −1 < −p0 ≤ p(t) ≤ 0, and limt→∞p(t) = p > −1. Furthermore,
assume that there exists {ck}k≥0 such that limk→∞ck = ∞ and τ0(ck+1) = ck. Then an eventually
positive solution x of (1.1) satisfies eventually (2.5) or limt→∞x(t) = 0.

Proof. Suppose that x is an eventually positive solution of (1.1). Then there exists t1 ≥ t0 such
that x(t) > 0, and x(τi(t)) > 0 for t ≥ t1, i = 0, 1, 2. From (1.1), we have that (2.6) holds for all
t ≥ t1, and so r(t)(zΔ(t))γ is an eventually decreasing function.

We first show that r(t)(zΔ(t))γ is eventually positive. Otherwise, there exists t2 ≥ t1
such that r(t2)(zΔ(t2))

γ = c < 0; then from (2.6) we have r(t)(zΔ(t))γ ≤ r(t2)(zΔ(t2))
γ = c for

t ≥ t2, and so

zΔ(t) ≤ c1/γ
(

1
r(t)

)1/γ

, (2.9)

which implies by (1.2) that

z(t) ≤ z(t2) + c1/γ
∫ t

t2

(
1

r(s)

)1/γ

Δs −→ −∞ as t −→ ∞. (2.10)

Therefore, there exist d > 0 and t3 ≥ t2 such that

x(t) ≤ −d − p(t)x(τ0(t)) ≤ −d + p0x(τ0(t)), t ≥ t3. (2.11)

Thus, we can choose some positive integer k0 such that ck ≥ t3 for k ≥ k0, and

x(ck) ≤ −d + p0x(τ0(ck)) = −d + p0x(ck−1) ≤ −d − p0d + p20x(τ0(ck−1))

= −d − p0d + p20x(ck−2) ≤ · · · ≤ −d − p0d − · · · − pk−k0−10 d + pk−k00 x(τ0(ck0+1))

= −d − p0d − · · · − pk−k0−10 d + pk−k00 x(ck0).

(2.12)

The above inequality implies that x(ck) < 0 for sufficiently large k,which contradicts the fact
that x(t) is eventually positive. Hence zΔ(t) is eventually positive. Consequently, there are
two possible cases:

(i) z(t) is eventually positive, or

(ii) z(t) is eventually negative.
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If there exists a t4 ≥ t1 such that case (ii) holds, then limt→∞z(t) exists, and
limt→∞z(t) = l ≤ 0; we claim that limt→∞z(t) = 0. Otherwise, limt→∞z(t) < 0. We can choose
some positive integer k0 such that ck ≥ t4 for k ≥ k0, and we obtain

x(ck) ≤ p0x(τ0(ck)) = p0x(ck−1) ≤ p20x(τ0(ck−1))

= p20x(ck−2) ≤ · · · ≤ pk−k00 x(τ0(ck0+1)) = pk−k00 x(ck0),
(2.13)

which implies that limk→∞x(ck) = 0, and so limk→∞z(ck) = 0, which contradicts
limt→∞z(t) = l < 0. Now, we assert that x(t) is bounded. If it is not true, then there exists
{tk}with tk → ∞ as k → ∞ such that

x(tk) = max
t0≤s≤tk

x(s), lim
k→∞

x(tk) = ∞. (2.14)

From τ0(t) ≤ t, we obtain

z(tk) = x(tk) + p(tk)x(τ0(tk)) ≥
(
1 − p0

)
x(tk), (2.15)

which implies that limk→∞z(tk) = ∞; it contradicts limt→∞z(t) = 0. Therefore, we can assume
that

lim sup
t→∞

x(t) = x1, lim inf
t→∞

x(t) = x2. (2.16)

By −1 < p ≤ 0, we get

x1 + px1 ≤ 0 ≤ x2 + px2, (2.17)

which implies that x1 ≤ x2, so x1 = x2.Hence, limt→∞x(t) = 0. The proof is complete.

