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We consider a three-term nonlinear recurrence relation involving a nonlinear filtering function
with a positive threshold λ. We work out a complete asymptotic analysis for all solutions of this
equation when the threshold varies from 0+ to +∞. It is found that all solutions either tends to 0, a
limit 1-cycle, or a limit 2-cycle, depending on whether the parameter λ is smaller than, equal to, or
greater than a critical value. It is hoped that techniques in this paper may be useful in explaining
natural bifurcation phenomena and in the investigation of neural networks in which each neural
unit is inherently governed by our nonlinear relation.

1. Introduction

Let N = {0, 1, 2, . . .}. In [1], Zhu and Huang discussed the periodic solutions of the following
difference equation:

xn = axn−1 + (1 − a)fλ(xn−k), n ∈ N, (1.1)

where a ∈ (0, 1), k is a positive integer, and f : R → R is a nonlinear signal filtering function
of the form

fλ(x) =

⎧
⎨

⎩

1, x ∈ (0, λ],

0, x ∈ (−∞, 0] ∪ (λ,∞),
(1.2)

in which the positive number λ can be regarded as a threshold parameter.
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In this paper, we consider the following delay difference equation:

xn = axn−2 + bfλ(xn−1), n ∈ N, (1.3)

where a ∈ (0, 1) and b > 0. Besides the obvious and complementary differences between
(1.1) and our equation, a good reason for studying (1.3) is that the study of its behavior
is preparatory to better understanding of more general (neural) network models. Another
one is that there are only limited materials on basic asymptotic behavior of discrete
time dynamical systems with piecewise smooth nonlinearities! (Besides [1], see [2–6]. In
particular, in [2], Chen considers the equation

xn = xn−1 + g(xn−k−1), n ∈ N, (1.4)

where k is a nonnegative integer and g : R → R is a McCulloch-Pitts type function

g(ξ) =

⎧
⎨

⎩

−1, ξ ∈ (σ,∞),

1, ξ ∈ (−∞, σ],
(1.5)

in which σ ∈ R is a constant which acts as a threshold. In [3], convergence and periodicity of
solutions of a discrete time network model of two neurons with Heaviside type nonlinearity
are considered, while “polymodal” discrete systems in [4] are discussed in general settings.)
Therefore, a complete asymptotic analysis of our equation is essential to further development
of polymodal discrete time dynamical systems.

We need to be more precise about the statements to be made later. To this end, we first
note that given x−2, x−1 ∈ R,wemay compute from (1.3) the numbers x0, x1, x2, . . . in a unique
manner. The corresponding sequence {xn}∞n=−2 is called the solution of (1.3) determined by
the initial vector (x−2, x−1). For better description of latter results, we consider initial vectors
in different regions in the plane. In particular, we set

Ω =
{(

x, y
) ∈ R2 | x > 0 or y > 0

}
, (1.6)

which is the complement of nonpositive orthant (−∞, 0]2 and contains the positive orthant
(0,∞)2. Note that Ω is the union of the disjoint sets

U = (0,∞)2 \ (0, λ]2, (1.7)

V = (0, λ]2 ∪ ((−∞, 0] × (0,+∞)) ∪ ((0,+∞) × (−∞, 0]). (1.8)

Recall also that a positive integer η is a period of the sequence {wn}∞n=α ifwη+n = wn for
all n ≥ α and that τ is the least or prime period of {wn}∞n=α if τ is the least among all periods
of {wn}∞n=α. The sequence {wn}∞n=α is said to be τ-periodic if τ is the least period of {wn}∞n=α.
The sequence w = {wn}∞n=α is said to be asymptotically periodic if there exist real numbers
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w(0), w(1), . . . , w(ω−1),where ω is a positive integer, such that

lim
n→∞

wωn+i = w(i), i = 0, 1, . . . , ω − 1. (1.9)

In case {w(0), w(1), . . . , w(ω−1), w(0), w(1), . . . , w(ω−1), . . .} is an ω-periodic sequence, we say
that w is an asymptotically ω-periodic sequence tending to the limit ω-cycle (This term is
introduced since the underlying concept is similar to that of the limit cycle in the theory
of ordinary differential equations.) 〈w(0), w(1), . . . , w(ω−1)〉. In particular, an asymptotically
1-periodic sequence is a convergent sequence and conversely.

Note that (1.3) is equivalent to the following two-dimensional autonomous dynamical
system:

(
un+1

vn+1

)

=

(
vn

aun + bfλ(vn)

)

, n ∈ N, (1.10)

by means of the identification xn = un+2 for n ∈ {−2,−1, 0, . . .}. Therefore our subsequent
results can be interpreted in terms of the dynamics of plane vector sequences defined by
(1.10). For the sake of simplicity, such interpretations will be left in the concluding section of
this paper.

To obtain complete asymptotic behavior of (1.3), we need to derive results for solutions
of (1.3) determined by vectors in the entire plane. The following easy result can help us to
concentrate on solutions determined by vectors in Ω.

