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Let {Φn} be a monic orthogonal polynomial sequence on the unit circle. We define recursively
a new sequence {Ψn} of polynomials by the following linear combination: Ψn(z) + pnΨn−1(z) =
Φn(z) + qnΦn−1(z), pn, qn ∈ C, pnqn /= 0. In this paper, we give necessary and sufficient conditions
in order to make {Ψn} be an orthogonal polynomial sequence too. Moreover, we obtain an explicit
representation for the Verblunsky coefficients {Φn(0)} and {Ψn(0)} in terms of pn and qn. Finally,
we show the relation between their corresponding Carathéodory functions and their associated
linear functionals.

1. Notation and Preliminary Results

We recall some definitions and general results about orthogonal polynomials on the unit circle
(OPUC). They can be seen in [1–3].

Along this paper, we will use the following notations. We denote by Λ = span{zk, k ∈
Z} the linear space of Laurent polynomials with complex coefficients and by Λ′ the dual
algebraic space of Λ. Let P = span{zk, k ∈ N} be the space of complex polynomials.

Definition 1.1. Let u ∈ Λ′. Denoting by un = u(zn), n ∈ Z, we say that

(i) u is Hermitian if for all n ≥ 0, u−n = un;

(ii) u is regular or quasidefinite (positive definite) if the principal minors of themoment
matrix are nonsingular (positive), that is,

∀n ≥ 0, Δn = det
(
u
(
zi−j
))

i=0···n; j=0···n /
= 0 (> 0). (1.1)

In any case we denote for all n ≥ 0, en = Δn/Δn−1 with Δ−1 = 1.
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The sequence {un} is said to be the sequence of the moments associated with u.
Furthermore, if u is a positive definite linear functional then a finite nontrivial positive

Borel measure μ supported on the unit circle exists such that

u(P(z)) =
1
2π

∫2π

0
P
(
eiθ
)
dμ, P ∈ Λ. (1.2)

Definition 1.2. Let {Φn(z)}+∞0 be a complex polynomial sequence with degΦn(z) = n. We say
that {Φn(z)}+∞0 is a sequence of orthogonal polynomials (OPSs)with respect to the linear and
Hermitian functional u if

∀n,m ≥ 0, u

(
Φn(z)Φm

(
1
z

))
= enδnm with en /= 0. (1.3)

In the sequel, we denote by {Φn} the monic orthogonal polynomial sequence (MOPS)
associated with u.

For simplicity, along this paper we also assume that u is normalized (i.e., u0 = 1). It is
well known that the regularity of u is a necessary and sufficient condition for the existence of
a sequence of orthogonal polynomials on the unit circle. On the other hand, the polynomials
Φn satisfy the so-called Szegö recurrence relations

∀n ≥ 1, Φn(z) = zΦn−1(z) + Φn(0)Φ∗
n−1(z), (1.4)

∀n ≥ 1, Φ∗
n(z) = Φ∗

n−1(z) + Φn(0)zΦn−1(z), (1.5)

∀n ≥ 1, Φn(z) =
(
1 − |Φn(0)|2

)
zΦn−1(z) + Φn(0)Φ∗

n(z), (1.6)

∀n ≥ 1, Φ∗
n(z) =

(
1 − |Φn(0)|2

)
Φ∗

n−1(z) + Φn(0)Φn(z), (1.7)

where Φ∗
n(z) = znΦn(1/z) is the reversed polynomial of Φn(z), n ≥ 0.

Definition 1.3. Given an MOPS {Φn}, the sequence of kernels of parameter y ∈ C associated
with the linear functional u is defined by

∀n ≥ 0, Kn

(
z, y
)
=

n∑
j=0

Φj(y)
ej

Φj(z). (1.8)
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This sequence verifies the following properties:

∀n ≥ 0, Kn

(
z, y
)
=

1
en

⎛
⎝Φ∗

n(z)Φ
∗
n

(
y
) − zyΦn(z)Φn

(
y
)

1 − zy

⎞
⎠, (1.9)

∀n ≥ 0, Kn

(
z, y
)
=

1
en+1

⎛
⎝Φ∗

n+1(z)Φ
∗
n+1

(
y
) −Φn+1(z)Φn+1

(
y
)

1 − zy

⎞
⎠, (1.10)

∀n ≥ 0, Kn

(
z, y
)
= Kn

(
y, z
)

Φ∗
n(z) = enKn(z, 0), (1.11)

∀n ≥ 1, Kn

(
z, y
)
= zyKn−1

(
z, y
)
+
Φ∗

n(y)
en

Φ∗
n(z). (1.12)

To the linear functional uwe can associate a formal series Fu as follows:

Fu(z) = 1 + 2
+∞∑
n=1

unz
n. (1.13)

In the positive definite case, Fu is called the Carathéodory function associated with u. In this
case, Fu can be written as

Fu(z) =
1
2π

∫2π

0

eiθ + z

eiθ − z
dμ(θ), |z| < 1. (1.14)

The measure dμ can be reconstructed from Fu by means of the inversion formula. The aim of
this paper is the analysis of the following problem. Given an MOPS on the unit circle {Φn},
orthogonal with respect to a linear functional u, to find necessary and sufficient conditions in
order to make a sequence of monic polynomials {Ψn} defined by

∀n ≥ 1, Φn(z) + qnΦn−1(z) = Ψn(z) + pnΨn−1(z) with pnqn /= 0 (1.15)

an MOPS with respect to a linear functional L. Further more, to find the relation between the
linear functionals L and u and their corresponding Carathéodory functions.