Theorem 2.4. Assume that (1.2) holds, 0 ≤ p(t) < 1, and γ ≥ 1. Furthermore, assume that there
exist positive rd-continuous Δ-differentiable functions δ and η such that, for all sufficiently large T,
for T1 > T

lim sup
t→∞

∫ t

T1

⎡
⎣δσ(s)Q1∗(s) − δΔ(s)η(s) − r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ2
⎤
⎦Δs = ∞. (2.18)

Then every solution of (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x. We may assume without loss of
generality that x(τi(t)) > 0, i = 0, 1, 2, for all t ≥ t0. By Lemma 2.2, there exists T ≥ t0 such that
(2.5) holds. Define the function ω by

ω(t) = δ(t)

[
r(t)
(
zΔ(t)

)γ
zγ(t)

+ η(t)

]
, t ≥ T. (2.19)
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Then ω(t) > 0. By the product rule and the quotient rule, noteing (2.19), we have

ωΔ(t) =
δΔ(t)
δ(t)

ω(t) + δσ(t)

⎡
⎢⎣

(
r(t)
(
zΔ(t)

)γ)Δ

(zσ(t))γ
− r(t)

(
zΔ(t)

)γ(zγ(t))Δ
zγ(t)(zσ(t))γ

+ ηΔ(t)

⎤
⎥⎦. (2.20)

By (1.1) and (2.5), we obtain

(
r(t)
(
zΔ(t)

)γ)Δ ≤ −q1(t)
((
1 − p(τ1(t))

)
z(τ1(t))

)α − q2(t)
((
1 − p(τ2(t))

)
z(τ2(t))

)β
< 0.

(2.21)

In view of γ ≥ 1, from (2.1), we have (zγ(t))Δ ≥ γ(z(t))γ−1zΔ(t). By (2.20), we obtain

ωΔ(t) ≤ δΔ(t)
δ(t)

ω(t) − δσ(t)q1(t)
(
1 − p(τ1(t))

)α (z(τ1(t)))α
(zσ(t))γ

− δσ(t)q2(t)
(
1 − p(τ2(t))

)β (z(τ2(t)))β
(zσ(t))γ

− γδσ(t)
r(t)
(
zΔ(t)

)γ+1
z(t)(zσ(t))γ

+ δσ(t)ηΔ(t).

(2.22)

By Young’s inequality

|ab| ≤ 1
p
|a|p + 1

q
|b|q, a, b ∈ R, p > 1, q > 1,

1
p
+
1
q
= 1, (2.23)

we have

β − γ

β − α
q1(t)

(
1 − p(τ1(t))

)α (z(τ1(t)))α
(zσ(t))γ

+
γ − α

β − α
q2(t)

(
1 − p(τ2(t))

)β (z(τ2(t)))β
(zσ(t))γ

≥
[
q1(t)

(
1 − p(τ1(t))

)α (z(τ1(t)))α
(zσ(t))γ

](β−γ)/(β−α)[
q2(t)

(
1 − p(τ2(t))

)β (z(τ2(t)))β
(zσ(t))γ

](γ−α)/(β−α)

=
(
q1(t)

(
1 − p(τ1(t))

)α)(β−γ)/(β−α)(
q2(t)

(
1 − p(τ2(t))

)β)(γ−α)/(β−α)((z(τ1(t)))α

(zσ(t))γ

)(β−γ)/(β−α)

×
(

(z(τ2(t)))β

(zσ(t))γ

)(γ−α)/(β−α)

≥ (q1(t)
(
1 − p(τ1(t))

)α)(β−γ)/(β−α)(
q2(t)

(
1 − p(τ2(t))

)β)(γ−α)/(β−α)(z(τ(t))
zσ(t)

)γ

.

(2.24)
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By Lemma 2.1, we have

z(τ(t))
zσ(t)

≥ α(t, T),
z(t)
zσ(t)

≥ β(t, T). (2.25)

Hence, by (2.19) and (2.22), we obtain

ωΔ(t) ≤ δΔ(t)
δ(t)

ω(t) − νδσ(t)
(
q1(t)

(
1 − p(τ1(t))

)α)(β−γ)/(β−α)

×
(
q2(t)

(
1 − p(τ2(t))

)β)(γ−α)/(β−α)(α(t, T))γ

− γδσ(t)
1

(r(t))1/γ
(
β(t, T)

)γ(ω(t)
δ(t)

− η(t)
)(γ+1)/γ

+ δσ(t)ηΔ(t).