Theorem 1.1. A solution {xn}∞n=−2 of (1.3) with (x−2, x−1) in the nonpositive orthant (−∞, 0]2 is
nonpositive and tends to 0.

Proof. Let x−2, x−1 ≤ 0. Then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 ≤ 0,

x1 = ax−1 + bfλ(x0) = ax−1 ≤ 0,

x2 = ax0 + bfλ(x1) = a2x−2 ≤ 0,

x3 = ax1 + bfλ(x2) = a2x−1 ≤ 0,

(1.11)

and by induction, for any k ∈ N, we have

x2k = ak+1x−2 ≤ 0 ,

x2k+1 = ak+1x−1 ≤ 0.
(1.12)

Since a ∈ (0, 1), we have

lim
n→∞

xn = 0. (1.13)

The proof is complete.
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Note that if we try to solve for an equilibrium solution {x} of (1.3), then

x =
b

1 − a
fλ(x), (1.14)

which has exactly two solutions x = 0, b/(1 − a) when λ ≥ b/(1 − a) and has the unique
solution x = 0 when λ ∈ (0, b/(1 − a)). However, since fλ is a discontinuous function, the
standard theories that employ continuous arguments cannot be applied to our equilibrium
solutions x = 0 or b/(1−a) to yield a set of complete asymptotic criteria. Fortunately, we may
resort to elementary arguments as to be seen below.

To this end, we first note that our equation is autonomous (time invariant), and hence
if {xn}∞n=−2 is a solution of (1.3), then for any k ∈ N, the sequence {yn}∞n=−2, defined by yn =
xn+k for n = −2,−1, 0, . . . , is also a solution. For the sake of convenience, we need to let

A0 =
λ − b

a
,

aAj+1 + b = Aj, j ∈ N.

(1.15)

Then

Aj =
λ − b

(
1 + a + · · · + aj

)

aj+1
=

λ(1 − a) − b

aj+1(1 − a)
+

b

1 − a
, j ∈ N, (1.16)

Aj+1 −Aj =
λ(1 − a) − b

aj+2
, j ∈ N, (1.17)

λ = aA0 + b = a2A1 + ab + b = · · · = aj+1Aj + ajb + aj−1b + · · · + ab + b, j ∈ N. (1.18)

We also let

B0 = −b

a
,

aBj+1 + b = Bj, j ∈ N.

(1.19)

Then

Bj =
−b(1 + a + · · · + aj

)

aj+1
=

−b + aj+1b

aj+1(1 − a)
, j ∈ N, (1.20)

Bj+1 − Bj = − b

aj+2
, j ∈ N, (1.21)

aB0 + b = a2B1 + ab + b = · · · = aj+1Bj + ajb + · · · + ab + b, j ∈ N, (1.22)

lim
j→∞

Bj = −∞. (1.23)
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2. The Case λ > b/(1 − a)

Suppose λ > b/(1 − a). Then

lim
j→∞

Aj = lim
j→∞

{
λ(1 − a) − b

aj+1(1 − a)
+

b

1 − a

}

= +∞. (2.1)

We first show the following.

Lemma 2.1. Let λ > b/(1 − a). If {xn}∞n=−2 is a solution of (1.3) with (x−2, x−1) ∈ Ω, then there
exists an integerm ∈ {−2,−1, 0, . . .} such that 0 < xm, xm+1 ≤ λ.

Proof. From our assumption, we have aλ + b < λ. Let {xn}∞n=−2 be a solution of (1.3) with
(x−2, x−1) ∈ Ω. Then there are eight cases.
Case 1. If 0 < x−2, x−1 ≤ λ, our assertion is true by taking m = −2.
Case 2. Suppose (x−2, x−1) ∈ (0, λ] × (λ,+∞). Then (λ − b)/a > λ. Furthermore, in view of
(1.17) and (2.1),

(0, λ] × (λ,+∞) = (0, λ] ×
{(

λ,
λ − b

a

]

∪
∞⋃

k=1

(Ak−1, Ak]

}

. (2.2)

If x−1 ∈ (λ, (λ − b)/a], then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 ∈ (0, λ),

0 < x1 = ax−1 + bfλ(x0) = ax−1 + b ≤ λ − b + b = λ.
(2.3)

This means that our assertion is true by takingm = 0.Next, if x−1 ∈ (A0, A1] = ((λ−b)/a, (λ−
b − ab)/a2], then by (1.3) and (1.18),

x0 = ax−2 + bfλ(x−1) = ax−2 ∈ (0, λ),

x1 = ax−1 + bfλ(x0) = ax−1 + b > λ,

x2 = ax0 + bfλ(x1) = a2x−2 ∈ (0, λ),

0 < x3 = ax1 + bfλ(x2) = a2x−1 + ab + b

≤ a2A1 + ab + b = λ.

(2.4)
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Thus our assertion holds by takingm = 2. If x−1 ∈ (Ap,Ap+1],where p is an arbitrary positive
integer, then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 ∈ (0, λ),

x1 = ax−1 + bfλ(x0) = ax−1 + b > aAp + b = Ap−1 > λ,

x2 = ax0 + bfλ(x1) = a2x−2 ∈ (0, λ).

