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We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with
infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity,
and the initial history is regularly varying at minus infinity, then the rate of convergence to the
equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be
determined in terms of the rate of decay of the kernel and the rate of growth of the initial history.
The result is considered both for a linear Volterra integrodifferential equation as well as for the
delay logistic equation from population biology.

1. Introduction

In this paper we consider the asymptotic behaviour of linear and nonlinear Volterra
integrodifferential equations with infinite memory, paying particular attention to the
connection between the asymptotic behaviour of the initial history as t → −∞ and the rate
of convergence of the solution to a limit. In fact we focus our attention on the cases where the
initial history φ obeys limt→∞|φ(t)| = ∞. We do not aim to be comprehensive in our analysis
and focus only on scalar equations whose initial histories and kernels are regularly varying
functions. However, we note that such history-dependent asymptotic behaviour does not
seem to be generic behaviour for equations with a finite memory.

We consider both linear and nonlinear equations. In particular we consider the linear
Volterra integrodifferential equation given by

x′(t) = −ax(t) −
∫ t

−∞
b(t − s)x(s)ds, t > 0; x(t) = φ(t), t ∈ (−∞, 0], (1.1)
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as well as the nonlinear logistic equation with infinite delay given by

N ′(t) = N(t)

(
r − aN(t) −

∫ t

−∞
b(t − s)N(s)ds

)
, t > 0,

N(t) = φ(t), t ∈ (−∞, 0].

(1.2)

In both cases, we presume that b is continuous, positive, and integrable, and that φ is
continuous on (−∞, 0]. When t �→ |φ(t)| is bounded and a >

∫∞
0 b(s)ds, the solution of x

of (1.1) obeys x(t) → 0 as t → ∞; moreover, Miller [1] has shown when in addition r > 0,
the solution N of (1.2) obeys N(t) → r/(a +

∫∞
0 b(s)ds) =: K as t → ∞.

For definiteness, we concentrate in this introduction on solutions of (1.2). In Appleby
et al. [2], an extension of Miller’s global asymptotic stability result was given to a class of
initial functions Φ, which can include initial histories φ which are unbounded in the sense
that limt→−∞φ(t) = +∞. Furthermore, the rate at whichN(t) convergesK as t → ∞ is also of
interest.

It was shown in [2] that for certain classes of kernels b that the rate of convergence of
N(t) to K as t → ∞ depends on the asymptotic behaviour of φ(t) as t → −∞. When b is a
type of slowly decaying function, called subexponential, it has been shown that when

∫0

−∞

∣∣φ(t) −K
∣∣dt < +∞ (1.3)

then N(t) −K tends to zero like b(t) as t → ∞. In the case when φ(t) −K tends to a nonzero
limit as t → −∞,N(t)−K tends to zero like

∫∞
t b(s)ds as t → ∞. Moreover, this rate of decay

to zero is slower than b. It is therefore of interest to consider how this history-dependent
decay rate develops in the case that φ ∈ Φ is unbounded.

In our main results, we show that if b decays polynomially (in the sense that b is in the
class of integrable and regularly varying functions) and the history φ(t) grows polynomially
as t → −∞ (in the sense that φ is a regularly varying function at −∞), and the rate of growth
of φ is not too rapid relative to the rate of decay of b, then problems (1.1) and (1.2) are well
posed and x(t) → 0 and N(t) −K → 0 as t → ∞ at the rate tb(t)φ(−t) as t → ∞.

The question of history-dependent asymptotic behaviour is of interest not only in
demography and population dynamics, but also in financial mathematics and time series,
and this also motivates our study here. It is well known that certain discrete- and continuous-
time stochastic processes have autocovariance functions which can be represented as linear
difference or delay-differential equations (see, e.g., Küchler and Mensch [3]). In the case
of the so-called ARCH (∞) processes which are stationary, the resulting equation for the
autocovariance function of the process can be represented as a Volterra summation equation
with infinite memory. For details on the stationarity and autocovariance function of such
ARCH processes; see, for example, Zaffaroni [4], Giraitis et al. [5], Robinson [6], and Giraitis
et al. [7]. In the nonstationary case, the process may be autocorrelated on −N is a manner
which is inconsistent with the autocovariance function in the stationary case (which must
be an even function), while the mean and variance of the process still converge. Therefore,
the process can have a limiting autocovariance function which may differ from that of the
stationary process. This phenomenon is impossible for processes with bounded memory,
and the different convergence rates which depend on the asymptotic behaviour of the initial
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history in this case is an exact analogue to the history-dependent decay rates recorded here.
Therefore, this paper also lays the groundwork for analysis of this phenomenon in finance
from the perspective of infinite memory Volterra equations. The interest in such so-called
long memory stems in part from the presence of inefficiency in financial markets and the
applicability of ARCH-type processes in modelling the evolution of market volatility. Some
of the fundamental papers in this direction are Comte and Renault [8], Baillie et al. [9], and
Bollerslev and Mikkelsen [10]. An up-to-date survey of work on long memory processes is
given by Cont [11].

2. Mathematical Preliminaries

We introduce some standard notation. We denote by R the set of real numbers. If J is an
interval in R and V a finite dimensional normed space, we denote by C(J, V ) the family of
continuous functions φ : J → V . The space of Lebesgue integrable functions φ : (0,∞) →
V will be denoted by L1((0,∞), V ). Where V is clear from the context we omit it from the
notation.

The convolution of f : [0,∞) → R and g : [0,∞) → R is denoted by f ∗g and defined
to be the function given by

(
f ∗ g)(t) =

∫ t

0
f(s)g(t − s)ds, t ≥ 0. (2.1)

If the domain of f contains an interval of the form (T,∞) and γ : [0,∞) → (0,∞), then Lγf
denotes limt→∞f(t)/γ(t), if it exists.

2.1. Subexponential and Regularly Varying Functions

We make a definition, based on the hypotheses of Theorem 3 of [12].

Definition 2.1. Let β : [0,∞) → (0,∞) be a continuous function. Then we say that β is
subexponential if

∫∞

0
β(t)dt < ∞, (2.2)

lim
t→∞

1
β(t)

∫ t

0
β(t − s)β(s)ds = 2

∫∞

0
β(s)ds, (2.3)

lim
t→∞

β(t − s)
β(t)

= 1 uniformly for 0 ≤ s ≤ S, ∀S > 0. (2.4)

In [13] the terminology positive subexponential function was used instead of just subex-
ponential function. Because subexponential functions play the role here of weight functions,
it is natural that they have strictly positive values. The nomenclature subexponential is
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suggested by the fact that (2.4) implies that, for every ε > 0, β(t)eεt → ∞ as t → ∞. This is
proved, for example, in [14]. It is also true that

lim
t→∞

β(t) = 0. (2.5)

In Definition 2.1 above, condition (2.3) can be replaced by

lim
T →∞

lim sup
t→∞

1
β(t)

∫ t−T

T

β(t − s)β(s)ds = 0, (2.6)

and this latter condition often proves to be useful in proofs.
The properties of subexponential functions have been extensively studied, for

example, in [12–15]. Simple examples of subexponential functions are β(t) = (1 + t)−α for
α > 1, β(t) = e−(1+t)

α

for 0 < α < 1 and β(t) = e−t/ log(t+2). The class of subexponential
functions therefore includes a wide variety of functions exhibiting polynomial and slower-
than-exponential decay: nor is the slower-than-exponential decay limited to a class of
polynomially decaying functions.

In this paper, however, we restrict our attention to an important subclass of
subexponential functions. It is noted in [13] that the class of subexponential functions
includes all positive, continuous, integrable functions which are regularly varying at infinity.
We recall that a function γ : [0,∞) → R is said to be regularly varying at infinity with index
α ∈ R if

lim
t→∞

γ(λt)
γ(t)

= λα, ∀λ > 0, (2.7)

and we write γ ∈ RV∞(α). When α < −1, γ is subexponential. A useful property of a
continuous function γ ∈ RV∞(α) for α < −1 is

lim
t→∞

∫∞
t γ(s)ds
tγ(t)

= − 1
1 + α

. (2.8)

In this paper, we also find it convenient to consider functions in RV∞(α) for α ≥ −1. We
list some of the important properties used here. A characteristic of regularly varying functions
of nonzero index is that they exhibit a type of power-law growth or decay as t → ∞. Indeed,
if γ ∈ RV∞(α), then

lim
t→∞

log
∣∣γ(t)∣∣
log t

= α. (2.9)

Hence |γ(t)| → ∞ as t → ∞ if α > 0 and γ(t) → 0 as t → ∞ if α < 0.
If γ ∈ RV∞(α) for α > 0 (and γ(t) → ∞ as t → ∞), then γ is asymptotic to a continuous

function δ, which is also in RV∞(α), such that δ is increasing on (0,∞). Similarly, if γ ∈
RV∞(α) for α < 0, and γ is ultimately positive, then γ is asymptotic to a continuous function
δ, which is also in RV∞(α), such that δ is decreasing on (0,∞).
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A function γ : (−∞, 0] → R is said to be regularly varying at minus infinity with index
α if the function γ− : [0,∞) → R defined for t ≥ 0 by γ−(t) = γ(−t) is in RV∞(α). We denote
the class of regularly varying functions at minus infinity with index α by RV−∞(α).

