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Copyright q 2010 J. Diblı́k et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Systems are considered related to the control of processes described by oscillating second-order
systems of differential equations with a single delay. An explicit representation of solutions with
the aid of special matrix functions called a delayed matrix sine and a delayed matrix cosine is used
to develop the conditions of relative controllability and to construct a specific control function
solving the relative controllability problem of transferring an initial function to a prescribed point
in the phase space.

1. Introduction

The problem of controllability of linear first-order autonomous systems without delay

ẋ(t) = Ax(t) + bu(t), x ∈ R
n, t ≥ 0, (1.1)

with an n × n constant matrix A, b ∈ R
n and u : [0,∞) → R is solved by the well-

known Kalman criterion (e.g., [1–3]). According to this, for the control of a linear system,
it is necessary and sufficient that the rank criterion

rank Sn = n (1.2)
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should be fulfilled where

Sn =
{
b,Ab,A2b, . . . , An−1b

}
. (1.3)

A proof is based on two important results. The first is the formula for an integral
representation of a solution of a Cauchy problem for the nonhomogeneous system

x(t) = eAtx(0) +
∫ t
0
eA(t−s)bu(s)ds, (1.4)

where

eAt = I +A
t

1!
+A2 t

2

2!
+ · · · +Ak t

k

k!
+ · · · (1.5)

is the matrix exponential (throughout this paper, I stands for an n×n unit matrix). The second
is the Cayley-Hamilton theorem saying that any power Ai, i = n, n + 1, . . . of matrix A can be
represented by a linear combination of powers Ai, i = 0, 1, . . . , n − 1 [4, 5]. We remark that the
problem regarding the construction of a control function has a nonunique solution.

For control systemswith delay, a solution to the controllability problem is considerably
more complicated. The control function is a functional of a previous phase state. First results
related to controllability of linear systemswith constant coefficients and a constant delay have
been formulated in [6, 7] and, for linear systems with variable coefficients and a variable
delay, in [8]. Problems of optimal control of systems with delay are considered in [9, 10].
Recent results on controllability of systems with delay are collected in [11–14].

In this paper, we investigate systems related to control of processes, described by
oscillating second-order systems of differential equations with a single delay, in the following
form:

ẍ(t) + Ω2x(t − τ) = bu(t), (1.6)

where t ≥ 0, x : [0,∞) → R
n, Ω is an n × n constant regular matrix, τ > 0, τ ∈ R, b ∈ R

n, and
u : [0,∞) → R.

One way to investigate such problem is to define additional dependent variables and,
transforming initial system (1.6) into a system of first-order linear differential equations with
constant coefficients and a constant delay, to get controllability criteria using the results in
the above-mentioned sources. However, then the dimension of the auxiliary system equals
2n and the essential feature of the situation is that we lose an explicit form of influence of the
matrix Ωwhen a control function is designed.

In the paper, special matrix functions, called a delayed matrix cosine and a delayed
matrix sine, are utilized. As a motivation for the terminology used calling the analyzed
systems “oscillating” served the formal similarity with the partial sums of the defining series
for the usual matrix sine and matrix cosine together with the formal parallel between (1.6)
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and systems of ordinary differential equations describing oscillating processes ((1.6) with
τ = 0).

The main result is the construction of a control function (in terms of these matrix
functions), solving the problem of a transferring of an initial function to a prescribed point in
the phase space.

2. Preliminaries

For a solution to the control problem, we need formulas to represent the solutions of an
oscillating system with a single delay. First we discuss a linear nonhomogeneous differential
system with a single delay

ẍ(t) + Ω2x(t − τ) = f(t), (2.1)

where the meaning of t, x, τ, and Ω is the same as in (1.6), and f : [0,∞) → R
n. Below we

use the symbols Θ and θ. The symbol Θ stands for an n × n zero matrix and the symbol θ
stands for the n × 1 vector (0, 0, . . . , 0)T .