Many authors have dealt with this kind of problems. In the constructive theory
of orthogonal polynomials they have been called inverse problems. Concretely, an inverse
problem for linear functionals can be stated as follows. Given two sequences of monic
polynomials {Φn} and {Ψn}, to find necessary and sufficient conditions in order to make
{Ψn} an MOPS when {Φn} is a MOPS and they are related by

F(Φn, . . . ,Φn−l) = G(Ψn, . . . ,Ψn−k), (1.16)

where F andG are fixed functions. As a next step, to find the relation between the functionals.
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For instance, this subject has been treated in [4–6] in the context of the theory of
orthogonal polynomials on the real line. For orthogonal polynomials with respect tomeasures
supported on the unit circle, in [7] there have been relevant results.

The structure of this paper is the following. In Section 2 we give the necessary
conditions in order to be sure that the problem (1.15) admits a nontrivial solution. In
Section 3, we prove a sufficient condition and we obtain the explicit solution in terms of pn
and qn. Section 4 is devoted to find the functional relation between L and u. Finally, Section 5
contains the rational relation between the corresponding Carathéodory functions.

2. Necessary Conditions

Let {Φn}n≥0 be a monic orthogonal polynomial sequence and let {Ψn}n≥0 be a monic
polynomial sequence. We assume that there exist sequences of complex numbers {qn}n≥2 and
{pn}n≥2 such that the following relation holds:

∀n ≥ 2, Φn(z) + qnΦn−1(z) = Ψn(z) + pnΨn−1(z). (2.1)

Also, we assume Φ0(z) = Ψ0(z) = 1 and Φ1(z) = z − q1 and Ψ1(z) = z − p1, with |q1|/= 1 and
|p1|/= 1.

In this section, we find some necessary conditions in order to make the sequence {Ψn}
defined recursively from {Φn} by relation (2.1) an MOPS.

With this aim, we define the complex numbers Nn+1 and Dn+1 as follows:

∀n ≥ 1, Nn+1 = Φn+1(0) + qn+1Φn(0), (2.2)

∀n ≥ 1, Dn+1 = qn+1 − qn + Φn(0)Φn+1(0). (2.3)

The following proposition justifies this choice.

Proposition 2.1. Let {Ψn}n≥0 be the monic sequence given as in (2.1). If {Ψn}n≥0 is an MOPS, then
the following relations hold:

∀n ≥ 1, Nn+1 = Ψn+1(0) + pn+1Ψn(0), (2.4)

∀n ≥ 1, Dn+1 = pn+1 − pn + Ψn(0)Ψn+1(0). (2.5)

Moreover,

∀n ≥ 1, zDn+1(Φn−1(z) −Ψn−1(z)) = Nn+1
(
Ψ∗

n−1(z) −Φ∗
n−1(z)

)
, (2.6)

∀n ≥ 1, Dn+2
(
qnΦn−1(z) − pnΨn−1(z)

)
= Nn+2

(
pnΨ∗

n−1(z) − qnΦ∗
n−1(z)

)
. (2.7)
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Proof. From (1.4) together with the definition of Ψn (2.1), we have

∀n ≥ 1, Ψn+1(z) = Φn+1(z) + qn+1Φn(z) − pn+1Ψn(z)

=
(
z + qn+1

)
Φn(z) + Φn+1(0)Φ∗

n(z) − pn+1Ψn(z)

= zΨn(z)−zqnΦn−1(z)+zpnΨn−1(z)+qn+1Φn(z)+Φn+1(0)Φ∗
n(z)−pn+1Ψn(z).

(2.8)

Since {Ψn} is a MOPS, using (1.4) we have

Ψn+1(0)Ψ∗
n(z) = −zqnΦn−1(z) + zpnΨn−1(z) + qn+1Φn(z) + Φn+1(0)Φ∗

n(z) − pn+1Ψn(z).
(2.9)

That is,

pn+1Ψn(z) + Ψn+1(0)Ψ∗
n(z) − zpnΨn−1(z) = qn+1Φn(z) + Φn+1(0)Φ∗

n(z) − zqnΦn−1(z).
(2.10)

Using (1.4) and (1.5) in both sequences, we get

∀n ≥ 1,
(
pn+1 − pn + Ψn+1(0)Ψn(0)

)
zΨn−1(z) +

(
Ψn+1(0) + pn+1Ψn(0)

)
Ψ∗

n−1(z)

=
(
qn+1 − qn + Φn+1(0)Φn(0)

)
zΦn−1(z) +

(
Φn+1(0) + qn+1Φn(0)

)
Φ∗

n−1(z).