(2.5)

By induction,

x2p = ap+1x−2 ∈ (0, λ),

x2p+1 = ap+1x−1 + apb + · · · + ab + b > ap+1Ap + apb + · · · + ab + b

= apAp−1 + ap−1b + · · · + ab + b = aA0 + b = λ,

x2(p+1) = ax2p + bfλ
(
x2p+1

)
= ap+2x−2 ∈ (0, λ),

x2(p+1)+1 = ax2p+1 + bfλ
(
x2(p+1)

)
= ap+2x−1 + ap+1b + · · · + ab + b

≤ ap+2Ap+1 + ap+1b + · · · + ab + b = λ.

(2.6)

Thus our assertion holds by taking m = 2(p + 1).
Case 3. Suppose (x−2, x−1) ∈ (λ,+∞)× (λ,+∞).We assert that there is a nonnegative integer μ
such that xn > λ for n = −2,−1, . . . , μ − 1 and xμ ∈ (0, λ]. Otherwise we have xn ∈ (λ,+∞) for
n ∈ N. It follows that

x0 = ax−2 + bfλ(x−1) = ax−2 > λ,

x1 = ax−1 + bfλ(x0) = ax−1 > λ,

x2 = ax0 + bfλ(x1) = a2x−2 > λ,

x3 = ax1 + bfλ(x2) = a2x−1 > λ.

(2.7)

By induction, for any k ∈ N,we have

x2k = ak+1x−2 > λ,

x2k+1 = ak+1x−1 > λ,
(2.8)

which implies

lim
k→∞

x2k = 0 = lim
k→∞

x2k+1. (2.9)

This is contrary to the fact that xn ∈ (λ,+∞) for n ∈ N.
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Now that there exists an integer μ ∈ N such that x−2, x−1, . . . , xμ−1 ∈ (λ,+∞) and xμ ∈
(0, λ], it then follows

0 < xμ+1 = axμ−1 + bfλ
(
xμ

)
= axμ−1 + b. (2.10)

If xμ+1 ≤ λ, then our assertion holds by takingm = μ. If xμ+1 > λ, then xμ−1 > (λ − b)/a.
Thus

0 < xμ+2 = axμ + bfλ
(
xμ+1

)
= axμ ≤ aλ < λ,

0 < xμ+3 = axμ+1 + bfλ
(
xμ+2

)
= axμ+1 + b = a2xμ−1 + ab + b.

(2.11)

If 0 < xμ+3 ≤ λ, then our assertion holds by taking m = μ + 2. If xμ+3 > λ, we have xμ−1 >
(λ − b − ab)/a2.Hence

0 < xμ+4 = axμ+2 + bfλ
(
xμ+3

)
= axμ+2 = a2xμ < λ,

0 < xμ+5 = axμ+3 + bfλ
(
xμ+4

)
= axμ+3 + b = a3xμ−1 + a2b + ab + b.

(2.12)

Repeating the procedure, we have

0 < xμ+2k = akxμ < λ,

0 < xμ+(2k+1) = ak+1xμ−1 + akb + · · · + ab + b.
(2.13)

If 0 < xμ+(2k+1) ≤ λ, then our assertion holds by taking m = μ + (2k + 1). Otherwise,

xμ−1 >
λ − b − ab − · · · − akb

ak+1
(2.14)

for all k ∈ N. But this is contrary to (2.1). Thus we conclude that 0 < xμ+(2k+1) ≤ λ for some k.
Our assertion then holds by taking m = μ + 2k.
Case 4. Suppose (x−2, x−1) ∈ (λ,+∞) × (0, λ]. As in Case 2,

(λ,+∞) × (0, λ] =

{(

λ,
λ − b

a

]

∪
∞⋃

k=1

(Ak−1, Ak]

}

× (0, λ]. (2.15)

If x−2 ∈ (λ, (λ − b)/a], then by (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ λ. (2.16)
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Thus our assertion holds taking m = −1. If x−2 ∈ (A0, A1], then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 + b > λ,

0 < x1 = ax−1 + bfλ(x0) = ax−1 + b ≤ aλ + b < λ,

0 < x2 = ax0 + bfλ(x1) = a2x−2 + ab + b ≤ a2A1 + ab + b = λ.

(2.17)

Thus our assertion holds by takingm = 1. If x−2 ∈ (Ap,Ap+1],where p is an arbitrary positive
integer, then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 + b > aAp + b = Ap−1 > λ,

0 < x1 = ax−1 + bfλ(x0) = ax−1 < λ,

x2 = ax0 + bfλ(x1) = a2x−2 + ab + b > Ap−2 > λ,

...

x2p = ap+1x−2 + apb + · · · + ab + b > ap+1Ap + apb + · · · + ab + b = λ,

0 < x2p+1 = ap+1x−1 < λ,

0 < x2(p+1) = ax2p + bfλ
(
x2p+1

)
= ap+2x−2 + ap+1b + · · · + ab + b

≤ ap+2Ap+1 + ap+1b + · · · + ab + b = λ.