In [15], system (2.1)was investigated and a representation of its solutions was derived
using special matrix functions called a delayed matrix sine and a delayed matrix cosine. With
their help, it was possible to derive a representation of the solutions of Cauchy problems. We
state the basic definitions, formulated in [15], needed for a solution of the control problem
described in Part 3.

Definition 2.1. The matrix function CosΩ,τ : R → R
n×n, continuous on R \ {−τ}, and defined

as

CosΩ,τ t :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ if −∞ < t < −τ,
I if − τ ≤ t < 0,

I −Ω2 t
2

2!
if 0 ≤ t < τ,

I −Ω2 t
2

2!
+ Ω4 (t − τ)4

4!
if τ ≤ t < 2τ,

· · ·

I −Ω2 t
2

2!
+ Ω4 (t − τ)4

4!
+ · · · + (−1)kΩ2k (t − (k − 1)τ)2k

(2k)!
if (k − 1)τ ≤ t < kτ, k ≥ 0,

· · ·

(2.2)

is called a delayed matrix cosine.
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Definition 2.2. The matrix function SinΩ,τ : R → R
n×n, continuous on R, and defined as

SinΩ,τ t :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ if −∞ < t < −τ,
Ω(t + τ) if − τ ≤ t < 0,

Ω(t + τ) −Ω3 t
3

3!
if 0 ≤ t < τ,

Ω(t + τ) −Ω3 t
3

3!
+ Ω5 (t − τ)5

5!
if τ ≤ t < 2τ,

· · ·

Ω(t + τ) −Ω3 t
3

3!
+ Ω5 (t − τ)5

5!
+ · · · + (−1)kΩ2k+1 (t − (k − 1)τ)2k+1

(2k + 1)!
if (k − 1) ≤ t < kτ, k ≥ 0,

· · ·

(2.3)

is called a delayed matrix sine.

With the use of the above-defined special matrices, a solution of the Cauchy problem
for nonhomogeneous system with a single delay can be written in an integral form. We recall
the rules for computing the derivatives necessary for our investigation of SinΩ,τ t and CosΩ,τ t
[15]. We remark that, in Definitions 2.1 and 2.2 as well as in formulas (2.4), (2.5) below, the
matrix Ω can even be singular.

Lemma 2.3. The following formulas are true for a delayed matrix cosine and a delayed matrix sine:

d

dt
CosΩ,τ t = −Ω SinΩ,τ(t − τ), (2.4)

d

dt
SinΩ,τ t = ΩCosΩ,τ t. (2.5)

The following theorem can be proved directly using formulas (2.4) and (2.5). A
particular case of this result (when ϕ′ = ψ) is given in [15]. Therefore, we omit the proof.

Theorem 2.4. Let ϕ, ψ : [−τ, 0] → R
n be continuously differentiable vector functions and f :

[0,∞) → R
n a locally integrable vector function. Then the solution x : [−τ,∞] → R

n of the Cauchy
problem

x(t) ≡ ϕ(t), x′(t) ≡ ψ(t), t ∈ [−τ, 0] (2.6)
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for the nonhomogeneous system (2.1) has the form

x(t) = (CosΩ,τ t)ϕ(−τ) + Ω−1(SinΩ,τ t)ψ(−τ) + Ω−1
∫0

−τ
(SinΩ,τ(t − τ − s))ψ ′(s) ds

+
∫0

−τ
(CosΩ,τ(t − τ − s))(ϕ′(s) − ψ(s)) ds + Ω−1

∫ t
0
(SinΩ,τ(t − τ − s))f(s) ds

(2.7)

on [0,∞).

3. Control of Oscillating Systems

In this part, we investigate the control problem and give the construction of a control
function for oscillating systems with a single delay (1.6)within the meaning of the following
definition. Since (1.6) is a second-order system, an initial Cauchy problem, in general, should
fix 2n independent initial one-dimensional functions. For this reason, in the formulation of
an initial Cauchy problem below, we prescribe initial vectors for the solution and its first
derivative.