(2.11)

Taking z = 0 we have (2.4). Observe that, this is as same as (2.1) for z = 0.
Identifying the coefficients of degree n, then (2.5) holds. Therefore, we can rewrite

(2.11) as (2.6).
On the other hand, applying the ∗-operator in (2.1) we have Ψ∗

n(z) + pnzΨ∗
n−1(z) =

Φ∗
n(z) + qnzΦ∗

n−1(z). Substituting in (2.6) and using (2.1), we obtain (2.7).

In the sequel, we denote by u the linear regular functional associated with {Φn} and
by L the linear regular functional associated with {Ψn}. Besides, we denote by En the real
number such that En = L(Ψn(z)z−n)with E0 = 1. Therefore, En/En−1 = 1 − |Ψn(0)|2.

Corollary 2.2. Under the same conditions as in Proposition 2.1, the following assertions hold:

(i) If p1 = q1, then pn = qn and Φn(z) = Ψn(z), for all n ≥ 1,

(ii) If p1 /= q1 and pnqn /= 0, for all n ≥ 2, then Φn(z)/=Ψn(z), for all n ≥ 1,

(iii) Assume p1 /= q1 and pnqn /= 0, for all n ≥ 2, then Nn+1 /= 0 if and only if Dn+1 /= 0, for all
n ≥ 2. Moreover, |Nn+1| = |Dn+1| for all n ≥ 2.
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Proof. (i) We eliminate Ψn+1(0) using equalities (2.2)–(2.4) and (2.3)–(2.5). By doing this, we
get

∀n ≥ 1, qn+1 − qn −
(
pn+1

En

En−1
− pn

)
= Φn+1(0)

(
Ψn(0) −Φn(0)

)
+ qn+1Φn(0)Ψn(0).

(2.12)

Taking n = 1, we obtain q2 − q1 − (p2E1 − p1) = Φ2(0)(q1 − p1) + q2q1p1.
If p1 = q1, then q2 −p2 = |q1|2(q2 −p2) and thus (q2 −p2)e1 = 0. Wherefrom q2 = p2. Now,

using (2.1)we have Ψ2(z) = Φ2(z).
Proceeding in the same way for n = 2 we obtain (q3 − p3)e2/e1 = 0, hence q3 = p3 and

Ψ3(z) = Φ3(z), and thus successively.
(ii) Assume that there exits n0 ≥ 2 such that Φn0 = Ψn0 . From (2.1), written for n = n0,

it holds that qn0 = pn0 and then Φn0−1 = Ψn0−1, and thus successively.
Hence, Ψ1 = Φ1, in contradiction with the hypothesis.
(iii) The result follows from (2.6) and the above item.

On the other hand, applying the ∗n-operator in (2.6), we obtain |Nn+1| = |Dn+1| for n ≥ 2.

Remark 2.3. The situation p1 = q1 is the trivial case, that is, Ψn = Φn, for all n ≥ 1. For this
reason, in the sequel, it will be excluded.

The next result will be used later.

Lemma 2.4. Under the same conditions as in Proposition 2.1 together with p1 /= q1, the following
assertions hold:

∀n ≥ 2, u(Ψn(z)) = (−1)n+1pn · · · p2
(
q1 − p1

)
, (2.13)

∀n ≥ 2, L(Φn(z)) = (−1)n+1qn · · · q2
(
p1 − q1

)
. (2.14)

Proof. Using (2.1) we obtain

∀n ≥ 2, u(Ψn) = −pnu(Ψn−1). (2.15)

Since that u(Ψ1(z)) = u(z − p1) = q1 − p1, then (2.13) follows.
We obtain (2.14) changing u by L.

For all n ≥ 1 such that Dn+1 /= 0, we define the following complex number:

Tn+1 =
Nn+1

Dn+1
=

Φn+1(0) + qn+1Φn(0)

qn+1 − qn + Φn+1(0)Φn(0)
. (2.16)

This number plays a very important role in the solution of our problem.
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Proposition 2.5. Assume that {Φn} and {Ψn} are two MOPSs that verify (2.1) with p1 /= q1 and
pnqn /= 0, for all n ≥ 2. If moreover Dn+2 /= 0 for all n ≥ 1, then the following relation linking Ψn(z)
and Φn(z) holds:

∀n ≥ 1,
(
z − pn+1Tn+2

pn+1Tn+3

)
Ψn(z) =

(
z − qn+1Tn+2

pn+1Tn+3

)
Φn(z) +

Tn+2
pn+1

(
pn+1 − qn+1

)
Φ∗

n(z).
(2.17)

Proof. From (2.6) and (2.7), for all n ≥ 1, we have the system

pn+1Dn+3Ψn(z) + pn+1Nn+3Ψ∗
n(z) = qn+1Dn+3Φn(z) + qn+1Nn+3Φ∗

n(z),

zDn+2Ψn(z) +Nn+2Ψ∗
n(z) = zDn+2Φn(z) +Nn+2Φ∗

n(z).
(2.18)

The corresponding determinant

∀n ≥ 1,

∣∣∣∣∣
pn+1Dn+3 pn+1Nn+3

zDn+2 Nn+2

∣∣∣∣∣ (2.19)

is not null, sinceDn+2 /= 0 together with Corollary 2.2(iii). Wherefrom, it has a unique solution
for Ψn.