For further details on regularly varying functions, consult [16].

3. Existence and Asymptotic Behaviour of Functionals of
the Initial History

3.1. Hypotheses on b and φ

We make the following standing hypotheses concerning the kernel b and initial history φ of
(1.1) and (1.2)

b : [0,∞) −→ (0,∞) is continuous and in L1(0,∞), (3.1)

φ : (−∞, 0] −→ R is continuous. (3.2)

We introduce a function f : [0,∞) → R which depends on the continuous function φ.
Suppose that

For every t ≥ 0, f
(
t;φ

)
defined by f

(
t;φ

)
:=

∫0

−∞
b(t − s)φ(s)ds exists (3.3a)

f
(·;φ) ∈ C([0,∞),R) (3.3b)

lim
t→∞

f
(
t;φ

)
= 0. (3.3c)

Following [2], we define byΦ the space of initial functions φ for which such f(·;φ) exists and
has the properties (3.3b) and (3.3c):

Φ =
{
φ ∈ C((−∞, 0];R) : f

(·;φ) obeys (3.3)
}
. (3.4)

The importance of f and Φ in this paper is the following. Suppose that we have an infinite
memory integrodifferential equation with solution x and initial history φ, that is, x(t) = φ(t)
for t ∈ (−∞, 0]. If the equation involves a convolution term of the form

∫ t

−∞
b(t − s)x(s)ds, t ≥ 0 (3.5)

on the right-hand side, the infinite memory equation is equivalent to an initial value
integrodifferential equation with unbounded memory, provided that φ is such that (3.3a)
holds. The existence and uniqueness of a solution of the integrodifferential equation is
essentially guaranteed by (3.3b), and asymptotic analysis (and in particular stability) is
aided by (3.3c). Therefore the class of initial histories Φ helps us to recast questions about
the existence, uniqueness, and asymptotic stability of solutions of an infinite memory
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convolution equation in terms of a perturbed initial value convolution equation, where f ,
to a certain extent, plays the role of a forcing term or perturbation.

We now impose some additional conditions on b and φ which enable us to
demonstrate that φ ∈ Φ and which are also central to the asymptotic analysis of solutions
of (1.1) and (1.2). To this end suppose that b obeys

b ∈ RV∞(δ) for some δ ∈ (−∞,−1], (3.6)

In addition to (3.2), φ also obeys

φ ∈ RV−∞
(
η
)

for some η > 0 with lim
t→−∞

φ(t) = ∞. (3.7)

Suppose further that

δ + η + 1 < 0. (3.8)

It is often convenient to work with the function φ+ : [0,∞) → R defined by φ+(t) = φ(−t) for
t ≥ 0, rather than with φ itself. An important property of φ+ is that it is in RV∞(η).

By virtue of the fact that b is regularly varying at infinity with index δ < −1, it follows
that there exists a function β such that

β ∈ C([0,∞); (0,∞)) is decreasing, lim
t→∞

β(t) = 0, lim
t→∞

b(t)
β(t) /

= 0 exists, (3.9)

and β is also forced to satisfy

β(t − s)
β(t)

−→ 1 as t −→ ∞ uniformly for 0 ≤ s ≤ T, ∀T ≥ 0. (3.10)

Also, because φ+ is regularly varying at infinity with index η > 0, there exists a function ϕ
which is increasing and which obeys φ+(t)/ϕ(t) → 1 as t → ∞.

3.2. Existence and Asymptotic Behaviour of f(·;φ)
Our results in this section demonstrate that, under the hypotheses (3.6) and (3.7), f(·;φ) has
the properties given in (3.3a), (3.3b), and (3.3c). The proofs of the main results are postponed
to later in the paper.

Remark 3.1. Condition (3.8) implies that

∫∞

0
b(s)φ(−s)ds is finite. (3.11)

It can be seen that (3.11) is necessary for the existence of f(t;φ) for t ≥ 0 (i.e., for the validity
of (3.3a)). This is because the integral in (3.11) is f(0;φ).
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Condition (3.11) is close to being sufficient for the existence of f(·;φ) and indeed is
sufficient if b and φ are nonnegative. In fact, because b is integrable, we have that f(t;φ) → 0
as t → ∞.

Proposition 3.2. Suppose that b obeys (3.1) and (3.6) and that φ obeys (3.2) and (3.7). If δ and η
obey (3.8), then b and φ obey

∫∞

0
|b(s)|∣∣φ(−s)∣∣ds < +∞, (3.12)

and f(·;φ) exists for all t ≥ 0 and therefore obeys (3.3a). Moreover f(·;φ) obeys (3.3c).

It is notable that condition (3.12) does not require that |φ| be bounded, but merely
that it cannot grow too quickly as t → −∞, relative to the rate of decay of b(t) → 0 as
t → ∞. This is the significance of the parameter restriction (3.8). Scrutiny of the proof, which
is in Section 7, reveals that the regular variation of b and φ is used sparingly. Indeed, if one
assumes (3.12), the properties (3.9) and (3.10) suffice to prove the result.

Conditions (3.9) and (3.10) will be used to establish the continuity of t �→ f(t;φ), as
well as for later asymptotic analysis of f(t;φ) as t → ∞.

We notice that by virtue of (3.9) that b(t) → 0 as t → ∞. Since b is also continuous,
it follows that it is uniformly continuous. This fact is used at important points in the proof of
the following result.

Proposition 3.3. Suppose that b obeys (3.1) and (3.6) and that φ obeys (3.2) and (3.7). Since b and
φ also obey (3.12), then f(t;φ) exists for all t ≥ 0, t �→ f(t;φ) is continuous and f(t;φ) → 0 as
t → ∞ (i.e., φ ∈ Φ).

A careful reading of the proof (again deferred to Section 7) reveals that it is the
properties (3.9) and (3.10), together with (3.12), that are employed, and that the full strength
of (3.6) and (3.7) is unnecessary.

Having shown that f obeys all the properties in (3.3a), (3.3b), and (3.3c), including
the fact that f(t;φ) → 0 as t → ∞, our first main result determines the exact rate of decay to
zero of f(t;φ) as t → ∞. In contrast to the other results in this section, the proof of this result
employs extensively the regular variation of b and of φ.

Theorem 3.4. Suppose that b is a positive continuous function which obeys (3.6) for some δ < −1.
Let φ be a function which obeys (3.7) for some η > 0, and suppose that δ + η + 1 < 0. Then φ ∈ Φ and
f defined in (3.3a), (3.3b), and (3.3c) obeys

lim
t→∞

f
(
t;φ

)
tb(t)φ(−t) =

∫∞

0
xη(1 + x)δdx. (3.13)

The proof of Theorem 3.4 is postponed to Section 5. We note that the integral on the
right-hand side of (3.13) exists because η > 0 and δ + η + 1 < 0. We also notice that as b ∈
RV∞(δ) and φ+ ∈ RV∞(η), by (3.13), the function f(·;φ) ∈ RV∞(δ + η + 1).



8 Advances in Difference Equations

4. Statement and Discussion of Main Results

4.1. Linear Equations with Unbounded Initial History

Once Theorem 3.4 has been proven, we are able to determine the rate of decay of the solution
of the following linear infinite memory convolution equation

x′(t) = ax(t) +
∫ t

−∞
b(t − s)x(s)ds, t > 0,

v = φ(t), t ∈ (−∞, 0].

(4.1)

If we suppose that b and φ obey merely (3.1) and (3.2), and that φ ∈ Φ (where Φ is the
space defined by (3.4)), the function f defined in (3.3a), (3.3b), and (3.3c) is well defined and
continuous on [0,∞). Therefore, we see that (4.1) can be written in the equivalent form

x′(t) = ax(t) +
∫ t

0
b(t − s)x(s)ds + f

(
t;φ

)
, t > 0, x(0) = φ(0), (4.2)

where x(t) = φ(t) for t ∈ (−∞, 0]. Since this initial value problem has a unique continuous
solution, it follows that there is a unique continuous solution of (4.1). However, as we assume
that b and φ obey the hypotheses (3.6), (3.7), (3.1), (3.2), and (3.8) throughout, it follows that
φ ∈ Φ, and therefore (4.1) has a unique continuous solution x.