Definition 3.1. System (1.6) is relatively controllable if for any continuously differentiable
initial vector functions ϕ, ψ : [−τ, 0] → R

n, any finite terminal conditions x1, x′
1 ∈ R

n, and
any sufficiently large terminal point t1 ∈ R, there exists a control u∗ : [0, t1] → R such that
the system (1.6)with the input u = u∗, that is, the system

ẍ(t) + Ω2x(t − τ) = bu∗(t) (3.1)

has a solution x = x∗ : [−τ, t1] → R
n such that

x∗(t) = ϕ(t), −τ ≤ t ≤ 0, (3.2)

d

dt
x∗(t) = ψ(t), −τ ≤ t ≤ 0, (3.3)

x∗(t1) = x1, (3.4)

d

dt
x∗(t1) = x′

1. (3.5)

To investigate the problem (3.1)–(3.5), we need some auxiliary notions given below.

Definition 3.2. We call the pair (Ω2, b) controllable if rank S∗
n = n,where

S∗
n :=

(
b,Ω2b,Ω4b, . . . ,Ω2(n−1)b

)
. (3.6)
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Definition 3.3. Let a positive number r be given. We define the class of all uniformly bounded
and piecewise-continuous functions on [0, t1], t1 > 0 (called a control set )Ur(0, t1) as

Ur(0, t1) :=
{
u : [0, t1] −→ R, ‖u‖[0,t1] ≤ r

}
, (3.7)

where r > 0 and

‖u‖[0,t1] := sup
t∈[0,t1]

|u(t)|. (3.8)

Definition 3.4. The domain

Qt1,ϕ,ψ :=
{(
x, x′) ∈ R

n × R
n : x = x(t1), x′ = x′(t1)

}
, (3.9)

where t1 > 0 and x = x(t) is a solution of (1.6) corresponding to the fixed initial conditions

x(t) = ϕ(t), x′(t) = ψ(t), −τ ≤ t ≤ 0 (3.10)

and to an arbitrary control u ∈ Ur(0, t1), is called a domain of reachability (reachable set)
with respect to the time t = t1 and the functions ϕ, ψ.

We introduce a 2n-dimensional auxiliary vector ω(t) = (ω1(t), ω2(t), . . . , ω2n(t)):

ω(t) :=

(
Ω−1(SinΩ,τ t)b

(CosΩ,τ t)b

)
(3.11)

and n-dimensional auxiliary vectors

ξ1 = x1 − (CosΩ,τ t1)ϕ(−τ) −Ω−1(SinΩ,τ t1)ψ(−τ) −Ω−1
∫0

−τ
(SinΩ,τ(t1 − τ − s))ψ ′(s) ds

−
∫0

−τ
(CosΩ,τ(t1 − τ − s))(ϕ′(s) − ψ(s)) ds,

(3.12)

ξ2 = x2 + Ω(SinΩ,τ(t1 − τ))ϕ(−τ) − (CosΩ,τ t1)ψ(−τ)

−
∫0

−τ
(CosΩ,τ(t1 − τ − s))ψ ′(s) ds + Ω

∫0

−τ
(SinΩ,τ(t1 − 2τ − s))(ϕ′(s) − ψ(s)) ds.

(3.13)

Before formulating the results on a relative controllability of (1.6), we present some auxiliary
propositions.
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Lemma 3.5. Let the pair (Ω2, b) be controllable. Then, on an arbitrary interval [−τ, t∗] with t∗ >
(n − 2)τ , the coordinates of the vector function ω(t) are linearly independent, that is, there is no
nonzero constant vector

lT =
(
lT1 , l

T
2

)
, lT1 = (l1, l2, . . . , ln), lT2 = (ln+1, ln+2 . . . , l2n) (3.14)

such that

lTω(t) ≡ 0 (3.15)

for every t ∈ [−τ, t∗].

