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The existence and uniqueness of solutions and a representation of solution formulas are studied
for the following initial value problem: ẋ(t) +

∫ t
t0
K(t, s)x(h(s))ds = f(t), t ≥ t0, x ∈ R

n, x(t) = ϕ(t),
t < t0. Such problems are obtained by transforming second-order delay differential equations
ẍ(t) + a(t)ẋ(g(t)) + b(t)x(h(t)) = 0 to first-order differential equations.

1. Introduction and Preliminaries

The second order delay differential equation

ẍ(t) + a(t)ẋ
(
g(t)
)
+ b(t)x(h(t)) = 0 (1.1)

attracts the attention of many mathematicians because of their significance in applications.
In particular, Minorsky [1] in 1962 considered the problem of stabilizing the rolling of

a ship by an “activated tanks method” in which ballast water is pumped from one position
to another. To solve this problem, he constructed several delay differential equations with
damping described by (1.1).

Despite the obvious importance in applications, there are only few papers on delay
differential equations with damping.
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One of the methods used to study (1.1) is transforming the second-order delay
differential equation to a first-order differential or integrodifferential equations with delay.
A transformation of the type

x(t) =
∫ t

t0

exp

{∫ t

s

u(τ)dτ

}

z(s)ds, (1.2)

where u(t) is a nonnegative function is used in [2]. The following result is a restriction of [2,
Theorem 1] to (1.1).

Proposition 1.1. If a, b : [t0,∞) → [0,∞) are Lebesgue measurable and locally essentially bounded,
g, h : [t0,∞) → R are Lebesgue measurable functions, g(t) ≤ t, h(t) ≤ t if t ∈ [t0,∞),
limt→∞g(t) = limt→∞h(t) = ∞, there exists a locally absolutely continuous function u : [t0,∞) →
[0,∞) such that the inequality

u̇(t) + u2(t) + a(t)u
(
g(t)
)
e−
∫ t
g(t)u(s)ds + b(t)e−

∫ t
h(t)u(s)ds ≤ 0, (1.3)

is valid for all sufficiently large t, and the equation

ż(t) + u(t)z(t) + a(t)z
(
g(t)
)
= 0 (1.4)

has a nonoscillatory solution, then (1.1) has a nonoscillatory solution, too.

Proposition 1.1 means that second order delay equation (1.1) is reduced to nonlinear
inequality (1.3) and first order delay differential equation (1.4).

Now we will briefly describe the scheme of another transformation, different from the
one used in [2] (in this explanation we omit exact assumptions related to the functions used,
which are formulated later).

Consider an auxiliary equation

ż(t) + a(t)z
(
g(t)
)
= p(t), t ≥ t0, (1.5)

with the initial condition

z(t) = ψ(t), t < t0, z(t0) = z0. (1.6)

It is known, see [3, 4], that the unique solution of (1.5), (1.6) has a form

z(t) = Z(t, t0)z(t0) +
∫ t

t0

Z(t, s)p(s)ds −
∫ t

t0

Z(t, s)ψ
(
g(s)

)
ds, (1.7)

where Z(t, s) is the fundamental matrix of (1.5) and ψ(g(s)) = 0 if g(s) < t0.
If we denote z(t) = ẋ(t), then (1.1) can be rewritten in the form

ż(t) + a(t)z
(
g(t)
)
= −b(t)x(h(t)). (1.8)
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Applying (1.7) and equality z(t) = ẋ(t) to (1.8), we have the following equation

ẋ(t) = Z(t, t0)ẋ(t0) −
∫ t

t0

Z(t, s)b(s)x(h(s))ds −
∫ t

t0

Z(t, s)ψ
(
g(s)

)
ds. (1.9)

Define

K(t, s) := Z(t, s)b(s),

f(t) := Z(t, t0)ẋ(t0) −
∫ t

t0

Z(t, s)ψ
(
g(s)

)
ds.

(1.10)

Then (1.1) is transformed into the integrodifferential equation with delay

ẋ(t) +
∫ t

t0

K(t, s)x(h(s))ds = f(t), t ≥ t0. (1.11)

Since (1.11) is a result of transforming (1.1), qualitative properties of (1.11) such as the
existence and uniqueness of solutions, oscillation and nonoscillation, stability and asymptotic
behavior can imply similar qualitative properties of (1.1).

The advantage of the suggested method in comparison with the method used in [2]
is that a second order delay equation is reduced to one first-order integrodifferential delay
equation while in [2] a second-order equation is reduced to a system of a nonlinear inequality
and a linear delay equation.