We now investigate conditions under which x(t) → 0 as t → ∞, and the rate of
convergence to zero. To study this asymptotic behaviour, it is conventional to introduce the
linear differential resolvent r which is defined to be the unique continuous solution of the
integrodifferential equation

r ′(t) = ar(t) +
∫ t

0
b(t − s)r(s)ds, t > 0, r(0) = 1. (4.3)

The significance of r is that it enables us to represent the unique continuous solution x of (4.1)
in terms of f(t;φ) (defined in (3.3a)). Using (4.2), the formula for x is given by

x(t) = r(t)φ(0) +
∫ t

0
r(t − s)f

(
s;φ

)
ds, t ≥ 0. (4.4)

In the case when a +
∫∞
0 |b(s)|ds < 0, it is known that r ∈ L1(0,∞) and r(t) → 0 as t → ∞.

Therefore, in this case x(t) → 0 as t → ∞. Some recent results on the asymptotic stability of
Volterra equations with unbounded delay include [17, 18].

Moreover, as b is in RV∞(δ) for δ < −1, b is subexponential, and so it is known by
results of, for example, [19], that

lim
t→∞

r(t)
β(t)

exists and is finite, (4.5)
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due to (3.9). Therefore, as we already have good information about the rate of convergence
of f(t;φ) → 0 as t → ∞ from Theorem 3.4, the representation (4.4) together with (4.5) opens
the prospect that the rate of convergence of x(t) → 0 as t → ∞ can be obtained. Our main
result in this direction is as follows.

Theorem 4.1. Suppose that b is a continuous and integrable function which obeys (3.6) for some
δ < −1. Let φ be a continuous function which obeys (3.7) for some η > 0 and suppose that δ+η+1 < 0.
If a +

∫∞
0 |b(s)|ds < 0, then x, the unique continuous solution of (4.1), obeys

lim
t→∞

x(t)
tb(t)φ(−t) = −

∫∞

0
uη(1 + u)δ du · 1

a +
∫∞
0 b(s)ds

. (4.6)

It is worth re-emphasising that the condition δ + η + 1 < 0 is not a merely a technical
convenience; in the case when φ(t) > 0 for t ∈ (−∞, 0] and δ + η + 1 > 0, problem (4.1) is not
well posed, because f(0;φ), for example, is not well defined.

The proof of Theorem 4.1 is given in Section 6.1, and uses results from the admissibility
theory of linear Volterra operators. These results are stated in Section 6, in advance of the
proof of Theorem 4.1.

4.2. Delay Logistic Equation with Unbounded Initial History

In this section, we state and discuss a result similar to Theorem 4.1 for a nonlinear
integrodifferential equation with infinite memory. We consider the logistic equation with
infinite delay

N ′(t) = N(t)

(
r − aN(t) −

∫ t

−∞
b(t − s)N(s)ds

)
, t > 0,

N(t) = φ(t), t ∈ (−∞, 0],

(4.7)

where b is continuous and integrable, φ is continuous, and a and r are real numbers. This
equation, and related equations, have been used to study the population dynamics of a single
species, where N(t) stands for the population at time t.

If f(·;φ) is the function given in (3.3a), it is seen that the existence of a solution of (4.7)
is equivalent to the existence of a solution of

N ′(t) = N(t)

(
r − aN(t) −

∫ t

0
b(t − s)N(s)ds − f

(
t;φ

))
, t > 0, N(0) = φ(0). (4.8)

Therefore, it is necessary that the function f be well defined in order for solutions of (4.7) to
exist. In the case that φ ∈ Φ, then the function f(·;φ) given in (3.3a) is well defined and is
moreover continuous. Therefore standard results on existence, uniqueness, and continuation
of solutions of Volterra integral equations (cf., e.g., Burton [20], Gripenberg et al. [21], Miller
[1]) ensure that there is a unique solution of (4.7) (up to a possible explosion time). For the
proof of positivity of the solution see, for example, Miller [1]. We state [2, Theorem 1] which
concerns on the asymptotic behaviour of solutions of (4.7).
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Theorem 4.2. Let b ∈ C([0,∞), (0,∞))∩L1([0,∞), (0,∞)), a >
∫∞
0 b(s)ds, r > 0. LetΦ be defined

by (3.4), and suppose that φ ∈ C((−∞, 0], (0,∞)) is also in Φ. Then there is a unique continuous
positive solution N of (4.7) which obeys

lim
t→∞

N(t) =
r

a +
∫∞
0 b(s)ds

=: K. (4.9)

This theorem extends a result of [1] which deals with the case when φ is a bounded
continuous function. We remark once more that the condition φ ∈ Φ does not require φ to be
bounded. Some other recent papers which employ Volterra equations with unbounded delay
to model stable population dynamics include [22, 23].

With Theorem 4.2 in hand, we can determine the convergence rate of the solution N
of (4.7) to K defined in (4.9).

Theorem 4.3. Suppose that b is a positive continuous function which obeys (3.6) for some δ < −1.
Let a >

∫∞
0 b(s)ds and r > 0. Let φ ∈ C((−∞, 0], (0,∞)) obey (3.7) for some η > 0, and suppose that

δ + η + 1 < 0. Then N, the unique continuous positive solution of (4.7), obeys

lim
t→∞

K −N(t)
tb(t)φ(−t) =

∫∞

0
uη(1 + u)δ du · 1

a +
∫∞
0 b(s)ds

, (4.10)

where K is defined by (4.9).

Once again, the proof appeals to results from the admissibility theory of linear Volterra
operators. The proof of Theorem 4.3 is deferred to Section 6.2.

It is interesting to compare this result with those obtained for (4.7) under different
conditions on φ and subexponential b in [2]. Suppose, as in Theorem 4.3 above, that a >∫∞
0 b(s)ds, φ ∈ Φ is continuous and positive, and b is positive, continuous, and integrable. In
the case when b a fortiori obeys (3.6), and there exists L/= 0 such that

lim
t→∞

{
φ(−t) −K

}
= L, (4.11)

then by [2, Theorem 2] there exists c /= 0 such that

lim
t→∞

K −N(t)
tb(t)

= c. (4.12)

On the other hand, by [2, Theorem 2] we have that

∫0

−∞

∣∣φ(t) −K
∣∣dt < +∞ (4.13)

implies

lim
t→∞

K −N(t)
b(t)

exists. (4.14)
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In both these cases, there is a history-dependent (i.e., a φ-dependent) rate of convergence to
the equilibrium; moreover, it appears that the larger the “size” of the history (as measured
by the discrepancy of φ from K), the slower the rate of convergence to K. In Theorem 4.3 we
show that the rate of convergence is slower (tb(t)φ(−t) as t → ∞) than in both (4.12) (tb(t) as
t → ∞) and (4.14) (b(t) as t → ∞). This is consistent with the picture that a “larger” history
leads to a slower rate of convergence, as the history in Theorem 4.3 obeys limt→−∞φ(t) = ∞,
in contrast to the “bounded” histories in (4.11) and (4.13). Unbounded histories are studied
in [2], but only for equations in which b decays exponentially fast to zero, in the sense that
t �→ b(t)eλt is subexponential for some λ > 0, in which case, φ(t) can grow as t → −∞
according to

lim
t→−∞

eλt
(
φ(t) −K

)
= L/= 0 or

∫0

−∞
eλ
∣∣φ(t) −K

∣∣dt < +∞, (4.15)

and results similar to (4.14) or (4.12) can be established.
An interesting question, which we do not address here, is to determine the rate of

convergence to the equilibrium for solutions of (4.7) in the case when φ − K ∈ RV−∞(η) for
η ∈ (−1, 0). In this case, φ−K is not integrable, but φ(t) tends toK as t → −∞. Therefore, these
cases cover histories φ whose discrepancy from K is intermediate between those φ covered
by conditions (4.13) and (4.11). It might be expected that a similar rate of convergence to
zero would be found for solutions of (4.1) in the case when φ ∈ RV−∞(η) for η ∈ (−1, 0).
Obviously, the key ingredient to proving such results is an analysis of the rate of convergence
of f(t;φ) → 0 as t → ∞.

5. Proof of Theorem 3.4

Theorem 3.4 follows by a number of lemmas. The first part of this section discusses and
presents these results; the rest of the section is devoted to their proofs.

5.1. Discussion of Supporting Lemmas

We suppose that b and φ obey (3.1) and (3.2) throughout. In the first lemma supporting
Theorem 3.4, we show that the requirement that b and φ be nonmonotone can essentially be
lifted. The key result is the following.