Proof. Suppose, on the contrary, that there exists a nonzero vector (3.14) such that (3.15) holds
for every t ∈ [−τ, t∗], that is,

lT1Ω
−1(SinΩ,τ t)b + lT2 (CosΩ,τ t)b ≡ 0, t ∈ [−τ, t∗]. (3.16)

We will analyse the identity (3.16). Using Definition 2.1 of a delayed matrix cosine and
Definition 2.2 of a delayed matrix sine, we obtain

(
lT1

[
I(t + τ) −Ω2 t

3

3!
+ Ω4 (t − τ)5

5!
+ . . . + (−1)kΩ2k (t − (k − 1)τ)2k+1

(2k + 1)!

]

+lT2

[
I −Ω2 t

2

2!
+ Ω4 (t − τ)4

4!
+ . . . + (−1)kΩ2k (t − (k − 1)τ)2k

(2k)!

])
b ≡ 0

if (k − 1)τ ≤ t < kτ, k = 1, 2, . . . .

(3.17)

Considering identities (3.17) for k = 1, 2, . . . , n − 1 and taking into account the fact that the
left-hand side of (3.17) is, on every interval (k − 1)τ ≤ t < kτ , k = 1, 2, . . ., a polynomial in
t having only a finite number of zero points, we conclude that identity (3.17) is only true in
the case of polynomials having all their coefficients equal to zero. In other words, we get the
conditions

lT1S
∗
n = θT , (3.18)

lT2S
∗
n = θT . (3.19)

The homogeneous systems (3.18), (3.19) have a nonzero solution if and only if their
determinants are equal to zero, that is, detS∗

n = 0 or rank S∗
n < n. This contradicts the

assumption of controllability of the pair (Ω2, b).
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Lemma 3.6. If a vector function κT (t) = (κ1(t), κ2(t), . . . , κ2n(t)) consists of linearly independent
elements on the interval [−τ, t∗] where t∗ > −τ , then

det

(∫ t∗

−τ
κ(t)κT (t) dt

)
/= 0. (3.20)

Proof. The statement is a consequence of the fact that the symmetric matrix

∫ t∗

−τ
κ(t)κT (t)dt (3.21)

is positively definite and thus regular.

Remark 3.7. Note that it is easy to see that the matrix κ(t)κT (t) is (unlike the matrix (3.21))
singular for every t ∈ [−τ,∞).

Now we are able to present a result on the relative controllability of system (1.6), and
give an inequality for the value t1, mentioned in Definition 3.1.

Theorem 3.8. System (1.6) is relatively controllable if and only if t1 > (n − 1)τ and the pair (Ω2, b)
is controllable.

Proof (Necessity). Let the system (1.6) be relatively controllable within the meaning of
Definition 3.1. We use the representation formula for a solution of the Cauchy problem for
nonhomogeneous equation in the form (2.7) for the control u∗ (i.e. f := bu∗) and time t = t1.
We obtain

x1 = (CosΩ,τ t1)ϕ(−τ) + Ω−1(SinΩ,τ t1)ψ(−τ) + Ω−1
∫0

−τ
(SinΩ,τ(t1 − τ − s))ψ ′(s)ds

+
∫0

−τ
(CosΩ,τ(t1 − τ − s))(ϕ′(s) − ψ(s)) ds + Ω−1

∫ t1
0
(SinΩ,τ(t1 − τ − s))bu∗(s)ds,

(3.22)

x′
1 = −Ω(SinΩ,τ(t1 − τ))ϕ(−τ) + (CosΩ,τ t1)ψ(−τ)

+
∫0

−τ
(CosΩ,τ(t1 − τ − s))ψ ′(s)ds −Ω

∫0

−τ
(SinΩ,τ(t1 − 2τ − s))(ϕ′(s) − ψ(s))ds

+
∫ t1
0
(CosΩ,τ(t1 − τ − s))bu∗(s)ds.