(2.18)

Thus our assertion holds by taking m = 2p + 1.
Case 5. Suppose (x−2, x−1) ∈ (−∞, 0] × (0, λ]. Then by (1.21) and (1.23),

(−∞, 0] × (0, λ] =

⎧
⎨

⎩

⎛

⎝
∞⋃

j=1

(
Bj, Bj−1

]

⎞

⎠ ∪
(

−b

a
, 0
]
⎫
⎬

⎭
× (0, λ]. (2.19)

If x−2 ∈ (−b/a, 0], then by (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ b < λ. (2.20)

Thus our assertion holds by m = −1. If x−2 ∈ (B1, B0] = ((−b − ab)/a2,−b/a], then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ 0,

0 < x1 = ax−1 + bfλ(x0) = ax−1 < λ,

0 = −b − ab + ab + b < x2 = ax0 + bfλ(x1)

= a2x−2 + ab + b ≤ a2B0 + ab + b = b < λ.

(2.21)
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Thus our assertion holds by taking m = 1. If x−2 ∈ (Bp+1, Bp], where p is an arbitrary positive
integer, then by (1.3), we have

Bp = aBp+1 + b < x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ aBp + b = Bp−1,

0 < x1 = ax−1 + bfλ(x0) = ax−1 < λ.
(2.22)

That is, (x0, x1) ∈ (Bp, Bp−1] × (0, λ). Therefore we may conclude our assertion by induction.
Case 6. Suppose (x−2, x−1) ∈ (−∞, 0] × (λ,+∞). Since

λ

ak
<

λ

ak+1
, k ∈ N,

lim
k→∞

λ

ak+1
= +∞,

(2.23)

we see that

(−∞, 0] × (λ,+∞) = (−∞, 0] ×
∞⋃

k=0

(
λ

ak
,

λ

ak+1

]

. (2.24)

If x−1 ∈ (λ, λ/a], then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 ≤ 0,

0 < x1 = ax−1 + bfλ(x0) = ax−1 ≤ λ.
(2.25)

That is, (x0, x1) ∈ (−∞, 0] × (0, λ]. We may thus apply the conclusion of Case 5 and the time
invariance property of (1.3) to deduce our assertion. If x−1 ∈ (λ/ap+1, λ/ap+2], where p is an
arbitrary nonnegative integer, then by (1.3), we have

x0 = ax−2 + bfλ(x−1) = ax−2 ≤ 0,

λ

ap
< x1 = ax−1 + bfλ(x0) = ax−1 ≤ λ

ap+1
.

(2.26)

That is, (x0, x1) ∈ (−∞, 0] × (λ/ap, λ/ap+1]. We may thus use induction to conclude our
assertion.
Case 7. Suppose (x−2, x−1) ∈ (0, λ] × (−∞, 0]. As in Case 5,

(0, λ] × (−∞, 0] = (0, λ] ×
{( ∞⋃

k=1

(Bk, Bk−1]

)

∪
(

−b

a
, 0
]}

. (2.27)
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If x−1 ∈ (−b/a, 0], then by (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 < λ,

0 < x1 = ax−1 + bfλ(x0) = ax−1 + b ≤ b < λ.
(2.28)

Thus our assertion holds by taking m = 0. If x−1 ∈ (B1, B0] = ((−b − ab)/a2,−b/a], then by
(1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 < λ,

−b

a
=

−b − ab

a
+ b < x1 = ax−1 + bfλ(x0) = ax−1 + b ≤ 0.

(2.29)

That is, (x0, x1) ∈ (0, λ) × (−b/a, 0]. Thus our assertion holds by taking m = 2.
If x−1 ∈ (Bp+1, Bp]. where p is an arbitrary positive integer, then by (1.3), we have

0 < x0 = ax−2 + bfλ(x−1) = ax−2 < λ ,

Bp < x1 = ax−1 + bfλ(x0) = ax−1 + b ≤ Bp−1.
(2.30)

That is, (x0, x1) ∈ (0, λ) × (Bp, Bp−1]. Thus our assertion follows from induction.
Case 8. Suppose (x−2, x−1) ∈ (λ,+∞) × (−∞, 0]. Then

(λ,+∞) × (−∞, 0] =

( ∞⋃

k=0

(
λ

ak
,

λ

ak+1

])

× (−∞, 0]. (2.31)

If x−2 ∈ (λ, λ/a], then by (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 ≤ λ. (2.32)

That is, (x−1, x0) ∈ (−∞, 0]× (0, λ].Wemay now apply the assertion in Case 5 to conclude our
proof. If x−2 ∈ (λ/ap+1, λ/ap+2],where p is an arbitrary nonnegative integer, then by (1.3), we
have

λ

ap
< x0 = ax−2 + bfλ(x−1) = ax−2 ≤ λ

ap+1
,

x1 = ax−1 + bfλ(x0) = ax−1 ≤ 0.

(2.33)

That is, (x0, x1) ∈ (λ/ap, λ/ap+1] × (−∞, 0]. We may thus complete our proof by
induction.