Lemma 5.1. Suppose that b obeys (3.6) and φ obeys (3.7), then there exist a decreasing continuous
function β such that b(t)/β(t) → 1 as t → ∞ and an increasing function ϕ such that φ(−t)/ϕ(t) →
1 as t → ∞. If there exists L > 0 such that

lim
t→∞

∫∞
0 ϕ(s)β(s + t)ds

tβ(t)ϕ(t)
= L, (5.1)

and f(·;φ) is the function defined by (3.3a), then

lim
t→∞

f
(
t;φ

)
tβ(t)ϕ(t)

= L. (5.2)
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The next result shows that, subject to a technical condition, the conclusion of
Theorem 3.4 holds for monotone β and ϕ.

Lemma 5.2. Suppose that β is a decreasing and continuous function in RV∞(δ) for δ < −1, and that
ϕ is an increasing and continuous function in RV∞(η) for η > 0. Let δ + η + 1 < 0. If

lim
t→∞

1
β(t)ϕ(t)

∞∑
j=0

ϕ
((
j + 1

)
ht
)
β
(
jht + t

)

= Λ(h) :=
∞∑
j=0

((
j + 1

)
h
)η(

jh + 1
)δ
, for each fixed h > 0,

(5.3)

lim
t→∞

1
β(t)ϕ(t)

∞∑
j=1

ϕ
(
jht

)
β
((
j + 1

)
ht + t

)

= Λ(h) :=
∞∑
j=1

(
jh
)η((

j + 1
)
h + 1

)δ
, for each fixed h > 0,

(5.4)

then

lim
t→∞

∫∞
0 ϕ(s)β(s + t)ds

tβ(t)ϕ(t)
=
∫∞

0
xη(1 + x)δdx. (5.5)

To prove Lemma 5.2, we need the following auxiliary result.

Lemma 5.3. If Λ is defined by (5.3) and Λ by (5.4), then

lim
h→ 0+

hΛ(h) =
∫∞

0
xη(1 + x)δdx,

lim
h→ 0+

hΛ(h) =
∫∞

0
xη(1 + x)δdx.

(5.6)

Finally, we need to prove the suppositions (5.3) and (5.4).

Lemma 5.4. If β is a decreasing and continuous function in RV∞(δ) for δ < −1 and ϕ ∈ RV∞(η) for
η > 0 and δ + η + 1 < 0, then (5.3) and (5.4) hold.

The proofs of these lemmas are given in the following subsections. It is readily seen
that by taking the results of Lemmas 5.2 and 5.4 together with the result of Lemma 5.1 with
L =

∫∞
0 x

η(1 + x)δdx, Theorem 3.4 is true.
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5.2. Proof of Lemma 5.1

Since b(t)/β(t) → 1 as t → ∞ and φ+(t)/ϕ(t) → 1 as t → ∞ for every ε ∈ (0, 1) there exists
T(ε) > 0 such that 1 − ε < b(t)/β(t) < 1 + ε for all t ≥ T(ε) and 1 − ε < φ+(t)/ϕ(t) < 1 + ε for all
t ≥ T(ε). Therefore

∫∞

T

φ+(s)b(s + t)ds ≤ (1 + ε)2
∫∞

T

ϕ(s)β(s + t)ds, (5.7)

∫∞

T

φ+(s)b(s + t)ds ≥ (1 − ε)2
∫∞

T

ϕ(s)β(s + t)ds. (5.8)

Now

lim
t→∞

1
β(t)

∫T

0
φ+(s)b(s + t)ds = lim

t→∞

∫T

0
φ+(s)

b(s + t)
β(s + t)

β(s + t)
β(t)

ds

=
∫T

0
φ+(s)ds.

(5.9)

Therefore as t �→ tϕ(t) is in RV∞(η + 1) and η + 1 > 0, we have tϕ(t) → ∞ as t → ∞, and so

lim
t→∞

1
tβ(t)ϕ(t)

∫T

0
φ+(s)b(s + t)ds = 0. (5.10)

Similarly

lim
t→∞

1
tβ(t)ϕ(t)

∫T

0
ϕ(s)β(s + t)ds = 0. (5.11)

Hence by (5.1)we have

lim
t→∞

1
tβ(t)ϕ(t)

∫∞

T

ϕ(s)β(s + t)ds = L. (5.12)

Now

f
(
t;φ

)
tβ(t)ϕ(t)

=
1

tβ(t)ϕ(t)

∫T

0
φ+(s)b(s + t)ds +

1
tβ(t)ϕ(t)

∫∞

T

φ+(s)b(s + t)ds. (5.13)

so by (5.7) and (5.9)

lim sup
t→∞

f
(
t;φ

)
tβ(t)ϕ(t)

≤ L(1 + ε)2. (5.14)
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Similarly by (5.8) and (5.9) we have

lim inf
t→∞

f
(
t;φ

)
tβ(t)ϕ(t)

≥ L(1 − ε)2. (5.15)

Letting ε → 0+ in (5.15) and (5.14) gives (5.2).

5.3. Proof of Lemma 5.2

Fix h ∈ (0, 1). Since β is decreasing and ϕ is increasing, we have

∫∞

0
ϕ(s)β(s + t)ds =

∞∑
j=0

∫ (j+1)ht

jht

ϕ(s)β(s + t)ds

≤
∞∑
j=0

∫ (j+1)ht

jht

ϕ
((
j + 1

)
ht
)
β
(
jht + t

)
ds

≤
∞∑
j=0

htϕ
((
j + 1

)
ht
)
β
(
jht + t

)
.

(5.16)

Similarly

∫∞

0
ϕ(s)β(s + t)ds ≥

∞∑
j=0

htϕ
(
jht

)
β
((
j + 1

)
ht + t

)
. (5.17)

Suppose we can show that (5.4) holds, then

lim inf
t→∞

1
tβ(t)ϕ(t)

∫∞

0
ϕ(s)β(s + t)ds

≥ lim inf
t→∞

1
tβ(t)ϕ(t)

·
∞∑
j=0

htϕ
(
jht

)
β
((
j + 1

)
ht + t

)
= hΛ(h).

(5.18)

Also by (5.3)

lim sup
t→∞

1
tβ(t)ϕ(t)

∫∞

0
ϕ(s)β(s + t)ds

≤ lim sup
t→∞

1
tβ(t)ϕ(t)

∞∑
j=0

htϕ
((
j + 1

)
ht
)
β
(
jht + t

)
= hΛ(h).

(5.19)
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Therefore

lim sup
t→∞

1
tβ(t)ϕ(t)

∫∞

0
ϕ(s)β(s + t)ds ≤ hΛ(h),

lim inf
t→∞

1
tβ(t)ϕ(t)

∫∞

0
ϕ(s)β(s + t)ds ≥ hΛ(h).

(5.20)

By (5.20), using the facts that δ + η + 1 < 0 and η > 0, and by employing (5.6), we have (5.5)
as required.

5.4. Proof of Lemma 5.3

The required results are

lim
h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(
jh + 1

)δ =
∫∞

0
xη(1 + x)δdx, (5.21)

lim
h→ 0+

∞∑
j=0

h
(
jh
)η((j + 1)h + 1

)δ =
∫∞

0
xη(1 + x)δdx. (5.22)

We pause to remark that the integrals on the right-hand side of both (5.21) and (5.22) are
finite. To start, notice that

∫∞

0
xη(1 + x)δdx =

∞∑
j=0

∫ (j+1)h

jh

xη(1 + x)δdx ≥
∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ
, (5.23)

∫∞

0
xη(1 + x)δdx ≤

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ
. (5.24)

Let ε ∈ (0, 1). Let J(ε) ∈ N be such that J(ε) > (1−ε)/ε. Then for j > J(ε)we have j > (1−ε)/ε
and so

j

j + 1
> 1 − ε, j > J(ε). (5.25)

Also, as ε ∈ (0, 1), for every h > 0 we have (ε + h)(1 − ε) < ε + (1 − ε)h so because j > J(ε) >
(1 − ε)/ε, we have

1 + jh + h

1 + jh
= 1 +

h

1 + jh
< 1 +

h

1 + (1 − ε)/ε · h <
1

1 − ε
. (5.26)

This implies

1 + jh

1 + jh + h
> 1 − ε, j > J(ε). (5.27)
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By (5.23), we have

∫∞

0
xη(1 + x)δdx ≥

∞∑
j=0

h
((
j + 1

)
h
)η(1 + jh

)δ( j

j + 1

)η( 1 + jh

1 + (j + 1)h

)−δ
. (5.28)

Hence by (5.25) and (5.27) and the fact that η > 0 and −δ > 0, we get

∞∑
j=J(ε)+1

h
(
jh
)η(1 + (j + 1)h

)δ
> (1 − ε)η(1 − ε)−δ

∞∑
j=J(ε)+1

h
(
(j + 1)h

)η(1 + jh
)δ
. (5.29)

Therefore

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ
>

J(ε)∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ

+ (1 − ε)η−δ
∞∑

j=J(ε)+1

h
(
(j + 1)h

)η(1 + jh
)δ
.