(3.23)

Equation (3.22) and (3.23) can be rewritten as a system of the two following equations:

∫ t1
0
(SinΩ,τ(t1 − τ − s))bu∗(s)ds = Ωξ1, (3.24)

∫ t1
0
(CosΩ,τ(t1 − τ − s))bu∗(s)ds = ξ2, (3.25)

where ξ1, ξ2 are defined by (3.12) and (3.13).
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We will investigate the system (3.24). Let, for an integer k ≥ 0, t1 ∈ [(k − 1)τ, kτ). We
use the representation of a delayed matrix sine and, after putting t1 − τ − s = η, the left-hand
side of (3.24) equals

∫ t1
0
(SinΩ,τ(t1 − τ − s))bu∗(s)ds =

∫ t1−τ
−τ

(
SinΩ,τη

)
bu∗
(
t1 − τ − η)dη

=
∫0

−τ
Ω
(
η + τ

)
bu∗
(
t1 − τ − η)dη +

∫ τ
0

[
Ω
(
η + τ

) −Ω3 η
3

3!

]
bu∗
(
t1 − τ − η)dη

+
∫2τ

τ

[
Ω
(
η + τ

) −Ω3 η
3

3!
+ Ω5

(
η − τ)5
5!

]
bu∗
(
t1 − τ − η)dη

+ . . . +
∫ t1−τ
(k−2)τ

[
Ω
(
η + τ

) −Ω3 η
3

3!
+ Ω5

(
η − τ)5
5!

+ . . .

+(−1)k−1Ω2k−1
(
η − (k − 2)τ

)2k−1
(2k − 1)!

]
bu∗
(
t1 − τ − η)dη.

(3.26)

We denote

ψ1(t1) =
∫ t1−τ
−τ

(
η + τ

)
u∗
(
t1 − τ − η)dη,

ψ3(t1) = − 1
3!

∫ t1−τ
0

η3u∗
(
t1 − τ − η)dη,

ψ5(t1) =
1
5!

∫ t1−τ
τ

(
η − τ)5u∗(t1 − τ − η)dη,

. . .

ψ2k−1(t1) =
(−1)k−1
(2k − 1)!

∫ t1−τ
(k−2)τ

(
η − (k − 2)τ

)2k−1
u∗
(
t1 − τ − η)dη.

(3.27)

Using (3.27) and the regularity of the matrix Ω, we rewrite the system (3.24) in the form

bψ1(t1) + Ω2bψ3(t1) + Ω4bψ5(t1) + . . . + Ω2(k−1)bψ2k−1(t1) = ξ1. (3.28)

Now we go on analysing the system (3.25). Let, as in the previous case, for an integer k ≥ 0,
t1 ∈ [(k − 1)τ, kτ). We use the representation of a delayed matrix cosine and, after putting
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t1 − τ − s = η, we obtain

∫ t1
0
CosΩ,τ(t1 − τ − s)bu∗(s)ds =

∫ t1−τ
−τ

(
CosΩ,τη

)
bu∗
(
t1 − τ − η)dη

=
∫0

−τ
bu∗
(
t1 − τ − η)dη +

∫ τ
0

[
I −Ω2 η

2

2!

]
bu∗
(
t1 − τ − η)dη

+
∫2τ

τ

[
I −Ω2 η

2

2!
+ Ω4

(
η − τ)4
4!

]
bu∗
(
t1 − τ − η)dη

+ . . . +
∫ t1−τ
(k−2)τ

[
I −Ω2 η

2

2!
+ Ω4

(
η − τ)4
4!

− . . . + (−1)k−1Ω2(k−1)
(
η − (k − 2)τ

)2(k−1)
(2k − 2)!

]
bu∗
(
t1 − τ − η)dη.