By solving this, we get (2.17).

In the sequel, we denote by K̃n(z, y) the sequence of the kernels corresponding to
{Ψn}. For the sequence {Φn} we keep the same notations as in Section 1.

Proposition 2.6. Assume that {Ψn} and {Φn} are two MOPS that verify (2.1) with p1 /= q1 and
pnqn /= 0, for all n ≥ 2. Also assumeDn+2 /= 0, for all n ≥ 1. Under these conditions, then the following
assertions hold

(i) pn /= qn, for all n ≥ 2,

(ii) There exist two complex numbers α and β with |α| = |β| = 1 such that

∀n ≥ 2, α =
pn
pn

Tn+1
Tn+2

, (2.20)

∀n ≥ 2, β =
qn
qn

Tn+1
Tn+2

. (2.21)

Here, the initial parameters T3 and T4 are given by T3 = −(q1 − p1)/(q1 − p1) and T4 =
(q2 − p2)/(q2q1 − p2p1),
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(iii) The sequences {Φn} and {Ψn} are connected by the following formulas:

∀n ≥ 1, Ψn(z) = Φn(z) +
en

Φn(α)

(
pn+1 − qn+1

)

pn+1
Kn−1(z, α), (2.22)

∀n ≥ 1, Φn(z) = Ψn(z) +
En

Ψn(β)

(
qn+1 − pn+1

)

qn+1
K̃n−1

(
z, β
)
. (2.23)

Proof. Item (i) follows immediately from (2.17). Indeed, if we take pn+1 = qn+1, we obtain
Φn = Ψn.

Let us proceed with the proof of (ii). Inserting

Ψn(z) =

(
Φn+1(z) + qn+1Φn(z) −Ψn+1(z)

)

pn+1
, (2.24)

in (2.17), we have

∀n ≥ 1,
(
z − pn+1Tn+2

pn+1Tn+3

)
Ψn+1(z)

=
(
z − pn+1Tn+2

pn+1Tn+3

)
Φn+1(z) + z

(
qn+1 − pn+1

)
Φn(z) −

pn+1
pn+1

Tn+2
(
pn+1 − qn+1

)
Φ∗

n(z).

(2.25)

Using the recurrences (1.6) and (1.7) in the right-hand side we deduce

∀n ≥ 1,
(
z − pn+1Tn+2

pn+1Tn+3

)
Ψn+1(z)

=

(
z − pn+1Tn+2

pn+1Tn+3
+

(
qn+1 − pn+1 +

pn+1
(
pn+1 − qn+1

)

pn+1
Tn+2Φn+1(0)

)
en
en+1

)
Φn+1(z)

−
((

qn+1 − pn+1
)
Φn+1(0) +

pn+1
(
pn+1 − qn+1

)

pn+1
Tn+2

)
en
en+1

Φ∗
n+1(z).

(2.26)

In order to eliminate the polynomialΨn, we write (2.26) forΨn andwe combine it with (2.17).
Concretely, we multiply (2.17) by (z − pnTn+1/pnTn+2) and (2.26) by (z − pn+1Tn+2/pn+1Tn+3).
By doing this, we obtain

∀n ≥ 2,
(
dnz + fn

)
Φn(z) =

(
gnz + hn

)
Φ∗

n(z), (2.27)
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where

dn =
(
pn+1 − qn+1

) Tn+2
pn+1Tn+3

−
((

qn − pn
)
+
pn
pn

Tn+1
(
pn − qn

)
Φn(0)

)
en−1
en

,

fn = −(pn+1 − qn+1
) pnTn+1
pnpn+1Tn+3

+
pn+1Tn+2
pn+1Tn+3

((
qn − pn

)
+
pn
pn

Tn+1
(
pn − qn

)
Φn(0)

)
en−1
en

.

(2.28)

Given that Φn and Φ∗
n have not common roots, then dn = fn = gn = hn = 0, for all n ≥ 2.

Using (2.28)we obtain

(
pn+1 − qn+1

) Tn+2
pn+1Tn+3

=
((

qn − pn
)
+
pn
pn

Tn+1
(
pn − qn

)
Φn(0)

)
en−1
en

,

(
pn+1 − qn+1

) pnTn+1
pnpn+1Tn+3

=
pn+1Tn+2
pn+1Tn+3

((
qn − pn

)
+
pn
pn

Tn+1
(
pn − qn

)
Φn(0)

)
en−1
en

.

(2.29)

Combining these relations, we deduce

∀n ≥ 2,
pn
pn

Tn+1
Tn+2

=
pn+1
pn+1

Tn+2
Tn+3

, (2.30)

since pn+1 /= qn+1.
This complex constant is denoted in the statement by α. The property |α| = 1 is a

consequence of Corollary 2.2(iii). On the other hand, the explicit expressions of T3 and T4
follow from (2.7) for n = 1 and n = 2, respectively.