(5.30)

Hence

lim inf
h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ

≥ (1 − ε)η−δlim inf
h→ 0+

∞∑
j=J(ε)+1

h
(
(j + 1)h

)η(1 + jh
)δ
,

lim sup
h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ

≥ (1 − ε)η−δlim sup
h→ 0+

∞∑
j=J(ε)+1

h
(
(j + 1)h

)η(1 + jh
)δ
.

(5.31)

Now

lim
h→ 0+

J(ε)∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ = 0, (5.32)

so we have

lim inf
h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ ≥ (1 − ε)η−δlim inf
h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ
,

lim sup
h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ ≥ (1 − ε)η−δlim sup
h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ
.

(5.33)
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Letting ε → 0 yields

lim inf
h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ ≥ lim inf
h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ
, (5.34)

lim sup
h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ ≥ lim sup
h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ
. (5.35)

By (5.23) and (5.35), we have

∫∞

0
xη(1 + x)δdx ≥ lim sup

h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ

≥ lim sup
h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ
.

(5.36)

Similarly, by (5.24)we have

∫∞

0
xη(1 + x)δdx ≤ lim inf

h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ
. (5.37)

Combining these inequalities gives (5.21) as required. By (5.34) and (5.21), we get

lim inf
h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ ≥ lim
h→ 0+

∞∑
j=0

h
(
(j + 1)h

)η(1 + jh
)δ =

∫∞

0
xη(1 + x)δdx. (5.38)

On the other hand, by (5.23)we have

∫∞

0
xη(1 + x)δdx ≥ lim sup

h→ 0+

∞∑
j=0

h
(
jh
)η(1 + (j + 1)h

)δ
, (5.39)

so by combining these inequalities, we get (5.22) as required.

5.5. Proof of Lemma 5.4

Let h ∈ (0, 1). Since β is decreasing for j ≥ 0 we have

β
((
1 + jh

)
t
)

β(t)
· ϕ

((
1 + j

)
ht
)

ϕ(t)
≤ β

((
1 + j

)
ht
)

β(ht)
· β(ht)
β(t)

· ϕ
((
1 + j

)
ht
)

ϕ(ht)
· ϕ(ht)
ϕ(t)

. (5.40)
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Since β and ϕ are continuous and are in RV∞(δ) and RV∞(η), respectively, there existsK(h) >
0 such that β(ht)/β(t) ≤ K(h) and ϕ(ht)/ϕ(t) ≤ K(h) for all t ≥ 0. Hence with βh(t) = β(ht)
and ϕh(t) = ϕ(ht) we have

β
((
1 + jh

)
t
)

β(t)
· ϕ

((
1 + j

)
ht
)

ϕ(t)
≤ K(h)2

βh
((
1 + j

)
t
)

βh(t)
· ϕh

((
1 + j

)
t
)

ϕh(t)
, t ≥ 0. (5.41)

We see that βh ∈ RV∞(δ) and βh is decreasing, while ϕh ∈ RV∞(η) and ϕh is increasing.
Therefore, we have

lim
t→∞

βh(2t)
βh(t)

= 2δ, lim
t→∞

ϕh(2t)
ϕh(t)

= 2η. (5.42)

Since δ + η + 1 < 0, we may choose ε > 0 so small that Aε := (1 + ε)22δ+η+1 < 1. By (5.42), for
every ε > 0 sufficiently small, there exists T(ε, h) > 1 such that

βh(2t)
βh(t)

< (1 + ε)2δ,
ϕh(2t)
ϕh(t)

< (1 + ε)2η, t > T(ε, h). (5.43)

Let n ≥ 0 be an integer. Then for t > T(ε, h)we have

βh(2nt)
βh(t)

=
n∏
l=1

βh
(
2lt

)
βh
(
2l−1t

) <
(
(1 + ε)2δ

)n
,

ϕh

(
2n+1t

)
ϕh(t)

=
n+1∏
l=1

ϕh

(
2lt

)
ϕh

(
2l−1t

) < ((1 + ε)2η)n+1.

(5.44)

For every integer j ≥ 0 there exists a unique integer n ≥ 0 such that 2n ≤ j + 1 < 2n+1. Suppose
that t > T(ε, h). Then as βh is decreasing, and ϕh is increasing, we have

βh
((
j + 1

)
t
)

βh(t)
≤ βh(2nt)

βh(t)
<
(
(1 + ε)2δ

)n
,

ϕh

((
j + 1

)
t
)

ϕh(t)
≤ ϕh

(
2n+1t

)
ϕh(t)

< ((1 + ε)2η)n+1.

(5.45)

Hence by (5.41) for 2n ≤ j + 1 < 2n+1, we have

β
((
1 + jh

)
t
)

β(t)
· ϕ

((
1 + j

)
ht
)

ϕ(t)
≤ K(h)2

(
(1 + ε)2δ

)n
((1 + ε)2η)n+1, t > T(ε, h). (5.46)

Define for n ≥ 0

Cn(t) :=
2n+1−2∑
j=2n−1

β
((
1 + jh

)
t
)

β(t)
· ϕ

((
1 + j

)
ht
)

ϕ(t)
. (5.47)
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Then for n ≥ 0 and t > T(ε, h)we have

Cn(t) ≤
2n+1−2∑
j=2n−1

K(h)2
(
(1 + ε)22η+δ

)n
(1 + ε)2η = K(h)2(1 + ε)2ηAn

ε . (5.48)

Since Aε < 1, the sequence Mn := K(h)2(1 + ε)2ηAn
ε is summable. Next, as β ∈ RV∞(δ) and

ϕ ∈ RV∞(η), we have

lim
t→∞

Cn(t) =
2n+1−2∑
j=2n−1

lim
t→∞

β
((
1 + jh

)
t
)

β(t)
· ϕ

((
1 + j

)
ht
)

ϕ(t)
=

2n+1−2∑
j=2n−1

(
1 + jh

)δ((1 + j)h
)η
. (5.49)

Since 0 ≤ Cn(t) ≤ Mn for all t > T(ε, h), by the summability of (Mn)n≥1 and (5.49), the
Dominated Convergence Theorem gives

lim
t→∞

∞∑
n=0

Cn(t) =
∞∑
n=0

lim
t→∞

Cn(t). (5.50)

This is equivalent to

lim
t→∞

∞∑
n=0

2n+1−2∑
j=2n−1

β
((
1 + jh

)
t
)

β(t)
· ϕ

((
1 + j

)
ht
)

ϕ(t)
=

∞∑
n=0

2n+1−2∑
j=2n−1

(
1 + jh

)δ((1 + j)h
)η
, (5.51)

which implies (5.3).
To prove that (5.4) holds, note that as β is decreasing and ϕ is increasing, we have

β
((
1 +

(
j + 1

)
h
)
t
)

β(t)
· ϕ

(
jht

)
ϕ(t)

≤ β
((
1 + jh

)
t
)

β(t)
· ϕ

((
1 + j

)
ht
)

ϕ(t)
. (5.52)

Define

Dn(t) :=
2n+1−2∑
j=2n−1

β
((
1 +

(
j + 1

)
h
)
t
)

β(t)
· ϕ

(
jht

)
ϕ(t)

. (5.53)

Thus, 0 ≤ Dn(t) ≤ Cn(t) ≤ Mn for t > T(ε, h) and all n ≥ 0. Also as β ∈ RV∞(δ) and
ϕ ∈ RV∞(η), we have

lim
t→∞

Dn(t) =
2n+1−2∑
j=2n−1

lim
t→∞

β
((
1 +

(
j + 1

)
h
)
t
)

β(t)
· ϕ

(
jht

)
ϕ(t)

=
2n+1−2∑
j=2n−1

(
1 + (j + 1)h

)δ(
jh
)η
. (5.54)
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Now by the summability of (Mn)n≥1, the last limit and the fact that 0 ≤ Dn(t) ≤ Mn, by the
Dominated Convergence Theorem we have

lim
t→∞

∞∑
n=0

2n+1−2∑
j=2n−1

β
((
1 +

(
j + 1

)
h
)
t
)

β(t)
· ϕ

(
jht

)
ϕ(t)

=
∞∑
n=0

2n+1−2∑
j=2n−1

(
1 + (j + 1)h

)δ(
jh
)η
, (5.55)

and therefore (5.4) holds, as required.