(3.29)

We denote

ψ0(t1) =
∫ t1−τ
−τ

u∗
(
t1 − τ − η)dη,

ψ2(t1) = − 1
2!

∫ t1−τ
0

η2u∗
(
t1 − τ − η)dη,

ψ4(t1) =
1
4!

∫ t1−τ
τ

(
η − τ)4u∗(t1 − τ − η)dη,

. . .

ψ2k−2(t1) = (−1)k−1
∫ t1−τ
(k−2)τ

(
η − (k − 2)τ

)2(k−1)
(2k − 2)!

u∗
(
t1 − τ − η)dη.

(3.30)

Using (3.30) and the regularity of the matrix Ω, we rewrite the system (3.25) in the form

bψ0(t1) + Ω2bψ2(t1) + . . . + Ω2(k−1)bψ2k−2(t1) = ξ2. (3.31)

It was assumed that the system (1.6) is relatively controllable. Consequently, systems (3.28)
and (3.31) have solutions for arbitrary vectors ξ1, ξ2. If k < n or k = n and t1 = (n − 1)τ , then
both systems are overdetermined and the existence of a solution is not guaranteed. Therefore,
for (1.6) to be relatively controllable, it is necessary that k ≥ n and, if k = n, then t1 /= (n − 1)τ ,
that is,

t1 > (k − 1)τ ≥ (n − 1)τ. (3.32)
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A simple consequence of Cayley-Hamilton theorem (e.g. [5]) is that an arbitrary degree (Ω2)i,
i ≥ n of the matrix Ω2 can be represented as a linear combination of matrices

I,Ω2,Ω4, . . . ,Ω2(n−1). (3.33)

Then, for k ≥ n, both systems (3.28) and (3.31) can be replaced by the systems

bψ∗
1(t1) + Ω2bψ∗

3(t1) + . . . + Ω2(n−1)bψ∗
2n−1(t1) = ξ1, (3.34)

bψ∗
0(t1) + Ω2bψ∗

2(t1) + . . . + Ω2(n−1)bψ∗
2n−2(t1) = ξ2, (3.35)

where ψ∗
i (t1), i = 0, 1, . . . , 2n − 1 are some new functions depending on t1. If systems (3.34)

and (3.35) have solutions

ψ∗
1(t1), ψ

∗
3(t1), . . . , ψ

∗
2n−1(t1),

ψ∗
0(t1), ψ

∗
2(t1), . . . , ψ

∗
2n−2(t1)

(3.36)

for an arbitrary choice of ξ1, ξ2, then detS∗
n /= 0, that is, the pair (Ω2, b) is controllable. The

necessity is proved.
Sufficiency. The proof almost fully copies a known proof of sufficiency for linear

systems without delay. Due to the linearity of the problem considered, we can assume,
without loss of generality, that the initial functions are zero vector-functions, that is,

ϕ(t) = ψ(t) = θ, −τ ≤ t ≤ 0. (3.37)

In addition to this, t1 > (n − 1)τ and the controllability of (Ω2, b) is assumed. We prove that
the system (1.6), is relatively controllable.

First we prove that the domain of reachability Qt1,θ,θ has a dimension of 2n if u ∈
Ω1(0, t1). Let, on the contrary, dimQt1,θ,θ < 2n. Then, there exists a fixed vector l ∈ R

2n,

lT =
(
lT1 , l

T
2

)
, lT1 = (l1, l2, . . . , ln), lT2 = (ln+1, ln+2 . . . , l2n) (3.38)

such that, for an arbitrary u ∈ Ω1(0, t1), for the relevant solution x = x(t) of (1.6)we have

lT1x(t1) + l
T
2x

′(t1) = 0. (3.39)