This completes the proof of (ii) because the complex number β exits by the symmetry
of the problem.

Finally, we show (iii). Using again (2.17), we have

∀n ≥ 1, (z − α)Ψn(z) =
(
z − qn+1

pn+1
α

)
Φn(z) +

Tn+2
pn+1

(
pn+1 − qn+1

)
Φ∗

n(z). (2.31)

Putting z = α, we get

α

(
pn+1 − qn+1

)

pn+1
Φn(α) =

(
qn+1 − pn+1

)

pn+1
Φ∗

n(α)Tn+2. (2.32)

Substituting this relation in (2.31) and using the recurrences of the kernels (1.9) and (1.10),
(2.22) holds.
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In order to state the converse we need the following assertions.

Proposition 2.7. Under the hypothesis of Proposition 2.6,

∀n ≥ 2, Φn(0) = Tn+1 + Tn+2qn, (2.33)

∀n ≥ 2, Ψn(0) = Tn+1 + Tn+2pn (2.34)

∀n ≥ 2,
pn
qn

en
en−1

=
pn+1
qn+1

En

En−1
. (2.35)

Proof. From (1.4),

∀n ≥ 1, (z − α)Ψn = z(z − α)Ψn−1(z) + Ψn(0)(z − α)Ψ∗
n−1(z). (2.36)

Here, we use (2.31) to substitute the terms (z − α)Ψn−1(z) and (z − α)Ψ∗
n−1(z) as function of

{Φn}. By doing this, we deduce

∀n ≥ 2, (z − α)Ψn(z) =

(
z − qn

pn
α −Ψn(0)

Tn+1
pn

(
pn − qn

)
α

)
zΦn−1

+
(
z
Tn+1
pn

(
pn − qn

)
+ Ψn(0)

qn
pn

(
z − pn

qn
α

))
Φ∗

n−1(z).

(2.37)

Equating this formula with (2.25), previously written for Ψn, and applying (1.4)we get

∀n ≥ 2,

(
−α + qn − pn +

qn
pn

α + Ψn(0)
Tn+1
pn

(
pn − qn

)
α

)
zΦn−1(z)

=
(
−(z − α)Φn(0) +

(
z + pn

)Tn+1
pn

(
pn − qn

)
+ Ψn(0)

qn
pn

(
z − pn

qn
α

))
Φ∗

n−1(z).

(2.38)

Putting z = 0, then the independent term vanishes and the previous relation becomes

(
qn − pn

)

pn

(
α + pn − Ψn(0)

Tn+1
α

)
Φn−1(z) =

(
−Φn(0) +

Tn+1
pn

(
pn − qn

)
+ Ψn(0)

qn
pn

)
Φ∗

n−1(z).

(2.39)

Using again the fact that Φn−1 and Φ∗
n−1 have no common roots and qn /= pn, it follows that the

coefficients in the last relation are zero and this implies (2.33) and (2.34).
Let us proceed with (2.35). From (2.33) and (2.34), for all n ≥ 2, we have

∀n ≥ 2,
en
en−1

= 1 − |Φn(0)|2 = −Tn+2
Tn+1

qn − Tn+1
Tn+2

qn −
∣∣qn
∣∣2,

∀n ≥ 2,
En

En−1
= −Tn+2

Tn+1
pn − Tn+1

Tn+2
pn −

∣∣pn
∣∣2.

(2.40)



Advances in Difference Equations 11

On the other hand, substituting in Nn+1 = Ψn+1(0) + pn+1Ψn(0) = Φn+1(0) + qn+1Φn(0) the
relations (2.33) and (2.34), we obtain

∀n ≥ 2,
(
pn+1pn − qn+1qn

)
=
(
qn+1 − pn+1

)Tn+1
Tn+2

+
(
qn+1 − pn+1

)Tn+3
Tn+2

. (2.41)

We can eliminate Tn+3/Tn+2 using (pn+1/pn+1)(Tn+3/Tn+2) = (pn/pn)(Tn+2/Tn+1) = α. Moreover,
multiplying by pn/qn+1 we find

(
pn+1pn − qn+1qn

) pn
qn+1

=
(
qn+1 − pn+1

) pn
qn+1

Tn+1
Tn+2

+
(
qn+1 − pn+1

) pn+1pn
pn+1qn+1

Tn+2
Tn+1

. (2.42)

Therefore,

∀n ≥ 2, − pn
qn

en
en−1

+
pn+1
qn+1

En

En−1

=
(
pnqn
qn

− pnpn+1
qn+1

)
Tn+2
Tn+1

+
(
qn+1 − pn+1

) pn
qn+1

Tn+1
Tn+2

−
(
pn

pn+1
qn+1

− qn

)
pn.