(2.26)

Thus

ωΔ(t) ≤ −δσ(t)
[
Q1(t) − ηΔ(t)

]
+ δΔ(t)η(t) +

(
δΔ(t)

)
+

∣∣∣∣
ω(t)
δ(t)

− η(t)
∣∣∣∣

− γδσ(t)
1

(r(t))1/γ
(
β(t, T)

)γ(ω(t)
δ(t)

− η(t)
)(γ+1)/γ

.

(2.27)

Set

λ =
γ + 1
γ

, A = γ1/λ(δσ(t))1/λ
1

(r(t))1/(γ+1)
(
β(t, T)

)γ2/(γ+1)∣∣∣∣
ω(t)
δ(t)

− η(t)
∣∣∣∣,

B =
((

δΔ(t)
)
+

)γ( γ

γ + 1

)γ (r(t))γ/(γ+1)

γγ
2/(γ+1)(δσ(t))γ

2/(γ+1)

(
1

β(t, T)

)γ3/(γ+1)

.

(2.28)

Using the inequality

λABλ−1 −Aλ ≤ (λ − 1)Bλ, λ ≥ 1, A ≥ 0, B ≥ 0, (2.29)

we obtain

ωΔ(t) ≤ −δσ(t)
[
Q1(t) − ηΔ(t)

]
+ δΔ(t)η(t) +

r(t)
(
γ + 1

)γ+1
((
δΔ(t)

)
+

)γ+1
(δσ(t))γ

(
β(t, T)

)−γ2
. (2.30)
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Integrating the last inequality from T1 > T to t > T1,we obtain

−ω(T1) < ω(t) −ω(T1)

≤−
∫ t

T1

⎡
⎣δσ(s)

(
Q1(s)−ηΔ(s)

)
−δΔ(s)η(s)− r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ2
⎤
⎦Δs,

(2.31)

which yields

∫ t

T1

⎡
⎣δσ(s)

(
Q1(s) − ηΔ(s)

)
− δΔ(s)η(s) − r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ2
⎤
⎦Δs ≤ ω(T1),

(2.32)

which leads to a contradiction to (2.18). The proof is complete.

Theorem 2.5. Assume that (1.2) holds, 0 ≤ p(t) < 1, and γ ≤ 1. Furthermore, assume that there
exist positive rd-continuous Δ-differentiable functions δ and η such that, for all sufficiently large T,
for T1 > T

lim sup
t→∞

∫ t

T1

⎡
⎣δσ(s)Q1∗(s) − δΔ(s)η(s) − r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ
⎤
⎦Δs = ∞.

(2.33)

Then every solution of (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x. We may assume without loss of
generality that x(τi(t)) > 0, i = 0, 1, 2, for all t ≥ t0.

By Lemma 2.2, there exists T ≥ t0 such that (2.5) holds. Defining the function ω as
(2.19), we proceed as in the proof of Theorem 2.4, and we get (2.20). In view of γ ≤ 1, using
(2.1), we have (zγ(t))Δ ≥ γ(zσ(t))γ−1zΔ(t). From (2.20) we obtain

ωΔ(t) ≤ δΔ(t)
δ(t)

ω(t) − δσ(t)q1(t)
(
1 − p(τ1(t))

)α (z(τ1(t)))α
(zσ(t))γ

− δσ(t)q2(t)
(
1 − p(τ2(t))

)β (z(τ2(t)))β
(zσ(t))γ

− γδσ(t)
r(t)
(
zΔ(t)

)γ+1
zγ(t)zσ(t)

+ δσ(t)ηΔ(t).

(2.34)

The remainder of the proof is similar to that of Theorem 2.4, and hence it is omitted.
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Theorem 2.6. Assume that (1.3) holds, 0 ≤ p(t) < 1, limt→∞p(t) = p1 < 1, and γ ≥ 1. Furthermore,
assume that there exist positive rd-continuousΔ-differentiable functions δ, η, and φ such that φΔ(t) ≥
0, then for all sufficiently large T, for T1 > T, one has that (2.18) holds, and

∫∞

t0

(
1

φ(s)r(s)

∫s

t0

φσ(τ)
[
q1(τ) + q2(τ)

]
Δτ

)1/γ

Δs = ∞. (2.35)

Then every solution of (1.1) is either oscillatory or converges to zero.