Theorem 2.2. Suppose λ > b/(1 − a), then a solution x = {xn}∞n=−2 of (1.3) with (x−2, x−1) ∈ Ω
will tend to b/(1 − a).
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Proof. In view of Lemma 2.1, we may assume without loss of generality that 0 < x−2, x−1 ≤ λ.
From our assumption, we have aλ + b < λ. Furthermore, by (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ aλ + b < λ,

0 < x1 = ax−1 + bfλ(x0) = ax−1 + b ≤ aλ + b < λ,

0 < x2 = ax0 + bfλ(x1) = a2x−2 + ab + b ≤ a2λ + ab + b = a(aλ + b) + b < aλ + b < λ,

0 < x3 = ax1 + bfλ(x2) = a2x−1 + ab + b ≤ a2λ + ab + b = a(aλ + b) + b < aλ + b < λ,

0 < x4 = ax2 + bfλ(x3) = a3x−2 + a2b + ab + b ≤ a3λ + a2b + ab + b

= a2(aλ + b) + ab + b < a2λ + ab + b < λ,

0 < x5 = ax3 + bfλ(x4) = a3x−1 + a2b + ab + b ≤ a3λ + a2b + ab + b

= a2(aλ + b) + ab + b < a2λ + ab + b < λ.

(2.34)

By induction, for any k ∈ N,we have

0 < x2k = ak+1x−2 + akb + ak−1b + · · · + ab + b

≤ ak+1λ + akb + ak−1b + · · · + ab + b = ak(aλ + b) + ak−1b + · · · + ab + b

< akλ + ak−1b + · · · + ab + b = ak−1(aλ + b) + ak−2b + · · · + ab + b

< ak−1λ + ak−2b + · · · + ab + b < · · · < a2λ + ab + b < λ,

(2.35)

and similarly

0 < x2k+1 = ak+1x−1 + akb + ak−1b + · · · + ab + b < λ. (2.36)

Thus x2k, x2k+1 ∈ (0, λ] for any k ∈ N and

lim
k→∞

x2k = lim
k→∞

{

ak+1x−2 + b × 1 − ak+1

1 − a

}

=
b

1 − a
,

lim
k→∞

x2k+1 = lim
k→∞

{

ak+1x−1 + b × 1 − ak+1

1 − a

}

=
b

1 − a
.

(2.37)

The proof is complete.

3. The Case λ ∈ (0, b/(1 − a))

We first show that following result.
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Lemma 3.1. Let 0 < λ < b/(1 − a). If x = {xn}∞n=−2 is a solution of (1.3) with (x−2, x−1) ∈ Ω,
there exists an integer m ∈ {−2,−1, 0, . . .} such that 0 < xm ≤ λ and xm+1 > λ (or xm > λ and
0 < xm+1 ≤ λ).

Proof. From our assumption, we have aλ + b > λ. Let {xn}∞n=−2 be the solution of (1.3)
determined by (x−2, x−1) ∈ Ω. Then there are eight cases to show that there exists an integer
m ∈ {−2,−1, 0, . . .} such that 0 < xm ≤ λ and xm+1 > λ.
Case 1. Suppose (x−2, x−1) ∈ (0, λ] × (λ,+∞). Then our assertion is true by taking m = −2.
Case 2. Suppose (x−2, x−1) ∈ (λ,+∞) × (0, λ]. By (1.3)

x0 = ax−2 + bfλ(x−1) = ax−2 + b > aλ + b > λ. (3.1)

This means that our assertion is true by takingm = −1.
Case 3. Suppose (x−2, x−1) ∈ (0, λ] × (0, λ]. If xn ∈ (0, λ] for any n ∈ N, then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 + b,

x1 = ax−1 + bfλ(x0) = ax−1 + b,

x2 = ax0 + bfλ(x1) = a2x−2 + ab + b,

x3 = ax1 + bfλ(x2) = a2x−1 + ab + b.

(3.2)

By induction, for any k ∈ N,we have

x2k = ak+1x−2 + akb + · · · + ab + b = ak+1x−2 + b × 1 − ak+1

1 − a
,

x2k+1 = ak+1x−1 + akb + · · · + ab + b = ak+1x−1 + b × 1 − ak+1

1 − a
.

(3.3)

Hence

lim
k→∞

x2k =
b

1 − a
= lim

k→∞
x2k+1. (3.4)

But this is contrary to our assumption that 0 < λ < b/(1 − a). Hence there exists an integer
μ ∈ {−1, 0, 1, . . .} such that x−2, x−1, . . . , xμ ∈ (0, λ] and xμ+1 ∈ (λ,+∞). Thus our assertion
holds by taking m = μ.
Case 4. Suppose (x−2, x−1) ∈ (λ,+∞)× (λ,+∞). As in Case 3 of Lemma 2.1, we may show that
if xn ∈ (λ,+∞) for all n ∈ N, then it follows that

lim
n→∞

xn = 0. (3.5)
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But this is contrary to the fact that xn ∈ (λ,+∞) for n ∈ N.Hence there exists an integer μ ∈ N
such that x−2, x−1, . . . , xμ−1 ∈ (λ,+∞) and xμ ∈ (0, λ], it then follows

xμ+1 = axμ−1 + bfλ
(
xμ

)
= axμ−1 + b > aλ + b > λ. (3.6)