Since the initial functions are zero vector-functions, condition (3.39) turns, due to formula
(2.7) with f := bu, into

lT1Ω
−1
[∫ t1

0
(SinΩ,τ(t1 − τ − s))bu(s)ds

]
+ lT2

[∫ t1
0
(CosΩ,τ(t1 − τ − s))bu(s)ds

]
= 0. (3.40)
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Because (3.40) is satisfied for an arbitrary function u ∈ Ω1(0, t1), we deduce, by the
fundamental lemma of the calculus of variations, that

lT1Ω
−1(SinΩ,τ(t1 − τ − s))b + lT2 (CosΩ,τ(t1 − τ − s))b ≡ 0, 0 ≤ s ≤ t1, (3.41)

or, after putting t1 − τ − s = ξ, we have

[
lT1Ω

−1SinΩ,τ ξ + lT2 CosΩ,τ ξ
]
b ≡ 0, −τ ≤ ξ ≤ t1 − τ. (3.42)

This contradicts the statement of Lemma 3.5 with t∗ = t1 − τ . Thus, the assumption that the
dimension of Qt1,θ,θ is smaller than 2n is false.

Since the domain of reachabilityQt1,θ,θ together with a point (x(t1), x′(t1)) correspond-
ing to a control u ∈ Ω1(0, t1) also contains a point (−x(t1),−x′(t1)) (corresponding to a control
−u ∈ Ω1(0, t1)), we conclude that Qt1,θ,θ is symmetric. Due to the linearity of the problem
considered, it is also a convex domain. Consequently, it contains a ball with a radius of δ > 0.

Obviously, if we consider the control setUr(0, t1) instead ofΩ1(0, t1) and r → ∞, then
δ → ∞, that is, Qt1,θ,θ = R

2n. Simultaneously, it says that, for every point (x, x′) ∈ R
2n, there

exists a control u = u∗ : [0, t1] → R such that the solution x = x∗ of (3.1) satisfies (3.2)–(3.5).
This conclusion remains valid even in the case of any nonidentically zero initial

functions. Indeed, a simple transformation x(t) = xϕ,ψ(t)+z(t),where z(t) is a new dependent
function and xϕ,ψ(t) is a solution of a homogeneous problem

ẍ(t) + Ω2x(t − τ) = θ, t ≥ 0,

x(t) = ϕ(t), −τ ≤ t ≤ 0,

d

dt
x(t) = ψ(t), −τ ≤ t ≤ 0

(3.43)

leads to the same problem with respect to z with zero initial vector-functions. Thus, the
system (1.6) is relatively controllable.

Now we give the formula for a relevant control function. An advantage of the result
obtained is an explicit dependence of the control function on the delayed matrix cosine and
delayed matrix sine.

Theorem 3.9. Let t1 > (n − 1)τ and let the pair (Ω2, b) be controllable. Then, a control function
relevant to the problem (3.1)–(3.5) can be thought of as having the form

u∗(t) = bT
(
Ω−1SinΩ,τ(t1 − τ − t)

)T
C0

1 + b
T (CosΩ,τ(t1 − τ − t))TC0

2, (3.44)

where t ∈ [0, t1], C0
1 = (c01, c

0
2, . . . , c

0
n)
T
and C0

2 = (c0n+1, c
0
n+2, . . . , c

0
2n)

T
are the solutions of a system of

linear nonhomogeneous algebraic equations

(
D11 D12

D21 D22

)(
C0

1

C0
2

)
=

(
ξ1

ξ2

)
, (3.45)
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where n × n matrices Dij , i, j = 1, 2, are defined as

D11 =
∫ t1
0
Ω−1(SinΩ,τ(t1 − τ − s))bbT

(
Ω−1SinΩ,τ(t1 − τ − s)

)T
ds,

D12 =
∫ t1
0
Ω−1(SinΩ,τ(t1 − τ − s))bbT (CosΩ,τ(t1 − τ − s))Tds,

D21 =
∫ t1
0
(CosΩ,τ(t1 − τ − s))bbT

(
Ω−1SinΩ,τ(t1 − τ − s)

)T
ds,

D22 =
∫ t1
0
(CosΩ,τ(t1 − τ − s))bbT (CosΩ,τ(t1 − τ − s))Tds,

(3.46)

and vectors ξ1, ξ2 are defined by (3.13).