Proof. We proceed as in Theorem 2.4, and we assume that x(τi(t)) > 0, i = 0, 1, 2, for all t ≥ t0.
From the proof of Lemma 2.2, we see that there exist two possible cases for the sign of zΔ(t).

If zΔ(t) is eventually positive, we are then back to the proof of Theorem 2.4 and we
obtain a contradiction with (2.18).

If zΔ(t) < 0, t ≥ t1 ≥ t0, then there exist constants c > 0, a > 0 such that z(t) ≤ c,
x(t) ≤ z(t) ≤ c, t ≥ t1, and limt→∞z(t) = a ≥ 0. Since x is bounded, we let lim supt→∞x(t) = x1,
lim inft→∞x(t) = x2. From definition of z(t), noting 0 ≤ p1 < 1, we have x1 + p1x2 ≤ a ≤
x2 + p1x1; hence, we have x1 ≤ x2.

On the other hand, x1 ≥ x2; hence, limt→∞x(t) = a/(1 + p1). Assume that a > 0. Then
there exist a constant b > 0 and t2 ≥ t1 such that xα(τ1(t)) ≥ b, xβ(τ2(t)) ≥ b for t ≥ t2. Define
the function

u(t) = φ(t)r(t)
(
zΔ(t)

)γ
. (2.36)

Then u(t) < 0 for t ≥ t2. From (1.1) we have

uΔ(t) = φΔ(t)r(t)
(
zΔ(t)

)γ
+ φσ(t)

[
r(t)
(
zΔ(t)

)γ]Δ ≤ φσ(t)
[
r(t)
(
zΔ(t)

)γ]Δ

= −φσ(t)
[
q1(t)xα(τ1(t)) + q2(t)xβ(τ2(t))

]
≤ −bφσ(t)

[
q1(t) + q2(t)

]
.

(2.37)

Integrating the above inequality from t2 to t, we obtain

u(t) ≤ u(t2) − b

∫ t

t2

φσ(s)
[
q1(s) + q2(s)

]
Δs ≤ −b

∫ t

t2

φσ(s)
[
q1(s) + q2(s)

]
Δs, (2.38)

that is,

zΔ(t) ≤ −b1/γ
(

1
φ(t)r(t)

∫ t

t2

φσ(s)
[
q1(s) + q2(s)

]
Δs

)1/γ

. (2.39)
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Integrating the last inequality from t2 to t, we get

z(t) ≤ z(t2) − b1/γ
∫ t

t2

(
1

φ(s)r(s)

∫s

t2

φσ(τ)
[
q1(τ) + q2(τ)

]
Δτ

)1/γ

Δs. (2.40)

We can easily obtain a contradiction with (2.35). Hence, limt→∞x(t) = 0. This completes the
proof.

From Theorem 2.6, we have the following result.

Theorem 2.7. Assume that (1.3) holds, 0 ≤ p(t) < 1, limt→∞p(t) = p1 < 1, and γ ≤ 1. Furthermore,
assume that there exist positive rd-continuous Δ-differentiable functions δ, η, and φ such that, for all
sufficiently large T, for T1 > T, one has that (2.33) and (2.35) hold. Then every solution of (1.1) is
either oscillatory or converges to zero.

The proof is similar to that of the proof of Theorem 2.6; hence, we omit the details.
In the following, we give some new oscillation results of (1.1)when p(t) < 0.

Theorem 2.8. Assume that (1.2) holds, −1 < −p0 ≤ p(t) ≤ 0, limt→∞p(t) = p2 > −1, and γ ≥ 1.
Furthermore, there exists {ck}k≥0 such that limk→∞ck = ∞ and τ0(ck+1) = ck. If there exist positive
rd-continuous Δ-differentiable functions δ and η such that, for all sufficiently large T, for T1 > T ,

lim sup
t→∞

∫ t

T1

⎡
⎣δσ(s)Q2∗(s) − δΔ(s)η(s) − r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ2
⎤
⎦Δs = ∞,

(2.41)

then every solution of (1.1) is oscillatory or tends to zero.