This means that our assertion is true by takingm = μ.
Case 5. Suppose (x−2, x−1) ∈ (−∞, 0] × (0, λ]. Then by (1.21) and (1.23),

(−∞, 0] × (0, λ] =

⎧
⎨

⎩

⎛

⎝
∞⋃

j=1

(
Bj, Bj−1

]

⎞

⎠ ∪
(

−b

a
, 0
]
⎫
⎬

⎭
× (0, λ]. (3.7)

If x−2 ∈ (−b/a, 0], then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 + b > −b + b = 0. (3.8)

When λ ≥ b,we have

0 < x0 = ax−2 + b ≤ b ≤ λ. (3.9)

That is, (x−1, x0) ∈ (0, λ] × (0, λ]. We may thus apply the conclusion of Case 3 to deduce our
assertion.

Suppose λ < b. If −b/a < x−2 ≤ (λ − b)/a < 0, then we have

0 < x0 = ax−2 + b ≤ λ. (3.10)

We may apply the conclusion of Case 3 to deduce our assertion. If (λ − b)/a < x−2 ≤ 0, we
have

x0 = ax−2 + b > λ. (3.11)

Thus our assertion holds by taking m = −1. If x−2 ∈ (B1, B0] = ((−b − ab)/a2,−b/a], then by
(1.3),

B0 = aB1 + b < x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ 0,

0 < x1 = ax−1 + bfλ(x0) = ax−1 < λ.
(3.12)
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That is, (x0, x1) ∈ (−b/a, 0] × (0, λ]. In view of the above discussions, our assertion is true. If
x−2 ∈ (Bp+1, Bp],where p is an arbitrary positive integer, then by (1.3), we have

Bp = aBp+1 + b < x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ aBp + b = Bp−1,

0 < x1 = ax−1 + bfλ(x0) = ax−1 < λ.
(3.13)

That is, (x0, x1) ∈ (Bp, Bp−1] × (0, λ]. Therefore we may conclude our assertion by induction.
Case 6. Suppose

(x−2, x−1) ∈ (−∞, 0] × (λ,+∞) = (−∞, 0] ×
∞⋃

k=0

(
λ

ak
,

λ

ak+1

]

. (3.14)

As in Case 6 of Lemma 2.1, if x−1 ∈ (λ, λ/a], then by (1.3), we have (x0, x1) ∈ (−∞, 0] × (0, λ].
Wemay thus apply the conclusion of Case 5 to deduce our assertion. If x−1 ∈ (λ/ap+1, λ/ap+2],
where p is an arbitrary nonnegative integer, then by (1.3), we have (x0, x1) ∈ (−∞, 0] ×
(λ/ap, λ/ap+1].We may thus use induction to conclude our assertion.
Case 7. Suppose (x−2, x−1) ∈ (0, λ] × (−∞, 0]. By (1.3), we have

0 < x0 = ax−2 + bfλ(x−1) = ax−2 < λ. (3.15)

That is, (x−1, x0) ∈ (−∞, 0]× (0, λ].Wemay thus apply the conclusion of Case 5 to deduce our
assertion.
Case 8. Suppose (x−2, x−1) ∈ (λ,+∞) × (−∞, 0]. Then

(λ,+∞) × (−∞, 0] =
∞⋃

k=0

(
λ

ak
,

λ

ak+1

]

× (−∞, 0]. (3.16)

As in Case 8 of Lemma 2.1, if x−2 ∈ (λ, λ/a], then by (1.3), we have (x−1, x0) ∈ (−∞, 0]× (0, λ].
We may now apply the assertion in Case 5 to conclude our proof. If x−2 ∈ (λ/ap+1, λ/ap+2],
where p is an arbitrary nonnegative integer, then by (1.3), we have (x0, x1) ∈ (λ/ap, λ/ap+1]×
(−∞, 0].We may thus complete our proof by induction.

Theorem 3.2. Let 0 < λ < b/(1 − a). Then any solution {xn}∞n=−2 of (1.3) with (x−2, x−1) ∈ Ω is
asymptotically 2-periodic with limit 2-cycle 〈0, b/(1 − a)〉.
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Proof. In view of Lemma 3.1, we may assume without loss of generality that 0 < x−2 ≤ λ and
x−1 > λ. Then by (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 < λ,

x1 = ax−1 + bfλ(x0) = ax−1 + b > aλ + b > λ,

0 < x2 = ax0 + bfλ(x1) = a2x−2 < λ,

x3 = ax1 + bfλ(x2) = a2x−1 + ab + b > a2λ + ab + b

= a(aλ + b) + b > aλ + b > λ,

0 < x4 = ax2 + bfλ(x3) = a3x−2 < λ,

x5 = ax3 + bfλ(x4) = a3x−1 + a2b + ab + b > a3λ + a2b + ab + b

= a2(aλ + b) + ab + b > a2λ + ab + b > λ.

