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Many dynamical systems have an impulsive dynamical behavior due to abrupt changes at certain
instants during the evolution process. The mathematical description of these phenomena leads to
impulsive differential equations. In this work, we present some new results concerning the exact
controllability of a nonlinear ordinary differential equation with impulses.

1. Introduction

Many evolution processes in nature are characterized by the fact that at certain moments in
time they experience an abrupt change of state. Such behavior is seen in a range of problems
from: mechanics; chemotherapy; population dynamics; optimal control; ecology; industrial
robotics; biotechnology; spread of disease; harvesting; physics; medical models. The reader is
referred to [1–8] and references therein for some models and applications to the above areas.

The branch of modern, applied analysis known as “impulsive” differential equations
furnishes a natural framework to mathematically describe the aforementioned jumping
processes. Consequently, the area of impulsive differential equations has been developing
at a rapid rate, with the wide applications significantly motivating a deeper theoretical study
of the subject [9–11].

Impulsive control systems have been studied by several authors [12–18]. In [15]
the problem of controlling a physical object through impacts is studied, called impulsive
manipulation, which arises in a number of robotic applications. In [16] the authors
investigated the optimal harvesting policy for an ecosystemwith impulsive harvest. For some
recent references on different control strategies, including impulsive control, we refer the
reader to [13, 19–26] and the references therein.
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Now, let T > 0 and 0 = t0 < t1 < t2 < · · · < tm−1 < tm < tm+1 = T, J = [0, T], and
J ′ = [0, T] \ {t1, t2, . . . , tm}, and λ is an n × n real matrix.

Consider the following impulsive control differential equation:

x′(t) + λx(t) = f(t, x(t)) + [Bu](t), t ∈ [0, T], t /= tj , j = 1, 2, . . . , m, (1.1)

x
(
t+j

)
= x

(
t−j
)
+ Ij

(
x
(
tj
))
, j = 1, 2, . . . , m, (1.2)

where f : J ′ × R
n → R

n, B is an operator defined on a set of admissible controls u, and
Ij : R

n → R
n, j = 1, 2, . . . , m.

As usual, x(t−1 ) := limt→ t−1x(t) and x(t+1 ) := limt→ t+1
x(t).

Our purpose is to the system (1.1)-(1.2) from the initial state x0 to a desired final state
x1 in the finite time T.

We say that system (1.1)-(1.2) is exactly controllable in the time T > 0 if for any x0, x1

there exists a control u such that a solution x of (1.1)-(1.2) satisfies x(0) = x0, x(T) = x1. Of
course, we specify below the space of solutions and controls.

The main idea of our approach is to transform the controllability problem to the
existence of a fixed point of an appropriate nonlinear operator generated by the original
problem. This approach is not new and has been used by some authors such as Bhat [27],
Chang et al. [28, 29], Sakthivel et al. [30], and Tonkov [31].

2. Some General Results on Exact Controllability

Consider the following finite-dimensional linear system:

x′(t) = Ax(t) + bu(t), (2.1)

where A is an n × n matrix, and b ∈ R
n.

This linear system is completely controllable if for any x0, x1 ∈ R
n there exists a T > 0

and a control function u(t) defined for t ∈ [0, T] such that the solution to (2.1) with initial
condition x(0) = x0 satisfies x(T) = x1. It is well known [32] that the linear system (2.1) is
completely controllable if and only if

rank
[
b Ab A2b · · · An−1b

]
= n. (2.2)

If the system is infinite dimensional, that is,

x′(t) = Ax(t) + bu(t), (2.3)

where A is the infinitesimal generator of a strongly continuous semigroup in a Hilbert space
X, and b : U → X a linear bounded operator from a Hilbert space U into X, then if the
semigroup is compact the linear system (2.3) is not exactly controllable [33–35].

In this paper we study the finite-dimensional nonlinear impulsive control problem
(1.1)-(1.2).
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3. Exact Controllability without Impulses

Consider (1.1)without impulses, that is,

x′(t) + λx(t) = f(t, x(t)) + [Bu](t), t ∈ [0, T], (3.1)

with the initial condition

x(0) = x0. (3.2)

Here, f : [0, T] × R
n → R

n continuous and B : C[0, T] → C[0, T].
In what follows, Bu = u, and hence if x ∈ C1[0, T] is a solution of the initial problem

(3.1)-(3.2), then

x(t) = e−λtx0 +
∫ t

0
e−λ(t−s)

[
f(s, x(s)) + u(s)

]
ds. (3.3)

We can define the following operator defined by the right-hand side of (3.3):

F : C[0, T] × C[0, T] −→ C[0, T],

[F(x, u)](t) = e−λtx0 +
∫ t

0
e−λ(t−s)

[
f(s, x(s)) + u(s)

]
ds.