6. Proofs of Theorems 4.1 and 4.3

The proofs of Theorems 4.1 and 4.3, which concern the asymptotic behaviour of Volterra
equations, are greatly facilitated by applying extant results on the admissibility of certain
linear Volterra operators. For the convenience of the reader, two results from [2] are restated.

Let H : Δ → R be a continuous function on Δ = {(s, t) ∈ R
2 : 0 ≤ s ≤ t < ∞}.

Associated with H is the linear operator H : C[0,∞) → C[0,∞) defined by

(Hξ)(t) =
∫ t

0
H(t, s)ξ(s)ds, t ≥ 0. (6.1)

Firstly we restate a theorem, which is a variant of part of a result in Corduneanu [24, page
74].

Theorem 6.1 (see [2, Theorem 3]). Suppose that for all T > 0,

H(t, s) −→ H∞(s) as t −→ ∞ uniformly with respect to s ∈ [0, T]. (6.2)

Further assume that

W := lim
T →∞

lim sup
t→∞

∫ t

T

|H(t, s)|ds < ∞, (6.3)

lim
T →∞

lim sup
t→∞

∣∣∣∣∣
∫ t

T

H(t, s)ds − V

∣∣∣∣∣ = 0 for some V ∈ R, (6.4)

then limt→∞(Hξ)(t) exists for all ξ for which limt→∞ξ(t) =: ξ(∞) exists, and

lim
t→∞

(Hξ)(t) = V ξ(∞) +
∫∞

0
H∞(s)ξ(s)ds. (6.5)

The next result is [2, Theorem 4]. It extends Appleby et al. [19, Theorem 5] to
nonconvolution integral equations (cf. [19, Theorem A.1]); it is also the counterpart of
Appleby et al. [25, Theorems 3.1 and 5.1], and Győri and Horváth [26, Theorem 3.1] which
concerns linear nonconvolution difference equations.
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Theorem 6.2 (see [2, Theorem 4]). Suppose that (6.2) and (6.4) hold, and that (6.3) holds with

W < 1. (6.6)

Assume that ξ is in C[0,∞) and that limt→∞ξ(t) =: ξ(∞) exists. If η : [0,∞) → R
n is the

continuous solution of

η(t) = ξ(t) +
∫ t

0
H(t, s)η(s)ds, t ≥ 0, (6.7)

then limt→∞η(t) =: η(∞) exists and satisfies the limit formula

η(∞) = (I − V )−1
[
ξ(∞) +

∫∞

0
H∞(s)η(s)ds

]
. (6.8)

6.1. Proof of Theorem 4.1

The method of [2] is now used to prove Theorems 4.1 and 4.3.
Let β ∈ RV∞(δ) be the positive function defined in (3.9), which is decreasing on

[Θ1,∞) for some Θ1 > 0. As remarked the solution r of (4.3) is in r ∈ L1(0,∞); it also obeys

∫∞

0
r(s)ds = − 1

a +
∫∞
0 b(s)ds

. (6.9)

If

lim
t→∞

(
r ∗ f(·;φ))(t)
tb(t)φ(−t) = −

∫∞

0
uη(1 + u)δ du · 1

a +
∫∞
0 b(s)ds

(6.10)

holds, then by (4.4), (4.5), and the fact that tφ(−t) → ∞ as t → ∞, we have

lim
t→∞

x(t)
tb(t)φ(−t) = φ(0) lim

t→∞
r(t)
b(t)

· 1
tφ(−t) + lim

t→∞

(
r ∗ f(·;φ))(t)
tb(t)φ(−t)

= −
∫∞

0
uη(1 + u)δ du · 1

a +
∫∞
0 b(s)ds

,

(6.11)

which is nothing other than (4.6).
It therefore remains to establish (6.10). Since φ+ ∈ RV∞(η) for some η > 0 there exists

ϕ such that ϕ is increasing on [Θ2,∞) for some Θ2 > 0, positive, differentiable and obeys
φ+(t)/ϕ(t) → 1 as t → ∞. Define γ(t) = tβ(t)ϕ(t). Then by Theorem 3.4, we have

Lγf
(·;φ) := lim

t→∞
f
(
t;φ

)
γ(t)

= lim
t→∞

f
(
t;φ

)
tb(t)φ+(t)

· b(t)φ+(t)
β(t)ϕ(t)

=
∫∞

0
uη(1 + u)δ du. (6.12)
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Note also that as tϕ(t) → ∞ as t → ∞, we have

Lγβ = lim
t→∞

β(t)
γ(t)

= lim
t→∞

1
tϕ(t)

= 0. (6.13)

Our strategy here is to use Theorem 6.1 to show that limt→∞(r ∗ f(·;φ))(t)/γ(t) exists and to
determine it. To this end write

1
γ(t)

∫ t

0
r(t − s)f

(
s;φ

)
ds =

∫ t

0

r(t − s)γ(s)
γ(t)

· f
(
s;φ

)
γ(s)

ds =
∫ t

0
H1(t, s)ξ1(s)ds, (6.14)

where we identify

H1(t, s) =
r(t − s)γ(s)

γ(t)
, ξ1(s) =

f
(
s;φ

)
γ(s)

. (6.15)

In the notation of Theorem 6.1, H1 here plays the role of H and ξ1 the role of ξ. Evidently H1

and ξ1 are continuous. By (6.12), as t → ∞, it follows that ξ1(t) → ∫∞
0 u

η(1 + u)δdu =: ξ1(∞).
By (6.13) and (4.5), we have Lγr = Lβr ·Lγβ = 0. Using this and the fact that γ(t− s)/γ(t) → 1
as t → ∞ uniformly on compact intervals (by (2.4)), we obtain

|H1(t, s)| = |r(t − s)|
γ(t − s)

· γ(t − s)
γ(t)

· γ(s) −→ 0, as t −→ ∞, (6.16)

where the convergence is uniform for s ∈ [0, T], for any T > 0.
Next let T > max(Θ1,Θ2). For t > 2T , we have the identity

∫ t

T

H1(t, s)ds −
∫∞

0
r(s)ds =

∫ t−T

T

r(t − s)γ(s)
γ(t)

ds

+
∫T

0
r(s)

(
γ(t − s)
γ(t)

− 1
)
ds −

∫∞

T

r(s)ds.

(6.17)
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Since γ obeys (2.4), the second term on the right-hand side has zero limit as t → ∞. As for
the first term, by the continuity of |r|/β and (4.5), the facts that γ(t) = tβ(t)ϕ(t) and that ϕ is
increasing, we deduce the estimate

∫ t−T

T

|r(t − s)|γ(s)
γ(t)

ds =
∫ t−T

T

|r(t − s)|
β(t − s)

β(t − s)γ(s)
γ(t)

ds

≤ sup
u≥0

|r(u)|
β(u)

∫ t−T

T

β(t − s)γ(s)
γ(t)

ds

= sup
u≥0

|r(u)|
β(u)

∫ t−T

T

β(t − s)sβ(s)ϕ(s)
tβ(t)ϕ(t)

ds

≤ sup
u≥0

|r(u)|
β(u)

∫ t−T

T

β(t − s)β(s)
β(t)

ds.

(6.18)

Since β is subexponential, and therefore obeys (2.3), we have

lim
t→∞

1
β(t)

∫ t−T

T

β(t − u)β(u)du = 2
∫∞

T

β(s)ds, (6.19)

so it follows that

lim sup
t→∞

∫ t−T

T

|r(t − s)|γ(s)
γ(t)

ds ≤ 2sup
u≥0

|r(u)|
β(u)

∫∞

T

β(s)ds. (6.20)

Therefore by (6.17) and (6.20), we arrive at the estimate

lim sup
t→∞

∣∣∣∣∣
∫ t

T

H1(t, s)ds −
∫∞

0
r(s)ds

∣∣∣∣∣ ≤ 2sup
u≥0

|r(u)|
β(u)

∫∞

T

β(s)ds +
∫∞

T

|r(s)|ds. (6.21)

Since β, r ∈ L1(0,∞), we have

lim
T →∞

lim sup
t→∞

∣∣∣∣∣
∫ t

T

H1(t, s)ds −
∫∞

0
r(s)ds

∣∣∣∣∣ = 0. (6.22)

Returning to (6.17)we get

∫ t

T

|H1(t, s)|ds ≤
∫ t−T

T

|r(t − s)|γ(s)
γ(t)

ds +
∫T

0
|r(s)|

∣∣∣∣γ(t − s)
γ(t)

− 1
∣∣∣∣ds +

∫T

0
|r(s)|ds. (6.23)

Hence by using (6.20), we obtain

lim sup
t→∞

∫ t

T

|H1(t, s)|ds ≤ 2sup
u≥0

|r(u)|
β(u)

∫∞

T

β(s)ds +
∫T

0
|r(s)|ds. (6.24)
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Finally, letting T → ∞ yields

lim
T →∞

lim sup
t→∞

∫ t

T

|H1(t, s)|ds ≤
∫∞

0
|r(s)|ds. (6.25)

Since all of the hypotheses of Theorem 6.1 are satisfied with V =
∫∞
0 r(s)dswe have, by (6.12)

and (6.9),

lim
t→∞

1
γ(t)

∫ t

0
r(t − s)f

(
s;φ

)
ds = lim

t→∞

∫ t

0
H1(t, s)ξ1(s)ds

=
∫∞

0
r(s)ds · Lγf

(·;φ)

= − 1
a +

∫∞
0 b(s)ds

∫∞

0
uη(1 + u)δ du

(6.26)

which is nothing but (6.10), and so the theorem is proven.