(3.17)

By induction, for any k ∈ N,we have

0 < x2k = ak+1x−2 < λ,

x2k+1 = ak+1x−1 + akb + · · · + ab + b > ak+1λ + akb + · · · + ab + b

= ak(aλ + b) + ak−1b + · · · + ab + b > akλ + ak−1b + · · · + ab + b

> · · · > a2λ + ab + b > λ.

(3.18)

Thus x2k ∈ (0, λ] and x2k+1 ∈ (λ,+∞) for any k ∈ N. Then

lim
k→∞

x2k = lim
k→∞

ak+1x−2 = 0,

lim
k→∞

x2k+1 = lim
k→∞

{

ak+1x−1 + b × 1 − ak+1

1 − a

}

=
b

1 − a
.

(3.19)

4. The Case λ = b/(1 − a)

Suppose λ = b/(1−a). Then λ = aλ+ b > b.We need to consider solutions with initial vectors
in U or V defined by (1.7) and (1.8), respectively.

Lemma 4.1. Let λ = b/(1 − a). If {xn}∞n=−2 is a solution of (1.3) with (x−2, x−1) ∈ V, then there
exists an integerm ∈ N such that 0 < xm, xm+1 ≤ λ.

The proof is the same as the discussions in Cases 5 through Case 8 in the proof of
Lemma 2.1, and hence is skipped.

Theorem 4.2. Suppose λ = b/(1 − a), then a solution x = {xn}∞n=−2 of (1.3) with (x−2, x−1) ∈ V
will tend to b/(1 − a).
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Proof. In view of Lemma 4.1, we may assume without loss of generality that 0 < x−2, x−1 ≤ λ.
By (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 + b ≤ aλ + b = λ,

0 < x1 = ax−1 + bfλ(x0) = ax−1 + b ≤ aλ + b = λ,

0 < x2 = ax0 + bfλ(x1) = a2x−2 + ab + b ≤ a2λ + ab + b = a(aλ + b) + b = aλ + b = λ,

0 < x3 = ax1 + bfλ(x2) = a2x−1 + ab + b ≤ a2λ + ab + b = a(aλ + b) + b = aλ + b = λ,

0 < x4 = ax2 + bfλ(x3) = a3x−2 + a2b + ab + b ≤ a3λ + a2b + ab + b

= a2(aλ + b) + ab + b = a2λ + ab + b = λ,

0 < x5 = ax3 + bfλ(x4) = a3x−1 + a2b + ab + b ≤ a3λ + a2b + ab + b

= a2(aλ + b) + ab + b = a2λ + ab + b = λ.

(4.1)

By induction, for any k ∈ N,we have

0 < x2k = ak+1x−2 + akb + ak−1b + · · · + ab + b

≤ ak+1λ + akb + ak−1b + · · · + ab + b = ak(aλ + b) + ak−1b + · · · + ab + b

= akλ + ak−1b + · · · + ab + b = ak−1(aλ + b) + ak−2b + · · · + ab + b

= ak−1λ + ak−2b + · · · + ab + b = · · · = a2λ + ab + b = λ,

(4.2)

and similarly

0 < x2k+1 = ak+1x−1 + akb + ak−1b + · · · + ab + b ≤ λ. (4.3)

Thus x2k, x2k+1 ∈ (0, λ] for any k ∈ N. Thus (2.37) hold so that

lim
n→∞

xn =
b

1 − a
. (4.4)

The proof is complete.

Theorem 4.3. Suppose λ = b/(1 − a), then any solution {xn}∞n=−2 of (1.3) with (x−2, x−1) ∈ U is
asymptotically 2-periodic with limit 2-cycle 〈0, b/(1 − a)〉.



Advances in Difference Equations 17

Proof. We first discuss the case, where (x−2, x−1) ∈ (0, λ] × (λ,+∞). By (1.3),

0 < x0 = ax−2 + bfλ(x−1) = ax−2 < λ,

x1 = ax−1 + bfλ(x0) = ax−1 + b > aλ + b = λ,

0 < x2 = ax0 + bfλ(x1) = a2x−2 < λ,

x3 = ax1 + bfλ(x2) = a2x−1 + ab + b > a2λ + ab + b

= a(aλ + b) + b = aλ + b = λ,

0 < x4 = ax2 + bfλ(x3) = a3x−2 < λ,

x5 = ax3 + bfλ(x4) = a3x−1 + a2b + ab + b > a3λ + a2b + ab + b

= a2(aλ + b) + ab + b = a2λ + ab + b = λ.

(4.5)

By induction, for any k ∈ N,we have

0 < x2k = ak+1x−2 < λ,

x2k+1 = ak+1x−1 + akb + · · · + ab + b > ak+1λ + akb + · · · + ab + b = λ.
(4.6)

Thus x2k ∈ (0, λ] and x2k+1 ∈ (λ,+∞) for any k ∈ N. Then

lim
k→∞

x2k = 0,

lim
k→∞

x2k+1 = lim
k→∞

{

ak+1x−1 + b × 1 − ak+1

1 − a

}

=
b

1 − a
.