(3.4)

In what follows B is the identity operator so that the control space is U = R
n. Note that

F = Fx0 depends on the initial condition x0 and for any control

[F(x, u)](0) = x0. (3.5)

Now, for x1 ∈ R
n, suppose that we are able to find a control u = G(x) such that

[F(x,G(x))](0) = x0, [F(x,G(x))](T) = x1. (3.6)

This means that for the control u = G(x), the system transfers the initial state to the desired
final state if

H = F(·,G(·)) (3.7)

has a fixed point. Consequently, if the operator H, which of course depends on the initial
state x0, has a fixed point for any initial state, then the system is exactly controllable.

To clarify the ideas exposed above, suppose thatBu = u and let us introduce the control

u(t) =
1
T
eλ(T−t)

[
x1 − e−λTx0 −

∫T

0
e−λ(T−s)f(s, x(s))ds

]
. (3.8)
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Define G : C[0, T] → C[0, T] by the right-hand side in(3.8)

[G(x)](t) = 1
T
eλ(T−t)

[
x1 − e−λTx0 −

∫T

0
e−λ(T−s)f(s, x(s))ds

]
. (3.9)

Thus, for this control,

[H(x)](T) = [F(x,G(x))](T) = e−λtx0 +
∫T

0
e−λ(T−s)

[
f(s, x(s)) + u(s)

]
ds

= e−λtx0

+
∫T

0
e−λ(T−s)

[
f(s, x(s)) +

1
T
eλ(T−t)

[
x1 − e−λTx0 −

∫T

0
e−λ(T−τ)f(τ, x(τ))dτ

]]
ds

= x1.

(3.10)

We have thus the following result.

Theorem 3.1. If for any initial condition x0 and final condition x1 the operator

H : C[0, T] −→ C[0, T] (3.11)

has a fixed point, then system (3.1) with Bu = u is exactly controllable.

4. Exact Controllability with Impulses

As usual, see any of the references on impulsive differential equations, we consider the
Banach space

PC([0, T],Rn) =
{
x : [0, T] −→ R

n : x ∈ C
(
J ′,Rn) ,

x is left continuous at tj and the right − hand limits x
(
t+j

)
exist

} (4.1)

with the norm

‖x‖PC = sup
t∈[0,T]

‖x(t)‖. (4.2)

Let Jj = [tj−1, tj], j = 1, 2, . . . , p, and xj the restriction of x to that subinterval Jj .
The space

PC1([0, T],Rn) =
{
x ∈ PC([0, T],Rn) : xj ∈ C1(Jj ,Rn), and the limits x′

(
t−j
)
, x′

(
t+j

)
exist

}

(4.3)
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with the norm

‖u‖PC1 = max
{‖x‖PC,

∥∥x′∥∥
PC

}
(4.4)

is a Banach space.
Now consider the impulsive control differential equation

x′(t) + λx(t) = f(t, x(t)) + u(t), t ∈ [0, T], t /= tj , j = 1, 2, . . . , m, (4.5)

x
(
t+j

)
= x

(
t−j
)
+ Ij

(
x
(
tj
))
, j = 1, 2, . . . , m, (4.6)

where f : J ′ × R
n → R

n is continuous and there exist the limits

f
(
t+j , x

)
= lim

t→ t+1

f(t, x), f
(
t−j , x

)
= lim

t→ t−j
f(t, x),

f
(
tj , x

)
= f

(
t−j , x

)
,

(4.7)

u ∈ PC[0, T] and Ij : R
n → R

n are continuous
By a solution of (4.5)-(4.6), and for continuous controls u(·), we mean a function x ∈

PC1([0, T],Rn) satisfying (4.5) for every t ∈ J ′ and the impulses (4.6). In the case that the
control u is, for example, in the space L2 locally, the solution must satisfy (4.5) for almost
every t ∈ Jj for each j = 0, 1, . . . , p and the impulses indicated in (4.6).

Lemma 4.1. If x ∈ PC1([0, T],Rn) is a solution of (4.5)-(4.6), then x satisfies

x(t) = e−λtx0 +
∫ t

0
e−λ(t−s)

[
f(s, x(s)) + u(s)

]
ds +

∑
0<tj<t

e−λ(T−tj )Ij
(
x
(
tj
))
. (4.8)

Reciprocally, if x ∈ PC([0, T],Rn) satisfies (4.8), then x is a solution of (4.5)-(4.6).

See [2] for the proof.
Now, define the operators F : PC([0, T],Rn) × PC([0, T],Rn) → PC([0, T],Rn) by

[F(x, u)](t) = e−λtx0 +
∫ t

0
e−λ(t−s)

[
f(s, x(s)) + u(s)

]
ds +

∑
0<tj<t

e−λ(T−tj )Ij
(
x
(
tj
))
, (4.9)

and G : PC([0, T],Rn) → PC([0, T],Rn) by

[G(x)](t) = 1
T
eλ(T−t)

⎡
⎣x1 − e−λTx0 −

∫T

0
e−λ(T−s)f(s, x(s))ds −

m∑
j=1

e−λ(T−tj )Ij
(
x
(
tj
))
⎤
⎦. (4.10)

As in the nonimpulsive case, this control u = Gx steers the system for the initial state x0 to
the final state x1 in the finite time T > 0.