6.2. Proof of Theorem 4.3

First, define x(t) := N(t) − K for t ≥ 0, where K is given by (4.9). Then by Theorem 4.2,
x(t) → 0 as t → ∞. Our strategy, as in [2], is to show that x satisfies a linear integral equation
(where nonlinearities are subsumed into the kernel and forcing function). Once this is done,
we scale the resulting integral equation appropriately and apply Theorem 6.2 to determine
the asymptotic behaviour of x.

Although the same derivation of the integral equation for x is given in [2], we give it
afresh here, partly to make the exposition self contained, and partly because it enables us to
define and analyse a number of auxiliary functions that will be important in the proof.

Substitution of N = x +K into (4.7)with f̃ defined by

f̃
(
t;φ

)
=
∫0

−∞
b(t − s)

(
φ(s) −K

)
ds, t ≥ 0, (6.27)

leads to the initial-value problem

x′(t) = (K + x(t))

(
−ax(t) −

∫ t

0
b(t − s)x(s)ds − f̃

(
t;φ

))
, t ≥ 0, (6.28)

where x(0) = φ(0) −K. We note by (3.3a) that the function f̃(·;φ) is well defined, continuous
and obeys f̃(t;φ) → 0 as t → ∞. Define

c
(
t;φ

)
= −ax(t) −

∫ t

0
b(t − s)x(s)ds − f̃

(
t;φ

)
, t ≥ 0. (6.29)
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Then t �→ c(t;φ) is continuous and c(t;φ) → 0 as t → ∞, and x obeys

x′(t) = −aKx(t) −K

∫ t

0
b(t − s)x(s)ds −Kf̃

(
t;φ

)
+ c

(
t;φ

)
x(t), t ≥ 0. (6.30)

Define the differential resolvent r by

r ′(t) = −aKr(t) −K

∫ t

0
b(t − s)r(s)ds, t ≥ 0, r(0) = 1. (6.31)

Therefore by the variation of constants formula, we have

x(t) = h(t) +
∫ t

0
r(t − s)c(s)x(s)ds, t ≥ 0, (6.32)

where

h(t) = r(t)x(0) −K

∫ t

0
r(t − s)f̃

(
s;φ

)
ds, t ≥ 0, (6.33)

and we have suppressed the φ-dependence in c and h. Since a >
∫∞
0 b(s)ds, it follows that

r(t) → 0 as t → ∞ and r ∈ L1(0,∞) with

∫∞

0
r(s)ds =

1
K
(
a +

∫∞
0 b(s)ds

) . (6.34)

Moreover we have that limt→∞r(t)/β(t) exists and is finite. Define γ(t) = tβ(t)ϕ(t) as in the
proof of Theorem 4.1. Dividing (6.32) by γ , and defining ξ(t) = h(t)/γ(t) and η(t) = x(t)/γ(t)
for t ≥ 0 we arrive at

η(t) = ξ(t) +
∫ t

0
H(t, s)η(s)ds, t ≥ 0, (6.35)

where H is given by

H(t, s) =
r(t − s)γ(s)c(s)

γ(t)
, 0 ≤ s ≤ t. (6.36)

Clearly η, ξ, and H are continuous. Our strategy now is to apply Theorem 6.2 to determine
the integral equation (6.35), showing that η(t) = x(t)/γ(t) tends to a finite limit as t → ∞.
From this fact, we will be able to deduce the speed of convergence of N(t) to K as t → ∞.
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First we show that limt→∞ξ(t) exists and is finite. Since Lβr is finite, and Lγβ = 0, we
have Lγr = 0. Also with f defined by (3.3a), f̃(t;φ) = f(t, φ) − K

∫∞
t b(s)ds for t ≥ 0. Since

b ∈ RV∞(δ) for δ < −1, it obeys

lim
t→∞

∫∞
t b(s)ds
tb(t)

= − 1
δ + 1

. (6.37)

Therefore limt→∞
∫∞
t b(s)ds/γ(t) = 0, and so we get

lim
t→∞

f̃
(
t;φ

)
γ(t)

= lim
t→∞

f
(
t;φ

)
γ(t)

=
∫∞

0
xη(1 + x)δdx, (6.38)

by Theorem 3.4. Therefore, by also using the fact that Lγr = 0, we see that

lim
t→∞

ξ(t) = −K lim
t→∞

1
γ(t)

∫ t

0
r(t − s)f̃

(
s;φ

)
ds = −K

∫∞

0
r(s)ds · Lγf

(·;φ), (6.39)

by using the argument used to prove (6.26). Hence by (6.34), ξ obeys

ξ(∞) := lim
t→∞

ξ(t) = − 1
a +

∫∞
0 b(s)ds

∫∞

0
xη(1 + x)δdx. (6.40)

WithH defined by (6.36), we use the facts that Lγr = 0 and the fact that γ(t−s)/γ(t) →
1 as t → ∞ uniformly on compact intervals to establish that

|H(t, s)| = |r(t − s)|
γ(t − s)

· γ(t − s)
γ(t)

· γ(s)|c(s)| −→ 0 as t −→ ∞ (6.41)

for all s ∈ [0, T] and any T > 0. Next, as c is uniformly bounded on [0,∞), for any T > 0, we
have

∫ t

T

|H(t, s)|ds =
∫ t

T

|r(t − s)|γ(s)
γ(t)

|c(s)|ds ≤ sup
s≥T

|c(s)|
∫ t

T

|r(t − s)|γ(s)
γ(t)

ds. (6.42)

Therefore by (6.20), we deduce that

lim sup
t→∞

∫ t

T

|H(t, s)|ds ≤ sup
s≥T

|c(s)| · 2sup
u≥0

|r(u)|
β(u)

·
∫∞

T

β(s)ds. (6.43)

Since c is bounded and β ∈ L1(0,∞), it follows that H obeys

lim
T →∞

lim sup
t→∞

∫ t

T

|H(t, s)|ds = 0. (6.44)
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Hence we also have

lim
T →∞

lim sup
t→∞

∣∣∣∣∣
∫ t

T

H(t, s)ds

∣∣∣∣∣ = 0, (6.45)

and therefore all the conditions of Theorem 6.2 hold, with V = W = 0 < 1. Hence the solution
η of (6.35) obeys limt→∞η(t) = ξ(∞). Therefore by (6.40) we have

lim
t→∞

N(t) −K

γ(t)
= lim

t→∞
x(t)
γ(t)

= lim
t→∞

η(t) = − 1
a +

∫∞
0 b(s)ds

∫∞

0
xη(1 + x)δdx, (6.46)

which implies (4.10).

7. Proof of Propositions 3.2 and 3.3

7.1. Proof of Proposition 3.2

By (3.9), (3.12), I is finite, where

I :=
∫∞

0
β(s)

∣∣φ(−s)∣∣ds < +∞. (7.1)

By hypothesis

∣∣f(t;φ)∣∣ ≤
∫∞

0
|b(t + s)|∣∣φ(−s)∣∣ds =

∫∞

0

|b(t + s)|
β(t + s)

β(t + s)
∣∣φ(−s)∣∣ds. (7.2)

Hence as β is nonincreasing, we have

∣∣f(t;φ)∣∣ ≤ sup
u≥t

|b(u)|
β(u)

∫∞

0
β(t + s)

∣∣φ(−s)∣∣ds ≤ sup
u≥t

|b(u)|
β(u)

∫∞

0
β(s)

∣∣φ(−s)∣∣ds, (7.3)

so |f(t;φ)| ≤ Isupu≥t|b(u)|/β(u) ≤ IB, where we define

B := sup
u≥0

|b(u)|
β(u)

. (7.4)

Hence t �→ |f(t;φ)| is uniformly bounded.
Since Lβ|b|/= 0, β is nonincreasing, and b ∈ L1(0,∞) we have that β(t) → 0 as t → ∞.