(2.43)

Finally, we use (2.42) in order to calculate the right-hand side

∀n ≥ 2, −pn
qn

en
en−1

+
pn+1
qn+1

En

En−1
= pn

(
pnqn
pnqn

− pn+1qn+1
pn+1qn+1

)
Tn+2
Tn+1

= 0, (2.44)

since α/β = pnqn/pnqn is a constant.

Corollary 2.8. Under the hypothesis of Proposition 2.6,

∀n ≥ 1,

(
pn+2 − qn+2

)

pn+2

en+1
en

=
(
qn+1 − pn+1

)Φn+1(α)
Φn(α)

. (2.45)

Proof. From (1.6) it follows that the formula in the statement is equivalent to

((
pn+2 − qn+2

)

pn+2
− α
(
qn+1 − pn+1

))
Φn+1(α) =

((
pn+2 − qn+2

)

pn+2

)
Φn+1(0)Φ∗

n+1(α). (2.46)

We prove this last relation. Substituting (2.32) and (2.33), it suffices to show that

(
qn+2 − pn+2

)
α
pn+2
pn+2

+ pn+2
(
qn+1 − pn+1

)
=
(
Tn+2
Tn+3

+ qn+1

)(
pn+2 − qn+2

)
. (2.47)
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Now, written Tn+2/Tn+3 in terms of α as in (2.20), the previous relation becomes

(
qn+2 − pn+2

)
α
pn+2
pn+2

+ pn+2
(
qn+1 − pn+1

)
=
(
pn+1
pn+1

α + qn+1

)(
pn+2 − qn+2

)
, (2.48)

and it is true according to (2.42).

3. Some Solutions

We state a necessary and sufficient condition in terms of the data {Φn}.

Theorem 3.1. Let {Φn}n≥0 be a MOPS such that Φ1(z) = z − q1, q1 ∈ C and |q1|/= 1. Also assume
Dn+2 /= 0, for all n ≥ 1. We define recursively a sequence {Ψn}n≥0 of monic polynomials by the relations

∀n ≥ 2, Φn(z) + qnΦn−1(z) = Ψn(z) + pnΨn−1(z), pn, qn ∈ C, pnqn /= 0, (3.1)

and Ψ1(z) = z − p1 with p1 ∈ C, |p1|/= 1, p1 /= q1. Then, {Ψn(z)} is a MOPS different from {Φn(z)}
if and only if the following formulas hold:

(i) For all n ≥ 2, pn /= qn,

(ii) For all n ≥ 2, |Tn+1| = 1, where Tn is defined by (2.16),

(iii) there exist two complex numbers α, β such that

∀n ≥ 2, α =
pn
pn

Tn+1
Tn+2

, β =
qn
qn

Tn+1
Tn+2

, (3.2)

(iv)

∀n ≥ 1, α

(
pn+1 − qn+1

)

pn+1
Φn(α) =

(
qn+1 − pn+1

)

pn+1
Φ∗

n(α)Tn+2, (3.3)

(v)

∀n ≥ 2, Φn(0) = Tn+1 + Tn+2qn, (3.4)

(vi)

∀n ≥ 1,

(
pn+2 − qn+2

)

pn+2

en+1
en

=
(
qn+1 − pn+1

)Φn+1(α)

Φn(α)
. (3.5)

Moreover, the sequences {Φn} and {Ψn} are connected by

∀n ≥ 1, Ψn(z) = Φn(z) +
en

Φn(α)

(
pn+1 − qn+1

)

pn+1
Kn−1(z, α). (3.6)
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Proof. It only remains to establish the sufficient condition.
We first show that (3.6) implies (3.1)

∀n ≥ 1, Ψn+1(z) + pn+1Ψn(z)

= Φn+1(z) + qn+1Φn(z)

+

((
pn+1 − qn+1

)
Φn(z) +

en+1

Φn+1(α)

(
pn+2 − qn+2

)

pn+2
Kn(z, α)

+
en

Φn(α)

(
pn+1 − qn+1

)
Kn−1(z, α)

)
.

(3.7)

The task is now to obtain that the expression in the brackets is null. Using (1.8), this
expression becomes

((
pn+1 − qn+1

)
+
en+1
en

Φn(α)

Φn+1(α)

(
pn+2 − qn+2

)

pn+2

)
Φn(z)

+

(
en+1

Φn+1(α)

(
pn+2 − qn+2

)

pn+2
+

en

Φn(α)

(
pn+1 − qn+1

))
Kn−1(z, α).