Similar in a sense problems for delay difference equations were studied in [5, 6] as
well.

This paper aims to investigate the problems of the existence, uniqueness and
solution representation of (1.11). Problems related to oscillation/nonoscillation, stability
and applications to second-order equations will be studied in our forthcoming papers.
Throughout this paper, | · |will denote the matrix or vector norm used.

2. Main Results

Together with (1.11) we consider an initial condition

x(t) = ϕ(t), t < t0, x(t0) = x0. (2.1)

We will assume that the following conditions hold:

(a1) For all c > t0, the elements kij : [t0, c]×[t0, c] → R, i, j = 1, 2, . . . , n of the n×nmatrix
functionK are measurable in the square [t0, c]×[t0, c], the elements fi : [t0, c] → R,
i = 1, 2, . . . , n of the vector function f are measurable in the interval [t0, c],

sup
t∈[t0,c]

∫ c

t0

|K(t, s)|ds <∞,

∫ c

t0

∣∣f(s)
∣∣ds <∞. (2.2)
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(a2) h : [t0,∞) → R is a measurable scalar function satisfying h(t) ≤ t, limt→∞h(t) = ∞.

(a3) The initial function ϕ : (−∞, t0) → R
n is a Borel bounded function.

A function x : R → R
n is called a solution of the problem (1.11), (2.1) if it is a

locally absolutely continuous function on [t0,∞), satisfies equation (1.11) on t ≥ t0 almost
everywhere, and initial conditions (2.1) for t ≤ t0.

Theorem 2.1. Let conditions (a1)–(a3) hold. Then there exists a unique solution of problem (1.11),
(2.1).

Proof. It is sufficient to prove that there exists a unique solution of (1.11), (2.1) on the interval
[t0, c] for any c > t0.

Denote

xh(t) =

⎧
⎨

⎩

x(h(t)) if h(t) ≥ t0,
0 if h(t) < t0,

ϕh(t) =

⎧
⎨

⎩

ϕ(h(t)) if h(t) < t0,

0 if h(t) ≥ t0.

(2.3)

Then x(h(t)) = xh(t) + ϕh(t), t ≥ t0 and (1.11), (2.1) takes the form

ẋ(t) +
∫ t

t0

K(t, s)xh(s)ds = g(t), t ≥ t0, x(t0) = x0, (2.4)

where

g(t) = f(t) − ψ(t)

ψ(t) =
∫ t

t0

K
(
t, q
)
ϕh
(
q
)
dq.

(2.5)

Denote χ[α,β](t) the characteristic function of the interval [α, β]. We will assume that χ[α,β](t) ≡
0 if α ≥ β. Since

x(t) = x(t0) +
∫ t

t0

ẋ(s)ds, (2.6)

we have

xh(t) =

(

x(t0) +
∫max{h(t),t0}

t0

ẋ(s)ds

)

χ[t0,c](h(t)). (2.7)
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Hence problem (2.4) can be transformed into

ẋ(t) +
∫ t

t0

K(t, s)

(∫max{h(s),t0}

t0

ẋ(τ)dτ

)

χ[t0,c](h(s))ds

+

(∫ t

t0

K(t, s)χ[t0,c](h(s))ds

)

x(t0) = g(t), t ≥ t0, x(t0) = t0.
(2.8)

We have

∫ t

t0

K(t, s)

(∫max{h(s),t0}

t0

ẋ(τ)dτ

)

χ[t0,c](h(s))ds

=
∫ t

t0

K(t, s)

(∫ s

t0

ẋ(τ)χ[t0,h(s)](τ)dτ

)

χ[t0,c](h(s))ds

=
∫ t

t0

(∫ t

τ

K(t, s)χ[t0,h(s)](τ)χ[t0,c](h(s))ds

)

ẋ(τ)dτ

=
∫ t

t0

(∫ t

s

K(t, τ)χ[t0,h(τ)](s)χ[t0,c](h(τ))dτ

)

ẋ(s)ds.

(2.9)

Denote

B(t, s) := −
∫ t

s

K(t, τ)χ[t0,h(τ)](s)χ[t0,c](h(τ))dτ,

A(t) := −
∫ t

t0

K(t, s)χ[t0,c](h(s))ds.