Proof. Let t1 > (n − 1)τ . Since the pair (Ω2, b) is controllable, the vectors

b,Ω2b,Ω4b, . . . ,Ω2(n−1)b (3.47)

are linearly independent. From the integral representation (2.7), it follows that the terminal
values of a solution x = x(t) of system (1.6) at t = t1 satisfying initial conditions (3.2) and
(3.3) have the form (3.22) and (3.23). Therefore, a suitable control function u should satisfy
the system of integral equations (3.24) and (3.25). Let us try to find the control function in the
form of a linear combination

u∗(t) = bT
(
Ω−1SinΩ,τ(t1 − τ − t)

)T
C1 + bT (CosΩ,τ(t1 − τ − t))TC2, (3.48)

where C1 = (c1, c2, . . . , cn)
T and C2 = (cn+1, cn+2, . . . , c2n)

T are unknown constant vectors. We
apply representation (3.48) to (3.24), (3.25). Then, we get

∫ t1
0
Ω−1(SinΩ,τ(t1 − τ − s))bbT

×
[(

Ω−1SinΩ,τ(t1 − τ − s)
)T
C1 + (CosΩ,τ(t1 − τ − s))TC2

]
ds = ξ1,

∫ t1
0
(CosΩ,τ(t1 − τ − s))bbT

×
[(

Ω−1SinΩ,τ(t1 − τ − s)
)T
C1 + (CosΩ,τ(t1 − τ − s))TC2

]
ds = ξ2,

(3.49)

or

(
D11 D12

D21 D22

)(
C1

C2

)
=

(
ξ1

ξ2

)
(3.50)
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with the above defined matricesDij , i, j = 1, 2. The determinant Δ of the system (3.50) can be
written in the form

Δ = det

(∫ t1
0

(
Ω−1(SinΩ,τ(t1 − τ − s))b
(CosΩ,τ(t1 − τ − s))b

))

×
(
bT
(
Ω−1SinΩ,τ(t1 − τ − s)

)T
, bT (CosΩ,τ(t1 − τ − s))T

)
ds

)
.

(3.51)

Using a transformation t1 − τ − s = t in the integral and the denotation (3.11), we get

Δ = det

(∫ t1−τ
−τ

ω(t)ωT
τ (t)dt

)
. (3.52)

By Lemma 3.5, the coordinates ofω(t) are linearly independent on [−τ, t∗]where t∗ > (n−2)τ .
Then, by Lemma 3.6 (with t∗ > (n − 2)τ), Δ/= 0. Consequently, the system (3.50) has a unique
solution C1 = C0

1, C2 = C0
2, and the control (3.48) coincides with (3.44).

4. Conclusions and Future Directions

The paper studied the problem of the relative controllability of oscillating systems (1.6)
within the meaning of Definition 3.1. An explicit representation of solutions of (1.6) with the
aid of special matrix functions called a delayed matrix sine and a delayed matrix cosine was
used to solve this problem. The necessary and sufficient conditions of relative controllability
were derived and a specific control function was constructed in terms of these matrix
functions, solving the relative controllability problem of transferring an initial function to a
prescribed point in the phase space. Some previous results of investigating the controllability
problems using special matrix functionswere derived for linear delayed systemswith a single
delay in [16] (the case of continuous systems) and in [17] (the case of discrete systems)where
representations of solutions of linear discrete systems [18, 19] are used. It is an open problem
how to extend the results derived to systems of discrete equations with a single delay

x(n + 2) + Ω2x(n −m) = bu(n), (4.1)

where n is an independent variable, m is a positive integer, and (4.1) is a discrete analogy of
(1.6). Another open problem is how to extend the results derived to fractional systems (see,
e.g., [20]).
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