(3.8)

Therefore, the result follows immediately from (3.5).
In order to obtain Ψn+1(0), we take z = 0 in (3.6)

∀n ≥ 1, Ψn+1(0) = Φn+1(0) +

(
pn+2 − qn+2

)

pn+2

en+1
en

Φn(α)

Φn+1(α)
αn. (3.9)

Substituting (3.5) and (3.3), we get

∀n ≥ 1, Ψn+1(0) −Φn+1(0) =
(
qn+1 − pn+1

)Φn(α)
Φ∗

n(α)
=
(
pn+1 − qn+1

)
α
pn+1
pn+1

Tn+2. (3.10)

Using (3.2) and (3.4), it is easy to check that

∀n ≥ 1, Ψn+1(0) = Tn+2 + Tn+3pn+1. (3.11)

Now, we show that the sequence given by (3.6) satisfies (1.4) with |Ψn(0)|/= 1, then it is a
MOPS.
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We will apply (1.12) as well as K∗
n(z, α) = αnKn(z, α), since |α| = 1

∀n ≥ 1, zΨn(z) + Ψn+1(0)Ψ∗
n(z)

= Φn+1(z) − (Φn+1(0) −Ψn+1(0))Φ∗
n(z)

+

((
pn+1 − qn+1

)

Φn(α)pn+1
+ Ψn+1(0)

(
pn+1 − qn+1

)

Φn(α)pn+1
αn−1

)
zKn−1(z, α)en

= Φn+1(z) − (Φn+1(0) −Ψn+1(0))Φ∗
n(z)

+

(
α
(
pn+1 − qn+1

)

Φn(α)pn+1
+
Ψn+1(0)

(
pn+1 − qn+1

)

Φn(α)pn+1
αn

)(
Kn(z, α) − Φ∗

n(α)
en

Φ∗
n(z)

)
en.

(3.12)

If we show that the coefficient of Φ∗
n(z) is null and the coefficient of Kn(z, α) is

(en+1/Φn+1(α))((pn+2 − qn+2)/pn+2), then (1.4) is true.
At first, we compute the coefficient of Φ∗

n(z).

Ψn+1(0) −Φn+1(0) −Φ∗
n(α)

(
α
(
pn+1 − qn+1

)

Φn(α)pn+1
+
Ψn+1(0)

(
pn+1 − qn+1

)

Φn(α)pn+1
αn

)

=
qn+1
pn+1

Ψn+1(0) −Φn+1(0) − Φn(α)

Φn(α)
αn−1

(
pn+1 − qn+1

)

pn+1

=

(
qn+1 − pn+1

)

pn+1
Tn+2 − Φn(α)

Φn(α)
αn−1

(
pn+1 − qn+1

)

pn+1
,

(3.13)

and this is equal to zero from (3.3).
We can obtain the coefficient of Kn(z, α) by observation of (3.13). It is easy to see that

this coefficient is ((Ψn+1(0) − Φn+1(0))/Φ∗
n(α))en. By virtue of (3.9) it is equal to en+1(pn+2 −

qn+2)/Φn+1(α)pn+2, and then the required result follows.
Finally, the condition 1 − |Ψn(0)|2 /= 0 follows from (3.11) by using the same method as

in the proof of (2.35).
Observe that condition (i) together with (3.6) gives Ψn /=Φn.

Corollary 3.2. Under the same conditions as in the previous theorem, the following relations hold

(i)

α = q1 +
e1
p2

(
p2 − q2
q1 − p1

)
, (3.14)

where e1 = 1 − |q1|2.
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(ii)

β = p1 +
E1

q2

(
p2 − q2
q1 − p1

)
, (3.15)

where E1 = 1 − |p1|2.
(iii)

∀n ≥ 2, Tn+2 =
pn · · · p2
pn · · · p2

(
q1 +

e1
p2

(p2 − q2)
(q1 − p1)

)n−1
T3, (3.16)

(iv)

∀n ≥ 2, Tn+2 =
qn · · · q2
qn · · · q2

(
p1 +

E1

q2

(p2 − q2)
(q1 − p1)

)n−1
T3. (3.17)

Proof. We obtain α and β from (2.22) and (2.23) for n = 1, respectively. The items (iii) and
(iv) are straightforward from (2.20) and (2.21).

Now, we are going to express the Verblunsky coefficients for the solutions in terms
of {pn} and {qn}. We remember that to give a MOPS {Φn} on the unit circle is equivalent to
know the sequence of complex numbers {Φn(0)}with |Φn(0)|/= 1.

Theorem 3.3. Let {pn}n≥1 and {qn}n≥1 be two sequences of complex numbers such that

(i) pnqn /= 0 and pn /= qn, for all n ≥ 1,

(ii) |q1|/= 1 and |β + qn|/= 1, for all n ≥ 2, where β is given by (3.15) and |β| = 1,

(iii) |p1|/= 1 and |α + pn|/= 1, for all n ≥ 2, where α is given by (3.14),

(iv) α/β = pnqn/pnqn, for all n ≥ 2.

Then, the only MOPS solutions of (3.1), such that Dn+2 /= 0 for all n ≥ 1, verify

Φn(0) =

⎧
⎪⎨
⎪⎩

−q1, if n = 1,

pn · · · p2
pn · · · p2

qn
qn

αn−1(β + qn
)
T3, T3 =

p1 − q1
q1 − p1

if n ≥ 2,

Ψn(0) =

⎧
⎪⎨
⎪⎩

−p1, if n = 1,

qn · · · q2
qn · · · q2

pn
pn

β
n−1(

α + pn
)
T3, T3 =

p1 − q1
q1 − p1

if n ≥ 2.