Proof. Suppose that (1.1) has a nonoscillatory solution x. We may assume without loss of
generality that x(τi(t)) > 0, i = 0, 1, 2, for all t ≥ t0. By Lemma 2.3, there exists T ≥ t0 such that
(2.5) holds, or limt→∞x(t) = 0. Assume that (2.5) holds. Define the function ω as (2.19), and
then we get (2.20). By (1.1), we obtain

(
r(t)
(
zΔ(t)

)γ)Δ ≤ −q1(t)(z(τ1(t)))α − q2(t)(z(τ2(t)))β < 0. (2.42)

In view of γ ≥ 1, from (2.1), we have (zγ(t))Δ ≥ γ(z(t))γ−1zΔ(t). By (2.20), we obtain

ωΔ(t) ≤ δΔ(t)
δ(t)

ω(t) − δσ(t)q1(t)
(z(τ1(t)))α

(zσ(t))γ
− δσ(t)q2(t)

(z(τ2(t)))β

(zσ(t))γ

− γδσ(t)
r(t)
(
zΔ(t)

)γ+1
z(t)(zσ(t))γ

+ δσ(t)ηΔ(t).

(2.43)
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By Young’s inequality (2.23), we have

β − γ

β − α
q1(t)

(z(τ1(t)))α

(zσ(t))γ
+
γ − α

β − α
q2(t)

(z(τ2(t)))β

(zσ(t))γ

≥
[
q1(t)

(z(τ1(t)))α

(zσ(t))γ

](β−γ)/(β−α)[
q2(t)

(z(τ2(t)))β

(zσ(t))γ

](γ−α)/(β−α)

=
(
q1(t)

)(β−γ)/(β−α)(
q2(t)

)(γ−α)/(β−α)((z(τ1(t)))α

(zσ(t))γ

)(β−γ)/(β−α)( (z(τ2(t)))β

(zσ(t))γ

)(γ−α)/(β−α)

≥ (q1(t)
)(β−γ)/(β−α)(

q2(t)
)(γ−α)/(β−α)(z(τ(t))

zσ(t)

)γ

.

(2.44)

By Lemma 2.1, we have

z(τ(t))
zσ(t)

≥ α(t, T),
z(t)
zσ(t)

≥ β(t, T). (2.45)

Hence, by (2.19) and (2.43), we obtain

ωΔ(t) ≤ δΔ(t)
δ(t)

ω(t) − νδσ(t)
(
q1(t)

)(β−γ)/(β−α)(
q2(t)

)(γ−α)/(β−α)(α(t, T))γ

− γδσ(t)
1

(r(t))1/γ
(
β(t, T)

)γ(ω(t)
δ(t)

− η(t)
)(γ+1)/γ

+ δσ(t)ηΔ(t).

(2.46)

Thus

ωΔ(t) ≤ −δσ(t)
[
Q2(t) − ηΔ(t)

]
+ δΔ(t)η(t) +

(
δΔ(t)

)
+

∣∣∣∣
ω(t)
δ(t)

− η(t)
∣∣∣∣

− γδσ(t)
1

(r(t))1/γ
(
β(t, T)

)γ(ω(t)
δ(t)

− η(t)
)(γ+1)/γ

.

(2.47)

Set

λ =
γ + 1
γ

, A = γ1/λ(δσ(t))1/λ
1

(r(t))1/γ+1
(
β(t, T)

)γ2/(γ+1)∣∣∣∣
ω(t)
δ(t)

− η(t)
∣∣∣∣,

B =
((

δΔ(t)
)
+

)γ( γ

γ + 1

)γ (r(t))γ/(γ+1)

γγ
2/(γ+1)(δσ(t))γ

2/(γ+1)

(
1

β(t, T)

)γ3/(γ+1)

.

(2.48)
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Using the inequality (2.29), we obtain

ωΔ(t) ≤ −δσ(t)
[
Q2(t) − ηΔ(t)

]
+ δΔ(t)η(t) +

r(t)
(
γ + 1

)γ+1
((
δΔ(t)

)
+

)γ+1
(δσ(t))γ

(
β(t, T)

)−γ2
. (2.49)

Integrating the last inequality from T1 > T to t > T1,we obtain

−ω(T1) < ω(t) −ω(T1)

≤−
∫ t

T1

⎡
⎣δσ(s)

(
Q2(s)−ηΔ(s)

)
−δΔ(s)η(s)− r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ2
⎤
⎦Δs,

(2.50)

which yields

∫ t

T1

⎡
⎣δσ(s)

(
Q2(s) − ηΔ(s)

)
− δΔ(s)η(s) − r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ2
⎤
⎦Δs ≤ ω(T1),

(2.51)

which leads to a contradiction with (2.41). The proof is complete.