Returning to (7.3) with B given by (7.4), we get

∣∣f(t;φ)∣∣ ≤ B

∫∞

0
β(t + s)

∣∣φ(−s)∣∣ds, t ≥ 0. (7.5)



28 Advances in Difference Equations

Let T > 0. Then as β is nonincreasing, we have

∣∣f(t;φ)∣∣ ≤ B

∫T

0
β(t + s)

∣∣φ(−s)∣∣ds + B

∫∞

T

β(t + s)
β(s)

β(s)
∣∣φ(−s)∣∣ds

≤ Bβ(t)
∫T

0

∣∣φ(−s)∣∣ds + B

∫∞

T

β(s)
∣∣φ(−s)∣∣ds.

(7.6)

The second integral on the right-hand side is finite, and bounded above by I. Since φ is
continuous,

∫T
0 |φ(−s)|ds is finite. Hence, as β(t) → 0 as t → ∞, we have

lim sup
t→∞

∣∣f(t;φ)∣∣ ≤ B

∫∞

T

β(s)
∣∣φ(−s)∣∣ds. (7.7)

Since T is arbitrary, and β|φ(−·)| ∈ L1(0,∞) we have limT →∞
∫∞
T β(s)|φ(−s)|ds = 0. Hence

lim supt→∞|f(t;φ)| = 0, as claimed.

7.2. Proof of Proposition 3.3

Fix t0 ≥ 0 and let 0 ≤ t /= t0. We will show for every ε > 0 that there exists δ(ε) > 0 such that
|t − t0| < δ(ε) implies

sup
s≥0

∣∣∣∣b(t + s) − b(t0 + s)
β(s)

∣∣∣∣ < ε

I
, (7.8)

Assume temporarily that this holds. Then for |t − t0| < δ(ε), we have

∣∣f(t;φ) − f
(
t0;φ

)∣∣ ≤
∫∞

0
|b(t + s) − b(t0 + s)|∣∣φ(−s)∣∣ds

=
∫∞

0

|b(t + s) − b(t0 + s)|
β(s)

β(s)
∣∣φ(−s)∣∣ds

≤ sup
s≥0

|b(t + s) − b(t0 + s)|
β(s)

∫∞

0
β(s)

∣∣φ(−s)∣∣ds <
ε

I
· I = ε,

(7.9)

where we used (7.8) and (7.1) at the last step. This establishes the continuity of t �→ f(t;φ). It
remains to prove (7.8). The identity

b(τ + s)
β(s)

= Lβb +
b(τ + s)
β(τ + s)

(
β(τ + s)
β(s)

− 1
)
+
(
b(τ + s)
β(τ + s)

− Lβb

)
(7.10)
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applied with τ = t and τ = t0 gives

b(t + s)
β(s)

− b(t0 + s)
β(s)

=
b(t + s)
β(t + s)

(
β(t + s)
β(s)

− 1
)
+
(
b(t + s)
β(t + s)

− Lβb

)

− b(t0 + s)
β(t0 + s)

(
β(t0 + s)
β(s)

− 1
)
−
(
b(t0 + s)
β(t0 + s)

− Lβb

)
.

(7.11)

For every ε > 0 there exists S1(ε) > 0 such that

∣∣∣∣b(t)β(t)
− Lβb

∣∣∣∣ < ε

8I
, t > S1(ε), (7.12)

where I > 0 is given by (7.1). Suppose also that |t − t0| < 1 so that t < t0 + 1. Since β obeys
(3.10), we have

lim
s→∞

sup
0≤u≤t0+1

∣∣∣∣β(u + s)
β(s)

− 1
∣∣∣∣ = 0. (7.13)

Hence for every ε > 0 there exists S2(ε, t0) > 0 such that

sup
0≤u≤t0+1

∣∣∣∣β(u + s)
β(s)

− 1
∣∣∣∣ < ε

8BI
, s > S2(ε, t0), (7.14)

where B is given by (7.4). Hence as 0 ≤ t < t0 + 1 we have

∣∣∣∣β(t0 + s)
β(s)

− 1
∣∣∣∣ < ε

8BI
,

∣∣∣∣β(t + s)
β(s)

− 1
∣∣∣∣ < ε

8BI
, s > S2(ε, t0). (7.15)

Let S3(ε) = max(S1(ε), S2(ε, t0)). Then as t and t0 are nonnegative, using (7.4), (7.12), and
(7.15) in (7.11), for |t − t0| < 1 we have

sup
s≥S3(ε,t0)

∣∣∣∣b(t + s) − b(t0 + s)
β(s)

∣∣∣∣ ≤ B
ε

8BI
+

ε

8I
+ B

ε

8BI
+

ε

8I
≤ 3ε

4I
. (7.16)

Set C1(ε, t0) := 1/min0≤u≤S3(ε,t0)β(u). Since b is uniformly continuous on [0,∞), for every ε > 0
there is a δ1(ε) > 0 such that |t − t0| < δ1(ε) < 1 implies

|b(t − t0 + u) − b(u)| < ε

4C1(ε, t0)I
, u ≥ 0. (7.17)
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The t0-dependence here is permissible as t0 is fixed. Thus, for |t − t0| < δ1(ε),

sup
0≤s≤S3(ε,t0)

∣∣∣∣b(t + s) − b(t0 + s)
β(s)

∣∣∣∣ ≤ C1(ε, t0) sup
0≤s≤S3(ε,t0)

|b(t + s) − b(t0 + s)|

= C1(ε, t0) sup
t0≤u≤t0+S3(ε,t0)

|b(t − t0 + u) − b(u)|

< C1(ε, t0) · ε

4C1(ε, t0)I
=

ε

4I
.

(7.18)

Let δ(ε) = min(δ1(ε), 1). By the last inequality and (7.16), for |t − t0| < δ(ε) we get

sup
s≥0

∣∣∣∣b(t + s) − b(t0 + s)
β(s)

∣∣∣∣ ≤ sup
0≤s≤S3(ε,t0)

∣∣∣∣b(t + s) − b(t0 + s)
β(s)

∣∣∣∣ + sup
s≥S3(ε,t0)

∣∣∣∣b(t + s) − b(t0 + s)
β(s)

∣∣∣∣ < ε

I
,

(7.19)

which is nothing other than (7.8), proving the result.
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[3] U. Küchler and B. Mensch, “Langevin’s stochastic differential equation extended by a time-delayed
term,” Stochastics and Stochastics Reports, vol. 40, no. 1-2, pp. 23–42, 1992.

[4] P. Zaffaroni, “Stationarity and memory of ARCH(∞) models,” Econometric Theory, vol. 20, no. 1, pp.
147–160, 2004.

[5] L. Giraitis, P. Kokoszka, and R. Leipus, “Stationary ARCH models: dependence structure and central
limit theorem,” Econometric Theory, vol. 16, no. 1, pp. 3–22, 2000.

[6] P. M. Robinson, “Testing for strong serial correlation and dynamic conditional heteroskedasticity in
multiple regression,” Journal of Econometrics, vol. 47, no. 1, pp. 67–84, 1991.



Advances in Difference Equations 31

[7] L. Giraitis, P. M. Robinson, and D. Surgailis, “A model for long memory conditional heteroscedastic-
ity,” The Annals of Applied Probability, vol. 10, no. 3, pp. 1002–1024, 2000.

[8] F. Comte and E. Renault, “Long memory in continuous-time stochastic volatility models,”
Mathematical Finance, vol. 8, no. 4, pp. 291–323, 1998.

[9] R. T. Baillie, T. Bollerslev, and H. O. Mikkelsen, “Fractionally integrated generalized autoregressive
conditional heteroskedasticity,” Journal of Econometrics, vol. 74, no. 1, pp. 3–30, 1996.

[10] T. Bollerslev and H. O. Mikkelsen, “Modeling and pricing long memory in stock market volatility,”
Journal of Econometrics, vol. 73, no. 1, pp. 151–184, 1996.

[11] R. Cont, “Long range dependence in financial markets,” in Fractals in Engineering, E. Lutton and J.
Vehel, Eds., pp. 159–180, Springer, New York, NY, USA, 2005.

[12] J. Chover, P. Ney, and S.Wainger, “Functions of probabilitymeasures,” Journal d’AnalyseMathématique,
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[25] J. A. D. Applelby, I. Győri, and D. W. Reynolds, “On exact convergence rates for solutions of linear
systems of Volterra difference equations,” Journal of Difference Equations and Applications, vol. 12, no.
12, pp. 1257–1275, 2006.
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