Consequently we have the following result.
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Theorem 4.2. If H = F(·,G(·)) : PC[0, T] → PC[0, T] has a fixed point for any initial condition
x0 and final condition x1, then the impulsive system (4.5)-(4.6) is exactly controllable.

5. Main Results

Schauder fixed point theorem states that any continuous mapping of a nonempty convex
subset of a normed space into a compact set of that normed space has a fixed point
[36, Theorem 4.1.1]. One of the most useful consequences is Schaefer’s theorem [36,
Theorem 4.3.2].

Theorem 5.1. Let E be a normed space withH : E → E a compact mapping. If the set

S :=
{
x ∈ E : x = μH(x) for some μ ∈ [0, 1)

}
(5.1)

is bounded thenH has at least one fixed-point.

The operators F and G are continuous and compact [2, 37]. Consequently, H is also
continuous and compact and we can apply Schaefer’s theorem.

Theorem 5.2. Suppose that f has a sublinear growth, that is, there exist constants a, b ≥ 0 and
0 < α < 1 such that for every t ∈ J, x ∈ Rn

∣∣f(t, x)∣∣ ≤ a + b|x|α. (5.2)

Assume that the impulses have sublinear growth. For every j = 1, 2, . . . , m, there exist aj , bj ≥ 0 and
0 < αj < 1 such that for every x ∈ Rn one has

∣∣Ij(x)
∣∣ ≤ aj + bj |x|αj , (5.3)

then the operator H has a fixed point for any x0, x1 and the impulsive system (4.5)-(4.6) is exactly
controllable.

Proof. Let x ∈ PC([0, T],Rn). Using (5.2) and (5.3), it is evident that for any t ∈ [0, T]

|[G(x)](t)| ≤ c0 + c′0‖x‖α +
m∑
j=1

cj‖x‖αj , (5.4)

where c0, c′0, cj , j = 1, 2, . . . , m are constants.
Also, there exist constants d0, d

′
0, d

′′
0, dj , j = 1, 2, . . . , m such that for any t ∈ [0, T],

|[F(x, u)](t)| ≤ d0 + d′
0‖x‖α + d′′

0‖u‖ +
m∑
j=1

dj‖x‖αj . (5.5)
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Combining these two last inequalities we get

|[H(x)](t)| ≤ e0 + e′0‖x‖α +
m∑
j=1

ej‖x‖αj , t ∈ [0, T], (5.6)

for some constants e0, e
′
0, ej , j = 1, 2, . . . , m. Consequently, for any x ∈ PC([0, T],Rn) we

have

‖H(x)‖ ≤ e0 + e′0‖x‖α +
m∑
j=1

ej‖x‖αj . (5.7)

If x ∈ PC([0, T],Rn) is a solution of the equation x = μH(x), μ ∈ (0, 1), then

‖x‖ =
∥∥μH(x)

∥∥ ≤ ‖H(x)‖ ≤ e0 + e′0‖x‖α +
m∑
j=1

ej‖x‖αj . (5.8)

For θ > 0, defineΨ(θ) = θ − e0 − e′0θ
α +

∑m
j=1 ejθ

αj .Noting that α, αj ∈ [0, 1),we see that
limθ→+∞Ψ(θ) = +∞. Taking θ = ‖x‖ we deduce that the set {θ > 0 : Ψ(θ) ≤ 0} is a bounded
set.

Hence all the possible solutions of the equation x = μH(x), μ ∈ (0, 1), are bounded
”a priori.” By Schaeffer’s theorem, H has a fixed point, which is equivalent to the exact
controllability of the impulsive system (4.5)-(4.6).

As a consequence we have the following.

Theorem 5.3. Assume that f is bounded and the impulses Ij , j = 1, 2, . . . , m are also bounded.
then the operator H has a fixed point for any x0, x1 and the impulsive system (4.5)-(4.6) is exactly
controllable.

When the nonlinearity f is bounded, (4.5) is not exactly controllable in general. Even in
the linear case f(t, x) = Ax the equation is not exactly controllable in general; see condition
(2.2). However, by adding adequate impulses we can control the equation and hence the
system becomes exactly controllable.

Example 5.4. Let M be an n × n real matrix. Consider the system

x′ = Mx − λx + bu (5.9)

such that A = M − λI does not satisfy (2.2). Then, (5.9) is not completely controllable.
However, by adding the impulse

I1(x(t1)) =
√
‖x(t1)‖ (5.10)

for some t1 ∈ (0, T), the impulsive system (5.9)-(5.10) is completely controllable.
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