Theorem 2.9. Assume that (1.2) holds, −1 < −p0 ≤ p(t) ≤ 0, limt→∞p(t) = p2 > −1, and γ ≤ 1.
Furthermore, there exists {ck}k≥0 such that limk→∞ck = ∞ and τ0(ck+1) = ck. If there exist positive
rd-continuous Δ-differentiable functions δ and η such that, for all sufficiently large T, for T1 > T ,

lim sup
t→∞

∫ t

T1

⎡
⎣δσ(s)Q2∗(s) − δΔ(s)η(s) − r(s)

(
γ + 1

)γ+1
((
δΔ(s)

)
+

)γ+1
(δσ(s))γ

(
β(s, T)

)−γ
⎤
⎦Δs = ∞,

(2.52)

then every solution of (1.1) is oscillatory or tends to zero.

Proof. Suppose that (1.1) has a nonoscillatory solution x. We may assume without loss of
generality that x(τi(t)) > 0, i = 0, 1, 2, for all t ≥ t0. By Lemma 2.3, there exists T ≥ t0 such
that (2.5) holds, or limt→∞x(t) = 0. Assume that (2.5) holds.

Define the function ω as (2.19), and then we get (2.20). In view of γ ≤ 1, using (2.1),
we have (zγ(t))Δ ≥ γ(zσ(t))γ−1zΔ(t). From (2.20)we obtain

ωΔ(t) ≤ δΔ(t)
δ(t)

ω(t) − δσ(t)q1(t)
(z(τ1(t)))α

(zσ(t))γ
− δσ(t)q2(t)

(z(τ2(t)))β

(zσ(t))γ

− γδσ(t)
r(t)
(
zΔ(t)

)γ+1
zγ(t)zσ(t)

+ δσ(t)ηΔ(t).

(2.53)

The remainder of the proof is similar to that of Theorem 2.8, and hence it is omitted.
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Remark 2.10. One can easily see that the results obtained in [1, 10–12, 15] cannot be applied
in (1.1), so our results are new.

3. Examples

In this section, we will give some examples to illustrate our main results.

Example 3.1. Consider the second-order quasilinear neutral delay dynamic equations on time
scales

(
tσ(t)

(
x(t) +

1
2
x(τ0(t))

)Δ
)Δ

+
σ(t)
τ(t)

x1/3(τ(t)) +
σ(t)
τ(t)

x5/3(τ(t)) = 0, (3.1)

where t ∈ [t0,∞)
T
, and we assume that

∫∞
t0
Δt/tσ(t) = ∞.

Let r(t) = tσ(t), p(t) = 1/2, q1(t) = q2(t) = σ(t)/τ(t), γ = 1, α = 1/3, β = 5/3, and
τ1(t) = τ2(t) = τ(t). Take δ(t) = η(t) = φ(t) = 1. It is easy to show that (2.18) and (2.35) hold.
Hence, by Theorem 2.6, every solution of (3.1) oscillates or tends to zero.

Example 3.2. Consider the second-order quasilinear neutral delay dynamic equations on time
scales

((
x(t) − 1

2
x(τ0(t))

)Δ
)Δ

+
σ(t)
tτ(t)

x1/3(τ(t)) +
σ(t)
tτ(t)

x5/3(τ(t)) = 0, (3.2)

where t ∈ [t0,∞)
T
, and we assume there exists {ck}k≥0 such that limk→∞ck = ∞ and τ0(ck+1) =

ck.
Let r(t) = 1, p(t) = −1/2, q1(t) = q2(t) = σ(t)/tτ(t), γ = 1, α = 1/3, β = 5/3, τ1(t) =

τ2(t) = τ(t). Take δ(t) = η(t) = 1. It is easy to show that (2.41) holds. Hence, by Theorem 2.8,
every solution of (3.2) oscillates or tends to zero.
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