(2.10)

Finally, problem (2.4) has the form

y(t) =
∫ t

t0

B(t, s)y(s)ds + r(t), t ≥ t0, (2.11)

where y(t) = ẋ(t), r(t) = A(t)x(t0) + g(t). Consider the linear integral operator

(
Ty
)
(t) =

∫ t

t0

B(t, s)y(s)ds (2.12)

in the space of all Lebesgue integrable functions y : [t0, c] → R
n with the norm ||y|| =∫c

t0
|y(s)|ds.
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We have

sup
t0≤t≤c

∫ c

t0

|B(t, s)|ds ≤ sup
t0≤t≤c

∫ c

t0

∫ t

s

|K(t, τ)|dτds

≤ (c − t0) · sup
t0≤t≤c

∫ c

t0

|K(t, τ)|dτ <∞.

(2.13)

Hence the integral operator T is a compact Volterra operator and its spectral radius is
equal to zero [4, 7, 8]. Then the integral equation (2.11) has a unique solution y(t), t ≥ t0.
Consequently

x(t) =

⎧
⎪⎨

⎪⎩

x(t0) +
∫ t

t0

y(s)ds, t ≥ t0,
ϕ(t), t < t0

(2.14)

is a unique solution of (1.11), (2.1).
Let Θ be the n × n zero matrix and I the identity n × nmatrix.

Definition 2.2. For each s ≥ t0, the solution X = X( · , s) of the problem

Ẋ(t, s) +
∫ t

s

K(t, τ)X(h(τ), s)dτ = Θ, t ≥ s,

X(t, s) = Θ, t < s, X(s, s) = I,

(2.15)

is called the fundamental matrix of (1.11). (Here Ẋ(t, s) is the partial derivative ofX(t, s)with
respect to its first argument.)

Theorem 2.3. Let conditions (a1)–(a3) hold. Then the unique solution of (1.11), (2.1) can be
represented in the form

x(t) = X(t, t0)x0 +
∫ t

t0

X(t, s)f(s)ds −
∫ t

t0

X(t, s)ψ(s)ds (2.16)

for t ≥ t0 where ψ is defined by (2.5).

Proof. In the proof we will use notation defined in the proof of Theorem 2.1. The existence
and uniqueness of a solution of (1.11), (2.1) is a consequence of Theorem 2.1. Thus, we will
only prove the solution representation formula (2.16). Problem (1.11), (2.1) is equivalent to
(2.4). We need to show that the function

x(t) = X(t, t0)x0 +
∫ t

t0

X(t, s)g(s)ds, (2.17)

whereX is the fundamental matrix of (1.11) is the solution of problem (2.4). For convenience,
we will write x(h(t)) instead of xh(t) assuming that x(h(t)) = 0, if h(t) < t0.
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Equality (2.17) implies

x(h(t)) = X(h(t), t0)x(t0) +
∫max{h(t),t0}

t0

X(h(t), s)g(s)ds

= X(h(t), t0)x(t0) +
∫ t

t0

X(h(t), s)g(s)ds

−
∫ t

max{h(t),t0}
X(h(t), s)g(s)ds

= X(h(t), t0)x(t0) +
∫ t

t0

X(h(t), s)g(s)ds.

(2.18)

We consider the left-hand side of (2.4) if assuming x to have the form (2.17). With the help of
the last relation, we have

ẋ(t) +
∫ t

t0

K(t, s)x(h(s))ds

= Ẋ(t, t0)x(t0) + g(t) +
∫ t

t0

Ẋ(t, s)g(s)ds

+
∫ t

t0

K(t, s)

(

X(h(s), t0)x(t0) +
∫s

t0

X(h(s), ξ)g(ξ)dξ

)

ds

= g(t) +

(

Ẋ(t, t0) +
∫ t

t0

K(t, s)X(h(s), t0)ds

)

x(t0) +
∫ t

t0

Ẋ(t, s)g(s)ds

+
∫ t

t0

K(t, s)
∫s

t0

X(h(s), ξ)g(ξ)dξds

= g(t) +
∫ t

t0

Ẋ(t, s)g(s)ds +
∫ t

t0

K(t, s)
∫s

t0

X(h(s), ξ)g(ξ)dξds.

(2.19)

Since

∫ t

t0

(

K(t, s)
∫s

t0

X(h(s), ξ)g(ξ)dξ

)

ds =
∫ t

t0

(∫ t

ξ

K(t, s)X(h(s), ξ)ds

)

g(ξ)dξ

=
∫ t

t0

(∫ t

s

K(t, ξ)X(h(ξ), s)dξ

)

g(s)ds,

(2.20)
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we obtain

ẋ(t) +
∫ t

t0

K(t, s)x(h(s))ds = g(t) +
∫ t

t0

(

Ẋ(t, s) +
∫ t

s

K(t, ξ)X(h(ξ), s)dξ

)

g(s)ds = g(t).

(2.21)
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