(3.18)

Moreover, the sequences {Φn(z)} and {Ψn(z)} are connected by

∀n ≥ 2, Ψn(z) = Φn(z) + (−1)n−1p2 · · · pn
(
q1 − p1

)
Kn−1(z, α),

∀n ≥ 2, Φn(z) = Ψn(z) + (−1)n−1q2 · · · qn
(
p1 − q1

)
K̃n−1

(
z, β
)
.

(3.19)
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Proof. In order to obtain Φn(0) and Ψn(0) we use the hypothesis (iv) as well as (2.33)–(3.16)
and (2.34)–(3.17), respectively. The conditions |Φn(0)|, |Ψn(0)|/= 1, follow from (ii) and (iii),
respectively.

Applying u in (3.6), it holds that

∀n ≥ 1, u(Ψn(z)) =
en

Φn(α)

(
pn+1 − qn+1

)

pn+1
. (3.20)

Combining with (2.13), we get

en = (−1)n+1pn · · · p2
(
q1 − p1

) pn+1(
pn+1 − qn+1

)Φn(α). (3.21)

Again from (2.22) we get

∀n ≥ 2, Ψn(z) = Φn(z) + (−1)n−1p2 · · · pn
(
q1 − p1

)
Kn−1(z, α). (3.22)

This completes the proof because of the symmetry of the problem.

Remark 3.4. Notice that the restrictions given for pn and qn in the previous theorem ensure
that the sequences generated by Φn(0) and Ψn(0) are MPOS, but they do not ensure that
Φn(z) and Ψn(z) fulfill (3.1). In fact, other similar conditions to (2.42) seem to be necessary
in order to obtain a characterization of the Verblunsky coefficients in terms of pn and qn.

4. Linear Functionals

In this section we establish the relation between the regular functionals associated with the
sequences {Φn} and {Ψn}.

Proposition 4.1. Let u and L be the regular functionals normalized by u(1) = u0 = 1 and L(1) =
v0 = 1 associated with {Φn} and {Ψn}, respectively. Then, the following relation holds

λ
(
z − β

)
L = (z − α)u, where λ =

Φ1(α)
Ψ1
(
β
) . (4.1)

Proof. We will show that

∀n ≥ 0,
(
λ
(
z − β

)
L
)
(Ψn) = ((z − α)u)(Ψn), (4.2)

wherefrom the result follows because {Ψn} is a basis in P.
If n = 0 the equality is trivial by definition of λ.
If n ≥ 1, the left-hand side in (4.1) is

λL
((
z − β

)
Ψn(z)

)
= −λΨn+1(0)En = −λ(Tn+2 + pn+1Tn+3

)
En, (4.3)

where the last equality follows from (2.34).
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We compute the right-hand side using(2.31)

∀n ≥ 2, u((z − α)Ψn(z)) = −Φn+1(0)en +
Tn+2
pn+1

(
pn+1 − qn+1

)
en. (4.4)

In the same way, by virtue of (2.33), the right-hand side is equal to −(qn+1/pn+1)(Tn+2 +
pn+1Tn+3)en. Therefore, it only remains to check the equality λEn = qn+1/pn+1en. In order to
do this we take the conjugate in (2.35), obtaining

∀n ≥ 2,
En

en
=

qn+1
pn+1

p2
q2

E1

e1
. (4.5)

Finally, we see that the equality λ = (α − q1)/(β − p1) = (q2/p2)(e1/E1) is true due to (3.14)
and (3.15).

Remark 4.2. The opposite question has been proved in [8]. That is, if u and L are regular
functionals related by (4.1)with |α| = |β| = 1, then the corresponding orthogonal polynomials
satisfy (2.1).

5. Carathéodory’s Functions

In this section we obtain the relation between the Carathéodory functions associated with the
sequences {Φn} and {Ψn}. We denote by {vn} the sequence of the moments corresponding to
L, that is, L(zn) = vn, for all n ≥ 0.

Proposition 5.1. Let Fu and FL be the Carathéodory functions associated with {Φn} and {Ψn},
respectively. Then, FL is the following rational transformation of Fu:

FL(z) =
(1/λ)((z − α)Fu(z) + (z + α)) − (z + β

)
(
z − β

) . (5.1)

Proof. Indeed, from (1.13) FL(z) = v0 + 2
∑+∞

n=1 vkz
k, thus

(
1 − zβ

)
FL(z) =

(
1 − zβ

)
v0 + 2v1z + 2

+∞∑
n=1

(
vn+1 − βvn

)
zn+1. (5.2)

Using (4.1), it holds that λ(vn+1 − βvn) = un+1 − αun. Therefore,

+∞∑
n=1

(
vn+1 − βvn

)
zn+1 =

1

λ

+∞∑
n=1

(un+1 − αun)zn+1, (5.3)
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where from

FL(z) =

(
1/λ
)
((1 − zα)Fu − (1 + zα)) +

(
1 + zβ

)
v0

(
1 − zβ

) . (5.4)

Putting αβ = λ/λ and v0 = 1, we find (5.1).
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