(4.7)

If (x−2, x−1) ∈ (λ,+∞) × (0, λ], then by (1.3),

x0 = ax−2 + bfλ(x−1) = ax−2 + b > aλ + b = λ. (4.8)

That is, (x−1, x0) ∈ (0, λ]× (λ,+∞).Wemay thus apply the previous conclusion to deduce our
assertion.

If (x−2, x−1) ∈ (λ,+∞)×(λ,+∞), then similar to the discussions of Case 3 of Lemma 2.1,
there exists an integer μ ∈ N such that x−2, x−1, . . . , xμ−1 ∈ (λ,+∞) and xμ ∈ (0, λ]. That is,
(xμ−1, xμ) ∈ (λ,+∞) × (0, λ]. In view of the previous case, our assertion holds. The proof is
complete.

5. Concluding Remarks

The results in the previous sections can be stated in terms of the two-dimensional dynamical
system (1.10). Indeed, a solution of (1.10) is a vector sequence of the form {(un, vn)

†}∞n=0 that
renders (1.10) into an identity for each n ∈ N. It is uniquely determined by (u0, v0)

†.
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Let us say that a solution {(un, vn)
†}∞n=0 of (1.10) eventually falls into a plane region Ψ

if (un, vn)
† ∈ Ψ for all large n; that it is eventually falls into two disjoint plane regions Ψ1 and

Ψ2 alternately if there is somem ∈ N such that (um+2i, vm+2i)
† ∈ Ψ1 and (um+2i+1, vm+2i+1)

† ∈ Ψ2

for all i ∈ N; and that it approaches a limit 2-cycle 〈(α1, β1)
†, (α2, β2)

†〉 if there is some m ∈ N
such that (um+2i, vm+2i)

† → (α1, β1)
† and (um+2i+1, vm+2i+1)

† → (α2, β2)
† as i → +∞. Then we

may restate the previous theorems as follows.

(i) The vectors (0, 0)†, (0, b/(1−a))†, (b/(1 − a), b/(1 − a))†, and (b/(1−a), 0)† form the
corners of a square in the plane.

(ii) A solution {(un, vn)
†}∞n=0 of (1.10) with (u0, v0)

† in the nonpositive orthant (−∞, 0]2

(is nonpositive and) tends to (0, 0)†.

(iii) Suppose λ > b/(1 − a) , then a solution {(un, vn)
†}∞n=0 of (1.10) with (u0, v0)

† in Ω
will (eventually falls into (0, λ]2 and) tend to (b/(1 − a), b/(1 − a))†.

(iv) Suppose 0 < λ < b/(1 − a) , then a solution {(un, vn)
†}∞n=0 of (1.10) with (u0, v0)

†

in Ω will (eventually falls into (0, λ] × (λ,+∞) and (λ,+∞) × (0, λ] alternately and)
approach the limit 2-cycle 〈(0, b/(1 − a))†, (b/(1 − a), 0)†〉.

(v) Suppose λ = b/(1 − a), then a solution {(un, vn)
†}∞n=0 of (1.10) with (u0, v0)

† in V
will (eventually falls into (0, λ]2) tend to (b/(1 − a), b/(1 − a))†.

(vi) Suppose λ = b/(1 − a), Then a solution {(un, vn)
†}∞n=0 of (1.10) with (u0, v0)

† in U
will (eventually falls into (0, λ] × (λ,+∞) and (λ,+∞) × (0, λ] alternately) approach
the limit 2-cycle 〈(0, b/(1 − a))†, (b/(1 − a), 0)†〉.

Since we have obtained a complete set of asymptotic criteria, we may deduce
(bifurcation) results such as the following.

If 0 < λ < b/(1−a), then all solutions {(un, vn)
†}∞n=0 originated from the positive orthant

approach the limit 2-cycle 〈(0, b/(1 − a))†, (b/(1 − a), 0)†〉; if λ > b/(1 − a), then all solutions
originated from the positive orthant tend to (b/(1 − a), b/(1 − a))†; if λ = b/(1 − a), then
all solutions originated from the positive orthant tend to (b/(1 − a), b/(1 − a))† if (u0, v0)

† ∈
(0, λ]2 and approach the limit cycle 〈(0, b/(1 − a))†, (b/(1 − a), 0)†〉 otherwise.

Roughly the above statements show that when the threshold parameter λ is a relatively
small positive parameter, all solutions from the positive orthant tend to a limit 2-cycle; when it
reaches the critical value b/(1−a), some of these solutions (those from (0, b/(1−a)]2) switch
away and tend to a limit 1-cycle, and when λ drifts beyond the critical value, all solutions
tend to the limit 1-cycle. Such an observation seems to appear in many natural processes
and hence our model may be used to explain such phenomena. It is also expected that when
a group of neural units interact with each other in a network where each unit is governed
by evolutionary laws of the form (1.3), complex but manageable analytical results can be
obtained. These will be left to other studies in the future.
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